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Abstract: 

Purpose: The purpose of
this paper is to propose and compare the performance
of the “two” robust mathematical models, the Robust Integer Facility
Location
(RIFL) and the Robust Continuous Facility Location (RCFL) models, to
solve the
emergency response facility and transportation problems in terms of the
total
logistics cost and robustness.

Design/methodology/approach: The emergency response facilities include distribution
warehouses
(DWH) where relief goods are stored, commodity distribution points
(CDP), and
neighborhood locations. Authors propose two robust models: the Robust
Integer
Facility Location (RIFL) model where the demand of a CDP is covered by
a main
DWH or a backup CDP; the Robust Continuous Facility Location (RCFL)
model where
that of a CDP is covered by multiple DWHs. The performance of these
models is
compared with each other and to the Regular Facility Location (RFL)
model where
a CDP is covered by one main DWH. The case studies with multiple
scenarios are
analyzed.

Findings: The results
illustrate that the RFL outperforms others under normal
conditions while the RCFL outperforms others under the emergency
conditions.
Overall, the total logistics cost and robustness level of the RCFL
outperforms
those of other models while the performance of RFL and RIFL is mixed
between
the cost and robustness index.

Originality/value: Two
new emergency distribution approaches are modeled, and
evaluated using case studies. In addition to the total logistics cost,
the
robustness index is uniquely presented and applied. The proposed models
and
robustness concept are hoped to shed light to the future works in the
field of
disaster logistics management.

Keywords: emergency response, facility location, disaster
recovery, emergency
relief goods, spreadsheet model, facility disruptions
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1     
Introduction 

After emergency events such as
natural
disasters or terrorist attacks, it is critical through emergency
response
facilities to distribute for rapid recovery emergency supplies to the
affected
areas in a timely and efficient manner. The emergency response
facilities
considered in this paper include distribution warehouses (DWHs),
where
emergency relief goods are stored, intermediate response facilities
termed
Disaster Recovery Centers (DRCs), sometimes referred to as break
of bulk
points (BOBs), where emergency relief goods can be sent to the
affected
area in a timely manner for rapid recovery, and neighborhood locations
in need
of relief goods. The distribution of emergency supplies from these
facilities
to the affected areas must be done via a transportation network. Given
the
significance of transportation costs and the time involved in
transporting the
relief goods, the importance of optimally locating DWHs and BOBs in the
transportation network is apparent.

Traditional facility location
models, such
as set-covering models, p-center models, p-median models, and fixed
charge
facility location problems (Dekle, Lavieri, Martin, Emir-Farinas &
Francis,
2005) implicitly assume that emergency response facilities will always
be in
service or be available, and each demand node is assumed to be
satisfied by a
supply facility as assigned by the optimization model. However, it is
very
likely that some emergency response facilities may be damaged or
completed
destroyed and cannot provide the expected services. When this happens,
the demands
of the affected areas will have to be satisfied by other facilities
much
farther away than the initially assigned facilities. This obviously
will
increase the distribution cost and time of relief goods. Compared to
the
prior-disaster transportation costs minimized by the traditional
facility
location models, the actual or post-disaster transportation costs can
be
substantially higher. Thus, it is very important to take into account
the
post-disaster costs as well as the prior-disaster costs in emergency
response
facility location modeling.

In light of the significant
difference in
siting between emergency response facilities and other types of
facilities and
the paucity of the research literature in this area, we propose a new
emergency
response facility location model that can better account for the
uncertainty
caused by the disruptions of critical infrastructure and that would
minimize
the post-disaster costs. Assuming that some DWHs might be unavailable
after
disastrous events, we compare the new model with a traditional facility
location model based on case studies to demonstrate the developed
model’s
capability to better deal with the risks in emergency response caused
by the
disruptions of critical infrastructure.


2     
Literature review

Facility location models have
been
extensively researched for decades. Dekle et al. (2005) develop a
set-covering
model and a two-stage modeling approach to identify the optimal DRC
sites. Their objective is to minimize the total number of DRCs,
subject
to each county’s residents being within a certain distance of the
nearest DRC.
Horner and Downs (2007) conduct a similar study to optimize BOB
locations (in our paper, BOBs and DRCs are used
interchangeably).
As shown in Figure 1, emergency relief goods are shipped from central
distribution warehouses to BOBs and distributed to victims of
catastrophes. Given the number and locations of initial warehouses,
Horner and
Downs formulate the problem as a multi-objective integer programming.
Two
objectives are considered. The first objective is to minimize the
transportation costs of servicing BOBs from warehouse
locations, and the
second one is to minimize the transportation costs between BOBs
and
neighborhoods in need of relief goods.

Snyder and Daskin (2005)
develop a reliable
facility location model based on the p-median and the incapacitated
fixed-charge location problem. They defined the extra transportation
cost
caused by the failure of one or more facilities as the “failure cost”.
Obviously, adding additional facilities as backups would reduce the
failure
cost. However, this will increase the day-to-day system operating cost.
The
main goal of their model is to find the best “trade-off” between the
operating
cost and the expected failure cost of a facility location design. The
developed
model is solved by a Lagrangian relaxation algorithm. Berman, Krass and
Menezes
(2007) also develop a reliable facility location model based on the
p-median
problem. In their research, each facility is assigned a failure
probability.
The objective is to minimize the expected weighted transportation cost
and the
expected penalty for certain customers not being served. The developed
model
has a nonlinear objective function and is difficult to solve by exact
algorithms. These authors thus proposed a greedy heuristic for their
model.



