

What do information reuse and automated
processing require in engineering design? Semantic process

Ossi Nykänen, Jaakko Salonen, Mikko Markkula, Pekka Ranta, Markus
Rokala, Matti Helminen, Vänni Alarotu, Juha Nurmi, Tuija Palonen, Kari T.
Koskinen, Seppo Pohjolainen

Tampere University of Technology (FINLAND)

Received January
2011

Accepted September 2011

Nykänen,
O., Salonen, J., Markkula, M., Ranta, P., Rokala, M., Helminen, M., Alarotu,
V., Nurmi, J., Palonen, T., Koskinen, K.T., & Pohjolainen, S. (2011). What do
information reuse and automated processing require in engineering design? Semantic
process. Journal of Industrial Engineering and Management, 4(4), 669-698.
http://dx.doi.org/10.3926/jiem.329

Abstract:

Purpose: The purpose of this study is to characterize, analyze, and
demonstrate machine-understandable semantic process for validating,
integrating, and processing technical design information. This establishes both
a vision and tools for information reuse and semi-automatic processing in
engineering design projects, including virtual machine laboratory applications
with generated components.

Design/methodology/approach: The process model has been developed iteratively in terms of action
research, constrained by the existing technical design practices and
assumptions (design documents, expert feedback), available technologies (pre-studies
and experiments with scripting and pipeline tools), benchmarking with other
process models and methods (notably the RUP and DITA), and formal requirements (computability
and the critical information paths for the generated applications). In practice,
the work includes both quantitative and qualitative components.

Findings: Technical design processes may be greatly enhanced in terms of
semantic process thinking, by enriching design information, and automating
information validation and transformation tasks. Contemporary design
information, however, is mainly intended for human consumption, and needs to be
explicitly enriched with the currently missing data and interfaces. In
practice, this may require acknowledging the role of technical information or knowledge
engineer, to lead the development of the semantic design information process in
a design organization. There is also a trade-off between machine-readability
and system complexity that needs to be studied further, both empirically and in
theory.

Research
limitations/implications: The conceptualization
of the semantic process is essentially an abstraction based on the idea of progressive
design. While this effectively allows implementing semantic processes with,
e.g., pipeline technologies, the abstraction is valid only when technical
design is organized into reasonably distinct tasks.
Practical implications: Our work points out a best practice for
technical information management in progressive design that can be applied on
different levels.

Social
implications: Current design processes may be
somewhat impaired by legacy practices that do not promote information reuse and
collaboration beyond conventional task domains. Our work provides a reference
model to analyze and develop design activities as formalized work-flows. This
work should lead into improved industry design process models and novel
CAD/CAM/PDM applications, thereby strengthening industry design processes.

Originality/value: While extensively studied, semantic modeling in technical design
has been largely dominated by the idea of capturing design artifacts without a
clear rationale why this is done and what level of detail should be favored in
models. In the semantic process presented in this article, the utility and the
chief quality criteria of semantic models (of technical information and
artifacts) are explicitly established by the semantic processing pipeline(s).
This constructively explains the significance of semantic models as
communication and information requirement interfaces, with concrete use cases.

Keywords: semantic process, design process, engineering design, engineering
information management, pipeline data processing

1
Introduction

Designing complex machines involves the
creation of design sketches and blueprints of various types. In addition to the
primary objective of documenting the machine design for purposes of
implementation and production, the design information can be utilized also in
other applications. These include simulations, technical documentation, and
virtual laboratory applications for training purposes.

According to the current practice,
producing material that is not directly related to core machine design is often
considered merely as a “secondary” objective. Further, the related secondary
tasks are not always directly linked to the primary design activities with
clear requirements. As a consequence, producing the artifacts related to the
secondary applications is sometimes detached from the primary design process:
It might be performed by different people with other tools, perhaps even
re-engineering data (implicitly) present in the early design process. However,
to reduce development costs, and to meet the needs of the other designers, the
requirements and information flows between actors need to be acknowledged
throughout the design process. Motivation for this is relatively clear: In an
ideal case, many secondary applications, such as part catalogues and
visualizations, could be programmatically generated from the original, rich
enough design data.

In this article, we present an information
processing architecture that captures and reuses the flow of semantics-aware
technical information in a design process from design information systems to
the primary and secondary applications. Our main use case is semi-automatically
generating virtual machine laboratories from existing design information,
including simulations for virtual prototyping purposes.

