A Framework for successful new product development

Nadia Bhuiyan

Abstract


Purpose: The purpose of this paper is to propose a framework of critical success factors, metrics, and tools and techniques for implementing metrics for each stage of the new product development (NPD) process.

Design/methodology/approach: To achieve this objective, a literature review was undertaken to investigate decades of studies on NPD success and how it can be achieved. These studies were scanned for common factors for firms that enjoyed success of new products on the market.

Findings: The paper summarizes NPD success factors, suggests metrics that should be used to measure these factors, and proposes tools and techniques to make use of these metrics. This was done for each stage of the NPD process, and brought together in a framework that the authors propose should be followed for complex NPD projects.

Research limitations/implications: Several different research directions could provide additional useful information both to firms finding critical success factors (CSF) and measuring product development success as well as to academics performing research in this area. The main research opportunity exists in implementing or testing the proposed framework.

Practical implications: The framework can be followed by managers of complex NPD projects to ensure success.

Originality/value: While many studies have been conducted on critical success factors for NPD, these studies tend to be fragmented and focus on one or a few phases of the NPD process. To the authors’ knowledge, this is the first time a framework that synthesizes these studies into a single framework.


Keywords


new product development, critical success factors, metrics, tools and techniques.

Full Text:

PDF HTML EPUB


DOI: https://doi.org/10.3926/jiem.334


Licencia de Creative Commons 

This work is licensed under a Creative Commons Attribution 4.0 International License

Journal of Industrial Engineering and Management, 2008-2024

Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008

Publisher: OmniaScience