Figure 1.[bookmark: _Toc264933033][bookmark: _Toc38683094] Distribution strategy
for emergency relief goods (Horner
& Downs, 2007)

Hassin, Ravi and Salman (2010)
investigate
a facility location problem considering the failures of network edges.
Their
goal is to maximize the expected demand that can be served after
disastrous
events. In their study, it is assumed that a demand node can be served
by a facility
if it is within a certain distance of the entity in the network that
survived
disaster. The failures of network edges are assumed to be dependent on
each
other. These authors formulate the problem as an exact dynamic
programming
model and develop an exact greedy algorithm to solve it. Eiselt,
Gendreau and
Laporte (1996) also propose a reliable model for optimally locating p
facilities in a network that takes into account the potential failures
of road
network links and nodes. These authors develop a low-order polynomial
algorithm
to solve the proposed facility location model. 

Li and Ouyang (2010) examined a
continuous
reliable incapacitated fixed charge location (RUFL) problem. They
assume that
facilities are subject to spatially correlated disruptions and have a
location-dependent probability to fail during disastrous events. A
continuum
approximation (Langevin, Mbaraga & Campbell, 1996; Daganzo, 2005)
approach
is adopted to solve the developed model. The authors consider two
methods to
model the spatial correlation of disruptions, including positively
correlated
Beta-Binomial facility failure.

Cui, Ouyang & Shen (2010)
investigate a
discrete reliable facility location design problem under the risk of
disruptions. Their model considers a set of i customers and j
facilities, with the goal of minimizing the sum of fixed facility and
expected
transportation costs. Similar to Snyder and Daskin (2005), Cui et al.
(2010) assign
each customer to multiple levels to ensure the robustness of the final
facility
location design. They also develop a Lagrangian relaxation algorithm to
solve
the proposed model. 

Our research is built upon the
work done by
Horner and Downs (2007) and also motivated by the recent trend in
facility
location studies to consider the risk caused by critical infrastructure
disruptions. Contrary to the one-stage model developed by Horner and
Downs and
which optimized the location of BOBs only, we develop a
two-stage
integrated facility location model that simultaneously optimizes the
locations
of DWHs and BOBs. In addition, we propose two robust
models for
the case of disasters. 

The rest of this paper is
organized as
follows. In the next section, an integrated facility location model is
introduced. Based on this integrated model formulation, robust
integrated
facility location models are proposed and described in detail.
Following the description
of the model formulations, case studies are conducted and the resulting
analysis is presented. The last section summarizes the developed models
and
research findings. It also provides recommendations for future research
directions.


3     
Development of integrated facility
location
model

Let M be the set of
all
neighborhoods and potential
distribution warehouse locations, indexed by m. We
separate M into two sets: M={N, I}, where I denotes the set
of potential distribution warehouse locations (indexed by i =1, 2, …,w) and N represents the set of
neighborhoods (indexed
by n =1, 2, …, p). In
this research, we assume BOBs can be located at any neighborhoods and
potential DWH locations, while DWH
can be built at candidate DWH locations only.
Based on
these two assumptions, let J be the
set of
potential BOB locations indexed by , where j = 1,
2, …p, p+1, p+2, …p+i, …,p+w. Given this
problem
setting, we formulate the following integer
quadratic
programming (IQP) model that minimizes the total logistics cost, which is the sum of fixed
facility costs
and the transportation
costs
from DWHs to BOBs and between BOBs and
neighborhoods/candidate DWH
locations that are not selected:
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where,

ai:
fixed cost for contructing and operating DWHi;

bj:
fixed cost for contructing and operating BOBj;

Bj:
1
if neighborhood j is selected as a BOB, 0 otherwise (decision
variable);

dij:
distance between DWHi and BOBj;

dim:
distance between DWHi amd location m;

djm:
distance between BOBj and location m;

DB:
maximum number of BOBs can be built (set to 5);

Dm:
demand of location (can be either neighborhood or DWH) m; 

Dw:
maximum number of DWHs can be built (set to 3 in this study);

ki:
maximum number of BOBs a DWH must handle (set to 1 in
this
study);

Ki:
maximum number of BOBs a DWH can handle (set to 5 in
this study);

Lj:
minimum number of neighborhoods a BOB needs to cover (set to 2);

Uj:
maximum number of neighborhoods a BOB can cover (set to 6);

Wi:
1
if a candidate warehouse i is selected, 0 otherwise (decision
variable);

xij:
1
if BOBj is covered by DWHi, 0
otherwise
(decision variable);

yjm:
1
if location m is covered by CDPj, 0
otherwise
(decision variable).

Since the main purpose of this
paper is to
demonstrate how the proposed model works, we further simplify the
objective
function by excluding the fixed cost terms for BOBs and for DWH.
Also,
the numbers of BOBs and DWHs to be built are
pre-specified. For
real-world applications, once the real data are available, such
restrictions
can be readily relaxed to generate meaningful results. In this paper,
we use
the following simplified objective function for the simultaneous
optimization
of DWH and BOB locations.
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Constraints
(2)
require that at most DW DWHs can be
constructed; DW
is provided by the user. 

Constraints
(3)
ensure that the potential DWH location will not be selected
simultaneously as both DWH and BOB. 

Constraints
(4)
ensure that if a potential DWH location i is not
selected (i.e., Wi=0)
(its demand must be satisfied by a BOB). 

Constraints
(5)
make certain that each neighborhood  is assigned to
exactly one BOB. 

Constraints
(6)
limit the minimum and maximum number of BOBs to be served by
each DWH.


Constraint
(7)
ensure that DWHs only supply the selected BOBs, not all
candidate BOBs.


Constraints
(8)
limit the total number of selected BOBs to be less than or
equal to a
user-specified number, DB. 

Constraints
(9)
ensure that neighborhoods or unselected DWH locations can only
be
assigned to the candidate BOBs that are finally selected. 

Constraints
(10)
ensure that each selected candidate BOB must cover a minimum
number of Lj
neighborhoods and can only cover a maximum of Uj
neighborhoods. Hereafter, this newly introduced model given by
Equations
(2)-(11) is referred to as the Integrated Facility Location
(IFL) model.