The main contribution lies in elaborating
and explaining the underlying semantic process related to machine
design. Compared with the state of the art, instead of insisting a central data
repository or a toolset, we emphasize the information protocols between
different design activities in design. This yields certain minimalism in
process planning: It captures the critical information flow in a design
process, but leaves room for design culture specific organization of individual
design tasks and tools. Our work culminates into introducing a novel, semantic
process model for analyzing and managing design information flows. This
provides an efficient method for reusing design information using semantic data
processing pipelines. We also demonstrate this by generating a simulation model
from design data, utilizing a library of general-purpose simulations blocks.

While semantic modeling methods are
increasingly adopted in managing design information structures,
pipeline-oriented semantic modeling is rather new. From our application point
of view, semantic process perspective enables the low-cost semiautomatic
generation of virtual machine libraries and other work products, secondary to
traditional manufacturing. We also believe that the instructional aspect of
this work very important, since it provides organizations conceptual tools for
understanding and benchmarking their design processes, and promotes individual
designer awareness (design as service vs. design as solo activity).

We present our work in the context of a
specific Semogen research project (phase I during 2010-2011) which studies
industrial virtual laboratory production methods in the context of semantic
modeling. Our applications are related to mobile rock-drilling machines with a
human operator. The project is mainly funded by the Technology Industries of
Finland Centennial Foundation and benefits from the expertise of its industrial
partners of different domains, including design and manufacturing, CAD/CAM
development, documentation, and engineer training.

The rest of this article is organized as
follows: After this Introduction, we outline the background of our work in
Section 2. In Section 3, we consider the elements of well-defined and reusable
design processes in general. In Section 4, we establish an abstract model for
semantic data processing, and consider implementations. In Section 5, we
present a case study of generating simulations from hydraulics diagrams, and
discuss related experiences. Finally, in Section 6, we conclude the article and
make notes about the related trends of engineering design.

2 Background and motivation

In the context of progressive design
paradigm (Herrman, 2010), improving design process flow requires first
considering the process of information structuring for formal reuse (Troussier,
Pourroy, Tollenaere & Trebucq, 1999), and then introducing the modern
semantic modeling and computing techniques to provide ICT support for the tasks
(Zhang & Yin, 2008; Brandt, Morbach, Miatidis, TheiBen, Jarke &
Marquardt, 2008). A practical solution of the efficient reuse problem involves
at least three components: CAD/CAM and simulation environments, product data
management and resource planning systems, and data processing tools. By using
modern design tools one may readily establish a link between a design activity
(such as mechanics design), product data management, and simulation. Commercial
products such as SolidWorks and Dynamic Designer provide tool suites for both
designing and rapid simulating of specified artifacts. In addition,
general-purpose information architectures such as DITA exist for facilitating
reuse in technical documentation (Raaphorst & Johnson, 2007).

Considerable research efforts have been
made to develop open-source platforms for high level simulation software, such
as the simantics.org project which provides an Eclipse-based framework of tools
for structural data management and simulations (Järvinen, Puolamäki, Siltanen
& Ylikerälä, 2009; Eclipse, 2010a). In general, the process of accessing
data in a machine-readable way, or generating simulations, is usually based on
reusable blocks or templates and automation is sought from added descriptions
(Lucko, Benjamin, Swaminathan & Madden, 2010). Actual modeling has
traditionally been conducted according to the Integration DEFinition (IDEF)
modeling principles but the development of Unified Modeling Language (UML), and
Extensible Markup Language (XML), specifications has introduced an option of
using new, perhaps more easily applicable technologies and tools for the task
(Noran, 2000). Using more formal models not only enables data integration but
also automated inconsistency handling (Almeida da Silva, Mougenot, Blanc &
Bendraou, 2010).

Database-centric design paradigm has also
renewed its popularity. The recent TIKOSU project (2009-2011) emphasizes
database centric design of machine control systems by defining the linkage
between these artifacts across process boundaries, establishing a centralized,
single source data repository. As a part of its activities, the project
reviewed several system engineering data models such as Föderdal information
architecture, AutomationML, PG-Pla-INC project, GENESYS project, Vector
informatik’s eAsee tool, CANopen XML specification, PLCopen XML specification,
AP233 of ISO 10303, ASAM automotive specifications (Alanen et al., 2011). It is
noteworthy that according to the current systems, formal design information
models typically emphasize "static" data structures and not to the
automated pipeline processing aspect of the design information flow between
different designers and design tasks. Indeed, some authors suggest that
integrated design should cover both data/knowledge modeling and process
planning aspects (Ramana & Rao, 2004). In particular, in design systems,
tool integration is often largely accomplished by data transfer or data
integration via a central data store, neglecting the requirements of the work
processes, and communication in the design team is only supported by generic
tools like e-mail, video conferences, etc., which are not integrated with
engineering design tools (Marquardt & Nagl, 2004).

