Research on industrialization of electric vehicles with its demand forecast using exponential smoothing method

Zhanglin Peng, Zhijun Yu, Hongbo Wang, Shanlin Yang

Abstract


Purpose: Electric vehicles industry has gotten a rapid development in the world, especially in the developed countries, but still has a gap among different countries or regions. The advanced industrialization experiences of the EVs in the developed countries will have a great helpful for the development of EVs industrialization in the developing countries. This paper seeks to research the industrialization path & prospect of American EVs by forecasting electric vehicles demand and its proportion to the whole car sales based on the historical 37 EVs monthly sales and Cars monthly sales spanning from Dec. 2010 to Dec. 2013, and find out the key measurements to help Chinese government and automobile enterprises to promote Chinese EVs industrialization.

Design/methodology: Compared with Single Exponential Smoothing method and Double Exponential Smoothing method, Triple exponential smoothing method is improved and applied in this study.

Findings: The research results show that:  American EVs industry will keep a sustained growth in the next 3 months.  Price of the EVs, price of fossil oil, number of charging station, EVs technology and the government market & taxation polices have a different influence to EVs sales. So EVs manufacturers and policy-makers can adjust or reformulate some technology tactics and market measurements according to the forecast results. China can learn from American EVs polices and measurements to develop Chinese EVs industry.

Originality/value: The main contribution of this paper is to use the triple exponential smoothing method to forecast the electric vehicles demand and its proportion to the whole automobile sales, and analyze the industrial development of Chinese electric vehicles by American EVs industry.


Keywords


electric vehicles; market demand; forecast; exponential smoothing method

Full Text:

PDF


DOI: http://dx.doi.org/10.3926/jiem.1287


Licencia de Creative Commons 

This work is licensed under a Creative Commons Attribution 4.0 International License

Journal of Industrial Engineering and Management, 2008-2019

Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008

Publisher: OmniaScience