4     
Development of robust optimization
models

A
property of the IFL
model is that the optimal plan generated by it may not be optimal after
disastrous events. If a DWH becomes unavailable after the
disaster, BOBs
assigned to this DWH need to be reassigned to other adjacent DWHs
with extra capacity. Then the post-disaster logistics cost may become
much
larger than the pre-disaster optimal cost. To reduce post-disaster
logistics
cost, one potential solution is to require each BOB to be
covered by a
backup DWH as well as a main DWH. To do that, we solve
the IFL
model after changing the right-hand-side of Equation (4) to be 2 from 1
and
find the optimal DWH and BOB locations, denoted by Wi*2
and Bj*2. We call this model the Robust
Integer
Facility Location (RIFL) model. Note that the robust model would
minimize
the post-disaster cost, not the pre-disaster cost. To find the
pre-disaster
cost for the RIFL model, we solve for the optimal coverage of BOBS and
neighbors, xij* and yjm*,
after setting the RHS of Equation (4) back to be 1, with the Wi*2
and Bj*2 fixed.

An
alternative way
of developing the robust model is to add the capacity constraints of
candidate DWHs
in a disaster-prone area. For instance, if a DWH has a high
probability
of being damaged in disastrous events, one can specify that all BOBs
assigned to this DWH can only have up to certain percentages of
their
demand satisfied by it. This strategy would avoid putting all eggs in
one
basket and improve the robustness of the model. In fact, if a DWH
is
partially damaged due to disaster, this model would be useful. Now, let
xij
be a continuous decision variable between 0 and 1, denoting the
fraction of BOBj’s
demand satisfied by DWHi. Then, the following
capacity
constraint is added to the IFL model:
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Where, Ci: maximum
fraction of BOB’s demand that can be satisfied by DWHi

For candidate DWHs with
a high
probability of damage or shutdown during disastrous events, Ci
would take relatively smaller values, whereas for DWHs in
stable and
safe areas, Ci would take larger values. By making xij
a continuous decision variable, the robust facility location model
becomes a
mixed integer quadratic programming (MIQP) problem, which can be
linearized by
defining a new decision variable as follows:
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Where zijm denotes the
fraction of neighborhood m’s demand satisfied by
DWHi via BOBj. Then solving this
robust
facility location problem is equivalent to solving the following mixed
integer
linear programming (MILP) problem:
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Subject to equations 2, 3, 4,
5, 7, 8, 9
and 10;
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We call the above model the
Robust
Continuous Facility Location (RCFL) model. Note that if Ci=1,
for all i, the RCFL model is equivalent to the
IFL model and produces exactly the same solutions. To find the
pre-disaster
cost for the RCFL model, we solve the RCFL model by adjusting Ci,
such that the post-disaster cost is minimized. Then with Wi*
and Bj* obtained for the minimum
post-disaster
cost fixed and Ci=1, for all i, we solve the RCFL model
again and the resulting total cost will be
the pre-disaster cost.


5     
 Case study and observations

The
integrated model and two robust models can be solved by a variety
of optimization software packages, such as LINDO, LINGO, or GAMS.
However,
coding the developed MILP model using these tools may not be an easy
task,
since so many decision variables and constraints are involved.
Recently, many
researchers and practitioners are paying significant attention to
Microsoft
Excel spreadsheet-based optimization modeling because of its
non-algebraic
approach. Several powerful software packages based on the Excel
spreadsheet
model, such as Solver, What’s Best, CPLEX, etc., make Excel
spreadsheet-based
modeling attractive. In this paper, a CPLEX for Microsoft Excel Add-In
is used
to solve the proposed MILP model.

To evaluate the developed MILP
model, we
conduct a case study using cities in South Carolina. 20 cities are
selected as
neighborhoods and 5 cities among neighborhoods, with Charleston,
Columbia,
Florence, Greenville, and Orangeburg considered as candidate sites for
DWHs, as
shown in Figure 2. All neighborhoods are candidate locations for BOBs.
Tables
1(a), 1(b) and 1(c) show the distances (in miles) between any two
neighborhoods. Also shown in Table 1(c) are the demands (in thousands)
for all
neighborhoods. These demands are hypothetical values proportional to
each
neighborhood’s year 2000 population and can be readily replaced by true
demand
data for real-world applications. Based on these input data, an Excel
Spreadsheet model is developed.

 



 Figure 2. Candidate
Warehouses, BOBs,
and Neighborhoods

We solve the three models, IFL,
RIFL, and
RCFL. To show how robust the RIFL and RCFL models are, two scenarios
are
considered. The first (normal) scenario assumes that all candidate DWHs
remain available after disastrous events, whereas the second considers
the
shutdown/unavailability of a DWH. Hereafter, these scenarios
are
referred to as normal and shutdown scenarios, respectively. For normal
scenario, we evaluate and present the results of facility location and
transportation scheme as shown in Tables 2(a), 2(b) and 2(c). From the
results
under normal scenario in Tables 2(a), 2(b) and 2(c), we see that all
three
models include Columbia and Charleston as DWHs. Thus, it would
be
interesting to see what would happen if one of DWHs is
unavailable and
to compare the post-disaster costs of the three models. We select DWH
Columbia
to be unavailable after disaster, evaluate the three models, and
present the
results in Tables 2(a), 2(b) and 2(c), under the shutdown scenario.

Note that in Tables 2(a), 2(b)
and 2(c), we
assume that Columbia, the unavailable DWH for the shutdown
case, can
still cover the Columbia area and consequently is not assigned to any BOB.
We call this Case I. But, more likely, the unavailable DWH
after
disaster can’t even operate for its own area. Thus, it might be
necessary for
the affected area to be assigned to a BOB. We call this
situation Case
II. 



  
    
      	
      No.