However, well-established technologies do
exist for asserting general requirements and protocols on the business logic
and on the structural information level; consider OASIS Web Services Business
Process Execution Language (OASIS, 2007), Ant processor DITA (Raaphorst &
Johnson, 2007), or XProc: An XML Pipeline Language (Walsh, Milowski &
Thompson, 2010). Combined with traditional and modern engineering design (Pahl
& Beitz, 1996; Airila, Pietola & Kuuva, 2001), these provide the
necessary processing methods also for design engineers. In turn, however, this
shifts the attention from the manually managed global repositories to the
information signaling interfaces between design tasks.

In Finland, methods for strengthening
design processes have been extensively studied over the past several years.
Perhaps the two most significant research initiatives include the national
Technology programme of Mechanical Engineering MASINA 2002-2007 (Tekes, 2008)
and the national Technology programme of Digital Product Process DTP 2008–2012
(Tekes, 2010). In addition to the particular advancements, the strategic
message is relatively clear: First, the simultaneous design of different
technical processes is inevitable in order to develop modern, optimized
products (Lehtonen, 2006). Second, digitalization of the design (product)
processes, in particular during the early stages of design play a key role in
establishing competitive advantage in companies of the global market (Ventä,
Taklo, & Parviainen, 2007). The entire domain of mechanical engineering
research in Finland has also been evaluated in 2000-2007 by international
experts (Lensu, 2008). Among other things, the main recommendations include
putting more emphasis on fundamental research supporting the long-terms needs of
industry and encouraging interdisciplinary collaborations in engineering
research.

For us a very practical motivation for
studying the semi-automatic generation of virtual machines originates from
already (manually) implementing several laboratory environments with industry
partners (Ranta, 2005; Palonen, Leino, Koskinen, Ranta, Punki, & Mäkelä,
2007; Markkula, Rokala, Palonen, Alarotu, Helminen, Koskinen, Ranta, Nykänen &
Salonen, 2011), and concluded that many of the steps could be automated.
However, to do so, the semantic information flows in the machine design process
should be elaborated. With this respect, our related work includes, e.g.,
semantic modeling, computing, and interpretation studies (Nykänen 2007;
Nykänen, 2009a; Nykänen 2009b) and research about the various aspects of
designing and modeling hydraulics systems (Leino, Koskinen, & Vilenius,
2005; Markkula, 2009; Virta, Aaltonen, Koskinen & Vilenius, 2009).

However, practice shows that the systemic
complexity of design information, systems, and methods is a fundamental issue.
Also, many design and consulting companies are quite small which raises
practical concerns. For instance, about 80% of the 223 Finnish Association of
Consulting Firms SKOL (2010) member organizations in Finland have less than 31
employees. Thus, adopting new design practices boils down to process ownership
and HR management: Introducing the role of a knowledge engineer to lead the
semantic design information process. In practice, this role might be
distributed among the project manager and the chief engineers. For brevity, we
do not consider the managerial aspects in detail in this article (Malhotra,
Heine & Grover, 2001; Danilovic & Browning, 2007).

3 Elements of a well-defined and reusable design process

A stereotypical product life cycle includes
product planning and marketing, engineering design, manufacturing, order
management, production and procurement, and customer delivery and service,
including after-sales and maintenance. An ideal engineering design process may
further follow the activities of identification of a need, background research,
goal statement, performance specifications, ideation and invention, analysis,
selection, detailed design, prototyping and testing, and production (Norton,
2008), often aligned with agreement, technical, and evaluation processes.
However, if the success and cost indicators of design projects fail to credit
“forward thinking”, there is a danger of local (over)optimization of individual
design activities and tasks. Thus, to optimize the utility of design
information, two central challenges of design projects need to be acknowledged.
We call these the coordinated process challenge and the semantically
rich modeling and computing challenge.

3.1
Coordinated process challenge

In progressive design, each design step
should ideally aim serving the needs of the other steps: The following step(s)
should be served with information, the preceding steps with reasonable
requirements. The worst-case scenario involves “re-engineering” artifacts of
the earlier design stages (Hislop, Lacroix & Moeller, 2004). Good practices
enable not only efficient but also sustainable development (Ramani, Ramanujan,
Bernstein, Zhao, Sutherland, Handwerker, Choi, Kim & Thurston, 2010). In
both cases, initial design decisions play a central role.

