A qualitative multi-attribute model for the selection of the private hydropower plant investments in Turkey: By foundation of the search results clustering engine (Carrot2), hydropower plant clustering, DEXi and DEXiTree
Abstract
Purpose: The electricity demand in Turkey has been increasing for a while. Hydropower is one of the major electricity generation types to compensate this electricity demand in Turkey. Private investors (domestic and foreign) in the hydropower electricity generation sector have been looking for the most appropriate and satisfactory new private hydropower investment (PHPI) options and opportunities in Turkey. This study aims to present a qualitative multi-attribute decision making (MADM) model, that is easy, straightforward, and fast for the selection of the most satisfactory reasonable PHPI options during the very early investment stages (data and information poorness on projects).
Design/methodology/approach: The data and information of the PHPI options was gathered from the official records on the official websites. A wide and deep literature review was conducted for the MADM models and for the hydropower industry. The attributes of the model were identified, selected, clustered and evaluated by the expert decision maker (EDM) opinion and by help of an open source search results clustering engine (Carrot2) (helpful for also comprehension). The PHPI options were clustered according to their installed capacities main property to analyze the options in the most appropriate, decidable, informative, understandable and meaningful way. A simple clustering algorithm for the PHPI options was executed in the current study. A template model for the selection of the most satisfactory PHPI options was built in the DEXi (Decision EXpert for Education) and the DEXiTree software.
Findings: The basic attributes for the selection of the PHPI options were presented and afterwards the aggregate attributes were defined by the bottom-up structuring for the early investment stages. The attributes were also analyzed by help of Carrot2. The most satisfactory PHPI options in Turkey in the big options data set were selected for each PHPI options cluster by the EDM evaluations in the DEXi.
Originality/value: The recommended DEXi PHPI selection model by the search results clustering engine within a country wise case offered the possibility of easy, meaningful and satisfying continental or worldwide applications for the private investors and the international financial institutions such as the African Development Bank, or the World Bank was the main contribution.
Keywords
Full Text:
PDFDOI: https://doi.org/10.3926/jiem.1142
This work is licensed under a Creative Commons Attribution 4.0 International License
Journal of Industrial Engineering and Management, 2008-2025
Online ISSN: 2013-0953; Print ISSN: 2013-8423; Online DL: B-28744-2008
Publisher: OmniaScience