      
      	
      Neighborhoods

      
      	
      Aiken

      
      	
      Anderson

      
      	
      Augusta

      
      	
      Beaufort

      
      	
      Camden

      
      	
      Clemson

      
      	
      Clinton

      
    

    
      	
      1

      
      	
      Aiken

      
      	
      0.00

      
      	
      99.69

      
      	
      16.98

      
      	
      121.37

      
      	
      86.19

      
      	
      120.42

      
      	
      69.85

      
    

    
      	
      2

      
      	
      Anderson

      
      	
      99.69

      
      	
      0.00

      
      	
      92.34

      
      	
      246.70

      
      	
      148.32

      
      	
      18.05

      
      	
      50.04

      
    

    
      	
      3

      
      	
      Augusta

      
      	
      16.98

      
      	
      92.34

      
      	
      0.00

      
      	
      127.63

      
      	
      128.68

      
      	
      110.82

      
      	
      81.00

      
    

    
      	
      4

      
      	
      Beaufort

      
      	
      121.37

      
      	
      246.70

      
      	
      127.63

      
      	
      0.00

      
      	
      166.79

      
      	
      271.49

      
      	
      181.15

      
    

    
      	
      5

      
      	
      Camden

      
      	
      86.19

      
      	
      148.32

      
      	
      128.68

      
      	
      166.79

      
      	
      0.00

      
      	
      169.48

      
      	
      87.01

      
    

    
      	
      6

      
      	
      Clemson

      
      	
      120.42

      
      	
      18.05

      
      	
      110.82

      
      	
      271.49

      
      	
      169.48

      
      	
      0.00

      
      	
      63.95

      
    

    
      	
      7

      
      	
      Clinton

      
      	
      69.85

      
      	
      50.04

      
      	
      81.00

      
      	
      181.15

      
      	
      87.01

      
      	
      63.95

      
      	
      0.00

      
    

    
      	
      8

      
      	
      Conway

      
      	
      186.02

      
      	
      253.07

      
      	
      228.30

      
      	
      188.83

      
      	
      110.14

      
      	
      264.79

      
      	
      190.71

      
    

    
      	
      9

      
      	
      Georgetown

      
      	
      206.74

      
      	
      269.41

      
      	
      224.91

      
      	
      137.08

      
      	
      113.48

      
      	
      247.81

      
      	
      226.23

      
    

    
      	
      10

      
      	
      Greenwood

      
      	
      55.53

      
      	
      39.50

      
      	
      62.00

      
      	
      167.60

      
      	
      102.90

      
      	
      56.53

      
      	
      26.97

      
    

    
      	
      11

      
      	
      Hilton Head

      
      	
      152.40

      
      	
      277.66

      
      	
      158.59

      
      	
      41.02

      
      	
      198.23

      
      	
      239.42

      
      	
      196.77

      
    

    
      	
      12

      
      	
      Myrtle Beach

      
      	
      207.12

      
      	
      266.99

      
      	
      225.29

      
      	
      202.69

      
      	
      124.06

      
      	
      262.91

      
      	
      204.74

      
    

    
      	
      13

      
      	
      Rock Hill

      
      	
      124.47

      
      	
      120.98

      
      	
      142.64

      
      	
      206.76

      
      	
      71.32

      
      	
      120.00

      
      	
      65.57

      
    

    
      	
      14

      
      	
      Spartanburg

      
      	
      142.14

      
      	
      60.36

      
      	
      160.32

      
      	
      225.30

      
      	
      125.80

      
      	
      59.19

      
      	
      35.54

      
    

    
      	
      15

      
      	
      Sumter

      
      	
      112.39

      
      	
      172.26

      
      	
      130.57

      
      	
      125.70

      
      	
      29.34

      
      	
      168.17

      
      	
      104.57

      
    

    
      	
      16

      
      	
      Charleston

      
      	
      162.96

      
      	
      226.73

      
      	
      207.56

      
      	
      70.32

      
      	
      146.74

      
      	
      248.36

      
      	
      170.50

      
    

    
      	
      17

      
      	
      Columbia

      
      	
      56.41

      
      	
      116.50

      
      	
      75.10

      
      	
      134.16

      
      	
      34.69

      
      	
      128.22

      
      	
      61.20

      
    

    
      	
      18

      
      	
      Florence

      
      	
      132.44

      
      	
      192.92

      
      	
      136.00

      
      	
      150.80

      
      	
      50.43

      
      	
      201.61

      
      	
      137.72

      
    

    
      	
      19

      
      	
      Greenville

      
      	
      150.96

      
      	
      31.00

      
      	
      120.94

      
      	
      234.12

      
      	
      134.62

      
      	
      30.10

      
      	
      41.61

      
    

    
      	
      20

      
      	
      Orangeburg

      
      	
      53.75

      
      	
      135.02

      
      	
      76.00

      
      	
      83.91

      
      	
      62.98

      
      	
      161.39

      
      	
      97.82

      
    

  




Table 1(a). Distances (in
miles) between
Neighborhoods

 



  
    
      	
      No.

      
      	
      Neighborhoods

      
      	
      Conway

      
      	
      Georgetown

      
      	
      Greenwood

      
      	
      Hilton Head

      
      	
      Myrtle Beach

      
      	
      Rock Hill

      
      	
      Spartanburg

      
    

    
      	
      1

      
      	
      Aiken

      
      	
      186.02

      
      	
      206.74

      
      	
      55.53

      
      	
      152.40

      
      	
      207.12

      
      	
      124.47

      
      	
      142.14

      
    

    
      	
      2

      
      	
      Anderson

      
      	
      253.07

      
      	
      269.41

      
      	
      39.50

      
      	
      277.66

      
      	
      266.99

      
      	
      120.98

      
      	
      60.36

      
    

    
      	
      3

      
      	
      Augusta

      
      	
      228.30

      
      	
      224.91

      
      	
      62.00

      
      	
      158.59

      
      	
      225.29

      
      	
      142.64

      
      	
      160.32

      
    

    
      	
      4

      
      	
      Beaufort

      
      	
      188.83

      
      	
      137.08

      
      	
      167.60

      
      	
      41.02

      
      	
      202.69

      
      	
      206.76

      
      	
      225.30

      
    

    
      	
      5

      
      	