Coordinated process issues typically result
from unclear practices or missing protocols for exchanging information.
Problems typically culminate when professionals from different disciplines
meet. For instance, “hard” machine engineering designers are often unaware of
the technical information requirements posed by “soft” after-sales application
developers, and viceversa.

Perhaps the most widely applied, structured
design process framework is found from software engineering: The (IBM) Rational
Unified Process (RUP) (Kroll & Kruchten, 2003; Kroll & Royce, 2005).
RUP is an adaptable development process framework that is tailored by the
development organizations according to their needs. Note that general
frameworks also help identifying concrete tools, such as composer and
management tools, wikis, and issue trackers (Eclipse, 2010b).

In the machine design context, we may now
use RUP for helping to answer the questions like "What are the elements of
a good machine design process in general?" or "What elements is a
particular machine design process missing?" RUP points out several nice
practices applicable in the machine design context:

- Project lifecycle takes place in four phases (in
which iterations may take place): Inception, Elaboration, Construction, and
Transition. In particular, the Inception and the Elaboration phases suggest
setting clear requirements, constraints, and key features before Construction.

- Work is takes place around Roles (who), Work
Products (what), and Tasks (how). This provides concepts for identifying a
specific design task in a system of manageable units and interfaces.

- There are six engineering disciplines: Business
and Modeling, Requirements, Analysis and Design, Implementation, Test, and
Deployment. Thus, system engineering is not “only technical designing”;
specific design tasks must be accompanied with e.g. process management which in
our case requires the identification of and coordination with other activities.

- There are also supporting disciplines, including
Environment, Configuration and Change Management, and Project Management. In
our case, the Configuration and Change Management suggests acknowledging the
configuration (versioning) management of design information.

- General best practices minimize faults and
maximize productivity, namely: Develop iteratively, Manage requirements, Use
components, Model visually, Verify quality, and Control changes. These serve as
rules of good engineering in general, suggesting active collaborations and
seeking means to use external tools and representations to manage the process.

This helps identifying success criteria for
well-coordinated design processes:

- The measures of design productivity and costs
must be established on an appropriately high management level, based on
Business and Modeling and/or Project Management principles. (Not only within a
particular phase or “core” engineering discipline.)

- The roles of designers and the work products
need to be explicitly identified, setting concrete requirements and protocols
between project activities. (Not only agreed
informally between expert designers.)

Equipped with this insight, we will next
consider our second challenge.

3.2
Semantically rich modeling and computing
challenge

The second challenge results from the
inherit complexity of an engineering process. Ideally, the design process is
properly modeled (OMG, 2008) and the relevant design information can be read
from the properly encoded design documents. In practice, processes may be
poorly described and reading design documents may be difficult for humans and
impossible to software. Writing out implicit information in design documents,
however, may introduce additional work. Thus, concrete benefits must be pointed
out by project management-level indicators.

The first step in addressing the challenge
lies in understanding the typical elements of information in a design task. In
practice, even very restricted design tasks involve using lots of models,
specifications and model-specific attributes. Troussier, Pourroy, Tollenaere
and Trebucq (1999) identify over twenty categories of attributes related to a
particular well-defined mechanical design analysis case. Ideally, these
specifications would automatically match the needs of the other design
activities. In practice, however, this requires sufficiently formal information
interfaces between design activities. Since information needs may vary upon
application (e.g. a simulation model or a simple pass/fail simulation outcome),
information interfaces should be introduced upon concrete needs.

In this context, semantic modeling means
writing out the meaning of the given structures with respect to a certain application
in a machine-processable way, without having to understand them in per se. This
typically involves describing the classifications and relationships of the
design artifacts with respect to some common domain model and/or theory. For
instance, a specific block in a CAD design might be described as a component of
a specific type, drawn from machine component ontology (e.g. as a pump). This
added piece of information would then allow automatically integrating the block
with a simulation model in a later design activity (e.g. with a generic
Simulink “pump” model with few parameters). Technically, this requires three
things: First, identifying the desired (e.g. CAD) block with a
well-defined reference, second, classifying the identified object with
respect to some controlled vocabulary, and third, acknowledging the context
of this information with respect to a semantic design and application
process. Equipped with this information, one can then semantically compute with
the data.

By semantic computing we mean
“computing with (machine processable) descriptions of content and (user)
Intentions” (IJSC, 2010). In our context, this means describing data semantics
with respect published common data models and theories, and then making queries
and other computations on the level of the encoded descriptions. For instance,
simply knowing that a component “a10” in a hydraulics design is a kind of a
hydraulic pump, that hydraulic pumps are machines (now in the sense of abstract
physics), and that machines typically create heat as a byproduct, allows
pinpointing components that produce heat in a system.

