A study on RFID adoption for vehicle tracking in container terminal
Abstract
Purpose: Numerous studies discuss that Radio Frequency Identification (RFID) technology can provide better container handling efficiency; however, relative lack of research concerns the tracking and monitoring the movement of vehicle in the container terminal environment. Thus, this study aims at discussing the feasibility of applying RFID for vehicle tracking purpose in a container terminal.
Design/methodology/approach: This study makes use of a series of experiments in a container terminal to discuss the factors that affect the use of RFID in the terminal. The possibility and accuracy of using RFID in such challenging environment is also investigated. These propositions are investigated by a case study.
Findings: The experimental results indicate that the RFID communication is good at the containers area which occupies nearly all the area in the container terminal. However, in other area such as sea side and free area, the performance is not good and 100% readability only achieved in 5m and 10m in free area and sea side respectively.
Originality/value: The container terminal environment, which consists of different transport vehicles for onward transportation, will affect the performance of RFID readability. Poor setup of the RFID reader and tag will lower the feasibility of RFID adoption as well as increase the cost. In order to address the challenges of implementing RFID in the container terminal environment, this paper provides a series of real site testing experiments to study the RFID performance in the container terminal environment. This represents an original contribution of value to future research and practice in the RFID adoptions in container terminal environment.Keywords
DOI: https://doi.org/10.3926/jiem.412
This work is licensed under a Creative Commons Attribution 4.0 International License
Journal of Industrial Engineering and Management, 2008-2025
Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008
Publisher: OmniaScience