      Camden

      
      	
      110.14

      
      	
      113.48

      
      	
      102.90

      
      	
      198.23

      
      	
      124.06

      
      	
      71.32

      
      	
      125.80

      
    

    
      	
      6

      
      	
      Clemson

      
      	
      264.79

      
      	
      247.81

      
      	
      56.53

      
      	
      239.42

      
      	
      262.91

      
      	
      120.00

      
      	
      59.19

      
    

    
      	
      7

      
      	
      Clinton

      
      	
      190.71

      
      	
      226.23

      
      	
      26.97

      
      	
      196.77

      
      	
      204.74

      
      	
      65.57

      
      	
      35.54

      
    

    
      	
      8

      
      	
      Conway

      
      	
      0.00

      
      	
      36.62

      
      	
      218.67

      
      	
      193.54

      
      	
      14.03

      
      	
      186.15

      
      	
      223.24

      
    

    
      	
      9

      
      	
      Georgetown

      
      	
      36.62

      
      	
      0.00

      
      	
      247.64

      
      	
      157.04

      
      	
      34.76

      
      	
      232.88

      
      	
      258.84

      
    

    
      	
      10

      
      	
      Greenwood

      
      	
      218.67

      
      	
      247.64

      
      	
      0.00

      
      	
      183.21

      
      	
      232.70

      
      	
      89.97

      
      	
      59.39

      
    

    
      	
      11

      
      	
      Hilton Head

      
      	
      193.54

      
      	
      157.04

      
      	
      183.21

      
      	
      0.00

      
      	
      191.40

      
      	
      210.80

      
      	
      231.61

      
    

    
      	
      12

      
      	
      Myrtle Beach

      
      	
      14.03

      
      	
      34.76

      
      	
      232.70

      
      	
      191.40

      
      	
      0.00

      
      	
      200.16

      
      	
      237.25

      
    

    
      	
      13

      
      	
      Rock Hill

      
      	
      186.15

      
      	
      232.88

      
      	
      89.97

      
      	
      210.80

      
      	
      200.16

      
      	
      0.00

      
      	
      61.93

      
    

    
      	
      14

      
      	
      Spartanburg

      
      	
      223.24

      
      	
      258.84

      
      	
      59.39

      
      	
      231.61

      
      	
      237.25

      
      	
      61.93

      
      	
      0.00

      
    

    
      	
      15

      
      	
      Sumter

      
      	
      80.81

      
      	
      79.19

      
      	
      116.18

      
      	
      138.17

      
      	
      94.56

      
      	
      87.32

      
      	
      130.47

      
    

    
      	
      16

      
      	
      Charleston

      
      	
      97.41

      
      	
      60.92

      
      	
      191.91

      
      	
      104.98

      
      	
      97.34

      
      	
      186.88

      
      	
      205.42

      
    

    
      	
      17

      
      	
      Columbia

      
      	
      140.20

      
      	
      123.04

      
      	
      72.81

      
      	
      142.64

      
      	
      146.75

      
      	
      67.33

      
      	
      93.13

      
    

    
      	
      18

      
      	
      Florence

      
      	
      53.11

      
      	
      68.54

      
      	
      165.08

      
      	
      170.49

      
      	
      67.14

      
      	
      96.09

      
      	
      170.14

      
    

    
      	
      19

      
      	
      Greenville

      
      	
      231.03

      
      	
      266.62

      
      	
      51.09

      
      	
      234.53

      
      	
      244.49

      
      	
      89.80

      
      	
      29.09

      
    

    
      	
      20

      
      	
      Orangeburg

      
      	
      124.74

      
      	
      105.96

      
      	
      95.52

      
      	
      102.33

      
      	
      138.49

      
      	
      108.05

      
      	
      129.92

      
    

  




Table 1(b). Distances (in
miles)
between Neighborhoods (continued)

 

 

 

 



  
    
      	
      No.

      
      	
      Neighborhoods

      
      	
      Sumter

      
      	
      Charleston

      
      	
      Columbia

      
      	
      Florence

      
      	
      Greenville

      
      	
      Orangeburg

      
      	
      Demand

      (in 1000s)

      
    

    
      	
      1

      
      	
      Aiken

      
      	
      112.39

      
      	
      162.96

      
      	
      56.41

      
      	
      132.44

      
      	
      150.96

      
      	
      53.75

      
      	
      29

      
    

    
      	
      2

      
      	
      Anderson

      
      	
      172.26

      
      	
      226.73

      
      	
      116.50

      
      	
      192.92

      
      	
      31.00

      
      	
      135.02

      
      	
      26

      
    

    
      	
      3

      
      	
      Augusta

      
      	
      130.57

      
      	
      207.56

      
      	
      75.10

      
      	
      136.00

      
      	
      120.94

      
      	
      76.00

      
      	
      196

      
    

    
      	
      4

      
      	
      Beaufort

      
      	
      125.70

      
      	
      70.32

      
      	
      134.16

      
      	
      150.80

      
      	
      234.12

      
      	
      83.91

      
      	
      13

      
    

    
      	
      5

      
      	
      Camden

      
      	
      29.34

      
      	
      146.74

      
      	
      34.69

      
      	
      50.43

      
      	
      134.62

      
      	
      62.98

      
      	
      8

      
    

    
      	
      6

      
      	
      Clemson

      
      	
      168.17

      
      	
      248.36

      
      	
      128.22

      
      	
      201.61

      
      	
      30.10

      
      	
      161.39

      
      	
      12

      
    

    
      	
      7

      
      	
      Clinton

      
      	
      104.57

      
      	
      170.50

      
      	
      61.20

      
      	
      137.72

      
      	
      41.61

      
      	
      97.82

      
      	
      9

      
    

    
      	
      8

      
      	
      Conway

      
      	
      80.81

      
      	
      97.41

      
      	
      140.20

      
      	
      53.11

      
      	
      231.03

      
      	
      124.74

      
      	
      12

      
    