Typical machine design activity takes place
iteratively, starting from problem definition and sketching. In a semantic
process, these should capture both design insight and information requirements.
For instance, a semantically rich, machine readable sketch of a machine
simulation model not only captures the design insight of a particular
simulation implementation, but also points out what information is assumed to
be requested from the preceding design activities (such as mechanical design,
component list, and machine-specific parameters and attributes). Optimizing the
global design cost might suggest moving information production responsibilities
downwards in the global information consumption food chains, to a point where
further delegation would introduce additional costs.

When considering specific technologies for
the semantic modeling part, good candidates exist. Considering the modeling
part, perhaps the most obvious general-purpose technologies for semantic
modeling are provided by the W3C Semantic Web technologies (W3C, 2010;
Gómez-Pérez, Fernández-López & Corcho, 2004; Ellemang & Hendler, 2008).
Perhaps surprisingly, adopting a good, specific semantic machine description
(etc.) vocabulary is much more difficult. While general-purpose technical
vocabularies exist (including the licensed ones, see, e.g., (SFS, 2008) and
similar standards), precise global vocabularies are not always available or
used in hands-on design – particularly when PDM systems does not support or
require this and when designers adopts ad hoc terminologies. Thus, unless using
standard classifications is systematically insisted on the level of project
quality control, at the early stages of adoption, semantic processes are likely
to capture "only" the terms of the local design culture. Using
standard names, however, is crucial for machine processing and transfer. Once a
proper process is followed, benefits cumulate and motivating should become
easier.

From the semantic computing perspective, we
may perceive the design process in terms of a semantic data processing
pipeline: The data processing pipeline consists of tasks pointed out by the
project coordination, where each task transmits information as requested by the
design (sketching) activities. Depending on the technical design of the
pipeline and the formality of the data, the data processing pipeline may be
used for documenting information interfaces, validating information
requirements, and even automatically processing technical design data and thus
generating new applications. Pipelines may also encode information that is
simply useful for informal designer communication (common map or reference).

We may now outline success criteria for
semantic modeling/ computing as follows:

- Semantic modeling that is required to capture
design information has two main use cases: Capturing design insight for the
purposes of the particular engineering task and asserting formal information
requirements for the preceding activities. In other words, design activities
are not independent, but linked though well-defined inputs and outputs.

- For purposes of automated information
processing, a progressive design process may be technically modeled as data
processing pipeline which also points out a framework for particular semantic
computing components.

- While acknowledging the coordination challenge,
the specific organization of a data processing pipeline should reflect the
actual organizational structure. In other words, the pipeline structure is due
to both the abstract information requirements and the concretely assigned
employees' tasks.

In practice, this may require re-thinking
designer roles and responsibilities.

4 Thinking in terms of semantic processes

In a design organization, we may identify
three kinds of top-level processes:

- The business process, which sets the general
objectives, success indicators and constrains on the organizational level. If
the business process fails on a critical level, the entire organization may
break down.

- Organizational quality control processes, which
among other things define the stereotypical structure of design projects within
the organization. This typically includes setting the principles of staffing,
process activities and models, documentation practices, tools, project-level
progress measures, and organizational learning feedback loops from the
completed projects.

- Concrete project processes, which are related to
ongoing projects with specific objectives, resources, and timetables. In our
case, these are typically engineering design projects for external customers.
If the project processes succeed, a learning organization will perform better
and is likely to favor the successful project patterns in the future.

Now, semantic process thinking appears both
on the level of quality control processes (2) and on the level of concrete
project processes (3), within the constraints of the business process (1). In
particular, appreciating semantic process thinking on the level of organization
quality control (meta) processes requires acknowledging the fact that besides
tools, also common project policies and protocols are needed. Further, unless
local activity costs are analyzed with respect to global cost savings, there is
a risk of trying to (in error) minimize business costs by minimizing each
design activity costs individually.

Equipped with this insight, let us then
analyze semantic processes on a project level. Assume we would like to generate
virtual machine laboratory applications from design information, e.g.,
prototyping or training purposes. Consider capturing the flow of information in
a related machine design process, as depicted in an intuitive example depicted
in Figure 1.

