A heuristic for the inventory management of smart vending machine systems
Abstract
Purpose: The purpose of this paper is to propose a heuristic for the inventory management of smart vending machine systems with product substitution under the replenishment point, order-up-to level policy and to evaluate its performance.
Design/methodology/approach: The heuristic is developed on the basis of the decoupled approach. An integer linear mathematical model is built to determine the number of product storage compartments and replenishment threshold for each smart vending machine in the system and the Clarke and Wright’s savings algorithm is applied to route vehicles for inventory replenishments of smart vending machines that share the same delivery days. Computational experiments are conducted on several small-size test problems to compare the proposed heuristic with the integrated optimization mathematical model with respect to system profit. Furthermore, a sensitivity analysis is carried out on a medium-size test problem to evaluate the effect of the customer service level on system profit using a computer simulation.
Findings: The results show that the proposed heuristic yielded pretty good solutions with 5.7% error rate on average compared to the optimal solutions. The proposed heuristic took about 3 CPU minutes on average in the test problems being consisted of 10 five-product smart vending machines. It was confirmed that the system profit is significantly affected by the customer service level.
Originality/value: The inventory management of smart vending machine systems is newly treated. Product substitutions are explicitly considered in the model. The proposed heuristic is effective as well as efficient. It can be easily modified for application to various retail vending settings under a vendor-managed inventory scheme with POS system.
Keywords
DOI: https://doi.org/10.3926/jiem.587
This work is licensed under a Creative Commons Attribution 4.0 International License
Journal of Industrial Engineering and Management, 2008-2025
Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008
Publisher: OmniaScience