    
      	
      9

      
      	
      Georgetown

      
      	
      79.19

      
      	
      60.92

      
      	
      123.04

      
      	
      68.54

      
      	
      266.62

      
      	
      105.96

      
      	
      9

      
    

    
      	
      10

      
      	
      Greenwood

      
      	
      116.18

      
      	
      191.91

      
      	
      72.81

      
      	
      165.08

      
      	
      51.09

      
      	
      95.52

      
      	
      23

      
    

    
      	
      11

      
      	
      Hilton Head

      
      	
      138.17

      
      	
      104.98

      
      	
      142.64

      
      	
      170.49

      
      	
      234.53

      
      	
      102.33

      
      	
      48

      
    

    
      	
      12

      
      	
      Myrtle Beach

      
      	
      94.56

      
      	
      97.34

      
      	
      146.75

      
      	
      67.14

      
      	
      244.49

      
      	
      138.49

      
      	
      32

      
    

    
      	
      13

      
      	
      Rock Hill

      
      	
      87.32

      
      	
      186.88

      
      	
      67.33

      
      	
      96.09

      
      	
      89.80

      
      	
      108.05

      
      	
      72

      
    

    
      	
      14

      
      	
      Spartanburg

      
      	
      130.47

      
      	
      205.42

      
      	
      93.13

      
      	
      170.14

      
      	
      29.09

      
      	
      129.92

      
      	
      37

      
    

    
      	
      15

      
      	
      Sumter

      
      	
      0.00

      
      	
      106.14

      
      	
      43.41

      
      	
      39.28

      
      	
      150.20

      
      	
      56.99

      
      	
      41

      
    

    
      	
      16

      
      	
      Charleston

      
      	
      106.14

      
      	
      0.00

      
      	
      114.54

      
      	
      109.92

      
      	
      214.24

      
      	
      75.98

      
      	
      121

      
    

    
      	
      17

      
      	
      Columbia

      
      	
      43.41

      
      	
      114.54

      
      	
      0.00

      
      	
      79.49

      
      	
      100.91

      
      	
      40.83

      
      	
      130

      
    

    
      	
      18

      
      	
      Florence

      
      	
      39.28

      
      	
      109.92

      
      	
      79.49

      
      	
      0.00

      
      	
      177.93

      
      	
      90.34

      
      	
      38

      
    

    
      	
      19

      
      	
      Greenville

      
      	
      150.20

      
      	
      214.24

      
      	
      100.91

      
      	
      177.93

      
      	
      0.00

      
      	
      137.71

      
      	
      62

      
    

    
      	
      20

      
      	
      Orangeburg

      
      	
      56.99

      
      	
      75.98

      
      	
      40.83

      
      	
      90.34

      
      	
      137.71

      
      	
      0.00

      
      	
      13

      
    

  




Table 1(c). Distances (in
miles)
between Neighborhoods (continued) and Demands

To further investigate the
effects of the
shutdown of DWHs and to see the performance of the robust
models, we
consider various shutdown scenarios, present the resulting costs for
both cases
in Table 3, and compare the results for the three models.

As expected, the total
transportation cost
(TTC) for each model increases under the shutdown scenario and the
increase in
TTC are also reported in Tables 2(a), 2(b), 2(c) and 3. For the IFL
model, the
TTC goes from $47,451.54 to 69,995.04, a 47.5% increase. We observe
that, on
average, two robust models, RIFL and RCFL, outperform than the
non-robust IFL
model under the shutdown scenario, though they underperform under the
normal
scenario.

Now, we propose a performance
measure
index, which is called a robustness index (RI) to show how much the
results
from each model are robust enough to cover the diverse scenarios in
terms of
cost minimization. Although there are many definitions of robustness,
we adopt
the one from Dong (2006) as “the extent to which the network is able to
perform
its function despite some damage done to it, such as the removal of
some of the
nodes and/or link in a network.” In this paper, each model’s
performance may be
evaluated by comparing it with the best performing model in terms of
average
TTC and its standard deviation. Hence we propose the following
robustness index
(RI):

RI for a model g is
defined as



  
    
      	
      

      
      	
      (19)

      
    

  




where AVG(lambda) and
STD(lambda)
stand for average and standard deviation of each model lambda’s
cost
under given scenarios and alpha denotes the weight between the
average
and the standard deviation. Note that as RI for the model becomes
closer to 1,
the more robust the model would be. And RI can be used to decide the
rank of
each model in terms of robustness. We calculate RI for the three models
for all
possible shutdown scenarios and present them in Table 3. We calculate
three
different RIs- RI for a normal scenario and for Case I and Case II
under the
shutdown scenario, and an overall RI for both cases with the assumption
that
all individual scenarios have the same weight. As the RI values
indicate, the
IFL is most efficient under normal scenario, whereas the RIFL and RCFL
seem to
be the most robust for Case II and for Case I, respectively, under
shutdown
scenario. That is, on average, these robust models generate a slightly
higher
TTC for the normal scenario, but produce a lower TTC for the shutdown
case than
IFL. 



  
    
      	
      Model

      
      	
      IFL

      
    

    
      	
      Scenario

      
      	
      Normal

      
      	
      Shutdown

      
    

    
      	
      DWH

      Selected

      
      	
      1. Charleston

      2. Columbia

      3. Greenville

      
      	
      1. Charleston

      3. Greenville

      
    

    
      	
      BOBs covered by
(DWH #)

      
      	
      1. Beaufort (1)

      2. Aiken (2)

      3. Sumter(2)

      4. Anderson (3)

      5. Spartanburg (3)

      
      	
      1. Beaufort (1)

      2. Aiken (3)

      3. Sumter(1)

      4. Anderson (3)

      5. Spartanburg (3)

      
    

    
      	
      Neighborhoods
Assigned to (BOB)

      
      	