Figure 1. An intuitive example of a
semantic design process

Clearly, the example is an
oversimplification since, e.g., all activities, feedback loops (e.g.
negotiating information requests and responsibilities), and internal iterations
with sub-activities are not specified. Nevertheless, it helps pinpointing critical
properties of the task: Organize work into modules of activities with clear
information interfaces, set requirements for critical information to enable
fluent information flow and reuse, establish a working culture (and indicators)
to support rational division of labor, and provide tools to designers both for
transforming data, generating applications and for validating the information
they produce. (Compare, with requirements-based testing in software engineering
as in Sommerville, 2004).

Note that semantics appears here in three
complementary roles:

- Designer communication and design process
management, e.g., sharing a common terminology and asserting well-formed
information requirements.

- Automated data processing, e.g., generating
drafts of documentation or simulator models utilizing enriched technical design
data with machine-processable semantics (reusing data provided by the preceding
activities).

- Novel end-user applications, e.g., introducing
applications that allow end-users to (semantically) search and visualize
information based on the well-defined semantic concepts of technical design. (In
our case, a complete end-user application includes a semi-automatically
generated virtual machine laboratory including interactive, linked simulation
models, diagram/3D views, and component catalogues).

Depending on the management objectives, a
semantic process may be interpreted informally (a collaboration metaphor for
coordination and management), semi-formally (intuitive information interfaces
and best practices for encoding technical data), or formally (data interfaces
with machine-readable semantics for purposes of automated validation and
processing). Note that conceptually, the semantic search provides a strong
basement for various kinds of end-user applications, also in cases when the
query language is not visible to the end-users. The semantic search can also
cover the current or the recorded state(s) of the dynamic simulation and the
semantic model might be modified dynamically (by run-time update), which opens
up interesting analysis, prototyping and training possibilities.

A successful semantic process should have
positive learning and cumulative knowledge gain effects within organizations.
In brief, this means two things. First, we would like to minimize the “extra”
work effort in enriching design data (activity A5 in Figure 1), by increasing
the reusability and utility of the actual design data. Second, we would like to
increase the volume of good and reusable legacy input from the past projects,
establishing a positive information reuse cycle between projects (activity A1
in Figure 1).

4.1
An abstract model of a semantic data processing
system

Let us next focus onto the specific data
processing needs of the semantic process.

Figure 2. A semantic data processing
system: Activities (A), processing targets (T), communications schemas (C), and
information requirement schemas (R)

We define a semantic data processing
system as a quadruple (A, T, C, R) of (directed, feed-forward) graph of activities
(A), processing targets (T), communication schemas (C), and information
requirement schemas (R). For an example, see Figure 2 above.

We may consider a semantic data processing
system as a special kind of data processing pipeline (compare with, e.g.,
Walsh, Milowski & Thompson, 2010). The graph of activities (A) establishes
two data processing roles, indicated with the directed arcs: information
provider and information requestor (or consumer). The graph points
out the critical information paths of the system: When an activity Aj
requests information from a providing activity Ai (the graph
includes a directed arc from Ai to Aj), processing Aj
as a processing target Tj depends on the activity Ai.

The communication schemas define the
basic communication protocols between the directly connected activities. When
activity Aj requests information from a providing activity Ai,
a formal communication schema Cij may be asserted. This enables
validating that Ai transmits information in a format that Aj
claims to understand. Besides rudimentary structures and references,
communication schemas typically introduce shared controlled vocabularies and
formal ontologies.

The information requirement schemas
(Rji) are used for asserting strong, particular information
requirements between the directly connected activities to validate the actual
information content. This may include, e.g., checking names, instance data, and
cardinalities, and performing arbitrary calculated tests. Note that information
requirement schemas are typically more activity-specific than communication
schemas. For instance, in a certain application one may adopt the policy of
using a single communication schema for the whole network (e.g. RDF/cXML) and
then assert specific information requirements per activity. Also, asserting
information requirement schemas typically requires a more expressive schema
language than asserting mere communication schemas.

Figure 3. Target processing related to
information objects. The arrows represent the transformations of information
objects between different activities

An analytical definition of information
requirements schemas can be pointed out by organizing the data outputted by an
activity Ai into an explicit set of abstract information objects
aih associated with (semantic) properties piht, { <aih,
piht> } (for an illustration, Figure 3). As a consequence, a
processing target Tj may now be perceived as a transformation from
the sets of the requested information objects to the set of the provided
information objects. This involves both acknowledging the identity of
information objects and asserting their properties, where the modeling is due
to the actual information requirements.

