A production throughput forecasting system in an automated hard disk drive test operation using GRNN

Nara Samattapapong, Nitin Afzulpurkar

Abstract


Purpose: The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations.

Design/methodology/approach: In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO).

Findings: The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application.

Originality/value: The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for production throughput has not been described in detail yet. The experiments were conducted on a real data set from the final testing operation of hard disk drive manufacturing factory by using Visual Basics Application on Microsoft Excel© to develop preliminary forecasting system on testing and verification process. The experimental result shows that the proposed model is superior to the performance of the current forecasting system.

Keywords


forecasting system, GRNN, production throughput, smoothing parameter, hard disk drive manufacturing

Full Text:

PDF


DOI: http://dx.doi.org/10.3926/jiem.1464


Licencia de Creative Commons 

This work is licensed under a Creative Commons Attribution 4.0 International License

Journal of Industrial Engineering and Management, 2008-2019

Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008

Publisher: OmniaScience