      •(Beaufort), Hilton-
Head

      •(Aiken), Augusta,
Orangeburg

      •(Sumter), Camden
Conway, Florence, Georgetown, Myrtle-Beach

      •(Anderson), Clemson,
Greenwood

      •(Spartanburg)

      Clinton, Rock Hill

       

      
      	
      •(Beaufort), Hilton-
Head

      •(Aiken), Orangeburg

      •(Sumter), Camden
Conway, Florence, Georgetown, Myrtle-Beach

      •(Anderson),August
Clemson, Greenwood

      •(Spartanburg)

      Clinton, Rock Hill

       

      
    

    
      	
      (CDB,CBN) TTC

      
      	
      ($29116, $18,335)

      $47,451

      (A)

      
      	
      ($36,889, $33,105)

      $69,995

      (B)

      
    

    
      	
      Increase 

      (B)-(A)

      
      	
      $22,543

      
    

    
      	
      CDB: Cost from
DWHs to BOBs, 1st Term in Eq. (12). CBN: Cost from
BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN

      Table 2(a). Results
comparison for normal/shutdown scenarios for three models

       

       

      
    

    
      	
      Model

      
      	
      RIFL

      
    

    
      	
      Scenario

      
      	
      Normal

      
      	
      Shutdown

      
    

    
      	
      DWH

      Selected

      
      	
      1. Charleston

      2. Columbia 

      3. Orangeburg

      
      	
      1. Charleston

      3. Orangeburg

      
    

    
      	
      BOBs covered by
(DWH #)

      
      	
      1. Beaufort (1)

      2. Camden(2)

      3. Sumter (2)

      4. Clinton (2)

      5. Aiken (3)

      
      	
      1. Beaufort (1)

      2. Camden(3)

      3. Sumter (3)

      4. Clinton (3)

      5. Aiken (3)

      
    

    
      	
      Neighborhoods
Assigned to (BOB)

      
      	
      •(Beaufort),
Hilton-Head 

      •(Camden), Rock Hill

      •(Sumter), Conway,
Florence, Georgetown, Myrtle-Beach

      •(Clinton),Anderson,
Clemson, Greenwood, Spartanburg, Greenville, 

      •(Aiken), Augusta 

       

      
      	
      •(Beaufort), Hilton-
Head 

      •(Camden), Rock Hill

      •(Sumter), Conway,
Florence, Georgetown, Myrtle-Beach

      •(Clinton), Anderson,
Clemson, Spartanburg, Greenville, 

      •(Aiken), Augusta,
Greenwood 

       

      
    

    
      	
      (CDB,CBN) TTC

      
      	
      ($35,231, $23,216)

      $58,448

      (A)

      
      	
      ($44,462, $23,873)

      $68,335

      (B)

      
    

    
      	
      Increase 

      (B)-(A)

      
      	
      $9,887

      
    

    
      	
      CDB: Cost from
DWHs to BOBs, 1st Term in Eq. (12). CBN: Cost from
BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN

      Table 2(b). Results
comparison for normal/shutdown scenarios for three models (continued)

      
    

    
      	
      Model

      
      	
      RCFL

      
    

    
      	
      Scenario

      
      	
      Normal

      
      	
      Shutdown

      
    

    
      	
      DWH

      Selected

      
      	
      1. Charleston

      2. Columbia 

      3. Greenville

      
      	
      1. Charleston

      3. Greenville

      
    

    
      	
      BOBs covered by
(DWH #)

      
      	
      1. Beaufort (1)

      2. Georgetown(1) 

      3. Aiken (2)

      4. Anderson (3)

      5. Spartanburg (3)

      
      	
      1. Beaufort (1)

      2. Georgetown(1) 

      3. Aiken (3)

      4. Anderson (3)

      5. Spartanburg (3)

      
    

    
      	
      Neighborhoods
Assigned to (BOB)

      
      	
      •(Beaufort),
Hilton-Head 

      •(Georgetown), Conway,
Myrtle-Beach, Sumter, Florence

      •(Aiken), Augusta,
Camden, Orangeburg

      •(Anderson), Clemson,
Greenwood 

      •( Spartanburg)

      Clinton, Rock Hill 

       

      
      	
      •(Beaufort),
Hilton-Head 

      •(Georgetown), Conway,
Myrtle-Beach, Sumter, Florence

      •(Aiken), Orangeburg

      •(Anderson), August,
Clemson, Greenwood 

      •( Spartanburg),
Camden

      Clinton, Rock Hill 

       

      
    

    
      	
      (CDB,CBN) TTC

      
      	
      ($31,531, $19,992)

      $51,523

      (A)

      
      	
      ($30,303, $35,079)

      $65,383

      (B)

      
    

    
      	
      Increase 

      (B)-(A)

      
      	
      $13,860

      
    

    
      	
      CDB:
Cost from DWHs to BOBs, 1st Term in Eq. (12). CBN:
Cost from BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN

      
    

  




Table 2(c). Results
comparison for
normal/shutdown scenarios for three models (continued)

 

 

 

 



  
    
      	
      Shutdown Scenario

      
      	
      Model

      
    

    
      	
      IFL

      
      	
      RIFL

      
      	
      RCFL

      
    

    
      	
      Normal

      
      	
      Shutdown

      
      	
      Normal

      
      	
      Shutdown

      
      	
      Normal

      
      	
      Shutdown

      
    

    
      	
      Case I

      
      	
      Case II

      
      	
      Case I

      
      	
      Case II

      
      	
      Case I

      
      	
      Case II

      
    

    
      	
      DWH 1

      
      	
      $47,451

      
      	
      $51,345

      
      	
      $70,000

      
      	
      $58,448

      
      	
      $59,277

      
      	
      $77,372

      
      	
      $47,451

      
      	
      $51,345

      
      	
      $70,000

      
    

    
      	
      DWH 2 

      
      	
      $47,451

      
      	
      $69,995

      
      	
      $85,883

      
      	
      $58,448

      
      	
      $68,335

      
      	
      $81,033

      
      	