4.2
Semantic modeling for machine design projects

We may use the term ontology to
denote an explicit specification of a shared conceptualization. For instance,
the classes and instances that are used to describe a machine design might be
called ontology. In an abstract treatment, however, the general term ontology
should not be confused with a specific knowledge representation language, such
as the Web Ontology Language (OWL). In many cases, a less expressive ontology
language, such as the SKOS Simple Knowledge Organization Language, RDF Schema,
or a even well-designed XML Schema –based markup language, is sufficient. Also,
it is possible to interpret some of the formal entailments in applications in a
non-orthodox way (Nykänen, 2007).

In engineering, ontologies should be
designed with concrete use cases in mind. Following a typical modeling practice
(Gómez-Pérez, Fernández-López & Corcho, 2004; Böhms, Leal, Graves &
Clark, 2009), we may organize the semantic models related to a semantic process
into three layers. These include the top-level management and integration
ontologies, various engineering design (domain) ontologies, and specific design
(instance) data related to particular design artifacts or products (Figure 4).

Figure 4. A simplified information
architecture for machine design

In brief, the top-level enterprise
ontology provides the common framework for integrating all data within an
organization. The design project ontology introduces the concepts of the
machine design process, such as phases, activities, objectives, work products,
tasks, and roles. It also refers to the semantic process ontology, which
defines the concepts of a semantic process, including targets, critical
information paths, and communication and information requirement schemas. Quite
obviously, the information captured by the design project and semantic process
ontologies should be aligned. Thus, the semantic process should enable
capturing how to reach the objectives of the project.

The common engineering design (domain)
ontologies then provide the concepts to capture the design structures
related to, say, mechanical, hydraulics, simulation engineering, and virtual
machine laboratories. When a formal formulation of the project deliverables and
requirements is needed with respect to some application, the design ontologies
might be complemented with application ontologies. This might be
required for validating project deliverables, or simply translating information
to end-user concepts in applications.

Finally, the knowledge elicitation and
product modeling layer encodes information specific to various projects.
This typically includes the instance data that is produced and consumed in
project activities, and interpreted with respect to the ontology framework.
Note that while all information in the above information architecture is clearly
subject to change and needs thus to be properly versioned, it is usually
assumed that the daily hands-on design activities mostly modify information on
the knowledge elicitation and product modeling layer. In particular, the pace
of evolution of the underlying semantic standards is typically much slower than
of the given instance data (Nykänen, 2009a).

Of course, on the implementation level, the
ontology landscape might be more detailed. For instance, it typically makes
sense to organize ontologies into several modules, e.g. by separating specific
constructions from the general-purpose components. Also, separating the
top-level enterprise ontology and design project ontology allows extending the
design with new ontology components, e.g. related to life-cycle management. In
turn, this also suggests complementing product design information with
life-cycle information of deployed products. When the overlap between different
(3rd party) engineering ontologies becomes problematic, e.g. when the same
concept is defined in several places, one may add mapping or translation
ontologies, etc.

The above information architecture is
linked to semantic data processing pipelines in two major ways. First, the
activity and the requirements structure of the semantic data processing
pipeline is designed using the concepts of the semantic process ontology and
linked with the design project ontology. Second, the communication schemas are
designed using the engineering ontologies.

4.3
Notes about implementation

The basic insight of project management
lies in recognizing that teams need to be given a clear goal, educated about
the process methods, and providing guidance and tools for successfully applying
the methods throughout the project. More formally, abstract semantic processing
must be linked with the concrete and well-defined project activities. This
boils down to well-defined roles, work products, and tasks: People perform
certain activity tasks and are responsible for certain validated work products,
in concert with the project timeline and objectives.

Figure 5. Roles, work products, and
tasks in a semantic process

Figure 5 captures a more detailed example
of the two activities from Figure 1, namely Preliminary Analysis and Legacy
Input and Hydraulics Design, and introduces a previously hidden activity:
Ontology Modeling. The basic idea is that three roles are identified (in the
scope of the given process fragment): Chief Engineer, Knowledge Engineer, and
Hydraulics Engineer. Chief Engineer performs the tasks of Legacy Input
identification and Concept Design, and participates in the Ontology Modeling
task. Hydraulics Engineer performs the Hydraulics Design task and participates
in the Requirements Design task in the Hydraulics Design Activity. Knowledge
Engineer performs the tasks of Semantic Annotation, Delivery & Automated
Processing, Requirements Design, and Ontology Modeling, in collaboration with
the respectful machine design engineers. The identified work products include
CAD (etc.) legacy documents, semantic descriptions, formal requirements (as
schemas), partially automatically generated activity output documents, and the
top-level ontology (etc.). (To make the figure less cluttered, the
responsibilities are omitted.)