      $51,523

      
      	
      $65,383

      
      	
      $81,271

      
    

    
      	
      DWH 3

      
      	
      $47,451

      
      	
      $58,017

      
      	
      $65,573

      
      	
      $58,448

      
      	
      $59,046

      
      	
      $60,316

      
      	
      $47,500

      
      	
      $56,265

      
      	
      $63,834

      
    

    
      	
      DWHs 1 & 2

      
      	
      $47,451

      
      	
      $85,958

      
      	
      $130,222

      
      	
      $58,448

      
      	
      $69,164

      
      	
      $100,523

      
      	
      $56,716

      
      	
      $80,770

      
      	
      $125,034

      
    

    
      	
      DWHs 2 & 3

      
      	
      $47,451

      
      	
      $107,307

      
      	
      $142,028

      
      	
      $58,448

      
      	
      $117,534

      
      	
      $139,085

      
      	
      $52,478

      
      	
      $101,848

      
      	
      $135,829

      
    

    
      	
      DWHs 1 & 3 

      
      	
      $47,451

      
      	
      $61,911

      
      	
      $88,849

      
      	
      $58,448

      
      	
      $62,940

      
      	
      $82,306

      
      	
      $48,550

      
      	
      $58,001

      
      	
      $84,141

      
    

    
      	
      AVG

      
      	
      $47,451 

      
      	
      $72,422 

      
      	
      $97,093

      
      	
      $58,448 

      
      	
      $72,716 

      
      	
      $90,106

      
      	
      $50,703 

      
      	
      $68,935 

      
      	
      $93,252

      
    

    
      	
      STD

      
      	
      0

      
      	
      $20,824

      
      	
      $31,742

      
      	
      0

      
      	
      $22,376

      
      	
      $27,203

      
      	
        $3,617

      
      	
      $19,107

      
      	
      $29,851

      
    

    
      	
      RI

      
      	
      1

      
      	
      0.934

      
      	
      0.892

      
      	
      0.811

      
      	
      0.900

      
      	
      1

      
      	
      0.468

      
      	
      1

      
      	
      0.938

      
    

    
      	
      Overall AVG

      
      	
      $72,321

      
      	
      $73,756

      
      	
      $70,996

      
    

    
      	
      Overall STD

      
      	
      $29,305

      
      	
      $23,289

      
      	
      $26,392

      
    

    
      	
      Overall RI

      
      	
      0.888

      
      	
      0.981

      
      	
      0.941

      
    

    
      	
      *AVG
and STD stand for average and standard deviation, respectively.

      *Alpha
 is set to 0.5 for RI. 

      DWH
1: Charleston for all models. 

      DWH
2: Columbia for all models. 

      DWH
3: Greenville for IFL and RCFL, Orangeburg for RIFL 

      
    

  




Table 3. Comparison between
integrated
and two robust models

For Case I under the shutdown
scenario,
RIFL generates the highest TTC among the three models for the normal
scenario
and generates a slightly lower TTC than IFL. For the same weight
between the
average and the standard deviation, i.e., alpha=0.5, the
overall RI also
indicates that RIFL has the highest robustness, followed by RCFL and
IFL in
this order. The threshold value for alpha, denoted by turns out to be 0.7586. It
implies that for  RCFL
seems to be the most robust model, followed by RIFL and IFL. 

From Table 3, we recommend that
the
proposed robust models, RIFL and RCFL, be used for optimally locating
DWHs
under the risk of disruptions. As discussed previously, transport of
relief
goods happens mostly after disaster. Therefore, for siting emergency
response
facilities, it would be more important to minimize the post-disaster
cost
rather than the pre-disaster cost and to better consider the
unavailability of
emergency facilities. The example provided here clearly demonstrates
that the
proposed robust facility location models can well suit the needs of
siting
emergency response facilities.


6     
Summary and conclusions

In this paper, we develop an
IFL
(Integrated Facility Location) model and propose two robust models and
compare
them with a non-robust IFL. For the RCFL (Robust Continuous Facility
Location)
model, we introduce a continuous variable, defined in Equation (13), to
denote
the capacity constraint on a candidate DWH in disaster-prone
areas, so
that it can only partially satisfy the demand of BOBs. We
formulate the
problem as a mixed integer linear programming model and solve it using
CPLEX
for Microsoft Excel Add-In. For the RIFL (Robust Integer Facility
Location)
model, we set the constraint requiring each BOB to be served by
multiple
DWHs (two DWHs in this paper) on the IFL model, which
requires
each BOB to be served by one DWH. We propose a
performance
measure index to show how well the models perform after disaster, RI,
defined
in (19). Using numerical examples, we show that the two
robust models, RIFL and RCFL, yield emergency response facility location plans of
slightly higher
TTCs (total
transportation cost) than the IFL model under
normal situations. However, they generate more robust facility location
plans
in the sense that they can perform better when some of the selected DWHs
are shut down after disaster and these unavailable DWHs can’t
distribute
emergency supplies to the affected areas (Case II).

 

The purpose of establishing
emergency response facilities
is for distributing relief goods after disaster. Therefore, when
evaluating the
efficiency and robustness of emergency response facility location
plans, more
weight should be given to their post-disaster performance. The resulting RIFL and RCFL
models are
designed in a robust manner such that they can better address scenarios
with
failures of key transportation infrastructure. Case studies are
conducted to
demonstrate the developed model’s capability to deal with uncertainties
in
transportation networks. Thus,
the developed
robust models can help federal
and local emergency response
officials develop efficient and robust
disaster relief plans.

 

For future research, it would be necessary to develop a
robust model when both a DWH
and a BOB could be unavailable in the shutdown scenario. In addition, we implicitly
assume that
each DWH always carries enough inventories of emergency relief
goods, so
that for the shutdown scenario the other DWH(s) can ship enough
relief
goods to the extra BOBs. Thus, it would be also interesting
to include the constraint on the capacity
of DWHs in any proposed model.
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