Perhaps the simplest approach to implement
a development process is to model the work breakdown structure and automated
data processing in terms of a file system, interpreted with respect to suitable
project and semantic process ontologies. In brief, this allows easy versioning
of data collaboratively (e.g. with SVN (Apache, 2010a)), applying integrated
development environments such as the Eclipse (Eclipse, 2010a), and using
general-purpose pipeline data processors such as the Apache Ant (Apache, 2010b)
or the Wille Visualisation System (Nykänen, Salonen, Haapaniemi &
Huhtamäki, 2008; TUT, 2010). This also allows benchmarking the approach with
respect to well-known architectures, such as the Darwin Information Typing
Architecture (DITA) (Raaphorst & Johnson, 2007).

Technical semantic modeling may be based on
the Semantic Web technologies. Besides the taxonomies for capturing or design
cases, we have developed a canonical application profile of RDF/XML called
RDF/cXML to capture semantic data in the data processing pipeline. This allows
a dual interpretation of data (either XML or RDF interpretation) which means
that both XML and RDF schema languages and processing tools are applicable
(Nykänen, submitted). Asserting information requirement schemas in ISO
Schematron is thus possible. This enables asserting very expressive
requirements, even without ontologies in description logic.

Reading data from the legacy file formats
requires application-specific adapters. However, the elicitation process
involves not only exporting authentic design structures from legacy design
systems, but also further describing these structures semantically, when
necessary. As a rule of thumb, our application experience suggests that it
makes sense to enrich legacy data using relatively simple means: The bottom
line is that design practices require that significant structures are
appropriately named and grouped for reference. Adding semantic structures to
legacy design data (e.g. CAD) makes sense if semantic information can be
injected into the editor GUI palette or macro level. A sufficient level of
richness of semantic information has been reached when design data, PDM
information (etc.), and semantic ontologies can be linked in a programmatic
way.

The information requirement schemas provide
concrete validation tools for designers, since they allow providing explicit
feedback to designers, e.g., as “Your design can be interpreted mechanically
only up to 55%”, based on an evaluation of related ISO Schematron assertions.
However, a major caveat against easily understanding this feedback is that
information requirement schemas are typically evaluated with respect to the
exported information (in XML), not the editing view in the legacy design system
(e.g. a visual CAD graphical user interface).

5 A Technical case study

To demonstrate our approach in practice
with specific technologies, we shall next discuss a simple design case using
the data provided our industry stakeholders.

5.1
Scope and design

We received real-world design data of an
operator-driven rock drilling machine. This source covers multiple aspects of
the machine’s design, including hydraulic diagrams, mechanical models and
controller-area network (CAN) design. We also had access to previously
implemented simulation models of individual machine components. The material
was mostly provided in original formats, including confidential reference
information (in Vertex HD, CANopen, and PDF formats). We shall next consider a
case study based on a restricted subset of the material, with the general
objective to semi-automatically generate simulation models from the semantic
information present in the hydraulic diagrams. Simulation models for other
design domains such as CAN, can be generated similarly.

The pivotal information source was a
hydraulic diagram that was created with the Vertex HD hydraulic design
software, with added semantic information. The diagram was drawn to model a
simplistic, yet fully functional hydraulic system containing the following
parts: a cylinder, a control valve, a pressure relief valve, a filter, a tank,
a pump and connections (hoses and pipes) between components. In the HD design
activity, the full hydraulic diagram was composed by creating copies
(instances) of the macros and connecting these macros together with hydraulic
volumes (hoses), where volumes are connection lines with type code. Bridging
different models succeeds only if shared schemas are followed. Thus, since
hydraulics designers do not typically follow a formal typing or naming scheme
for objects, the names of components and properties needed to be corrected.

In this case, the simulations were to be
compiled from a pre-defined library of parameterized simulation models of
hydraulic etc. components. In brief, this allowed mapping models with the
enriched reusable macros of the CAD drawings. Programmatic access to design
information was due exporting well-defined structures from the Vertex HD format
using a proprietary SVG adapter, thus providing access to data in relatively
simple XML.

Figure 6. A depiction of a macro with
its common attributes in Vertex HD

To provide semantic data about components
that could be used in later stage of generation process, we also included
common attributes to the CAD drawings. For instance, in a cylinder (Figure 6),
common attributes were used to store information about the related area,
diameter and different forces that could be later used as parameters in
simulation. In production, some of this information should be included to a
mechanical model or PDM since it is typically not included in the hydraulics
design. However, the information which connects the structure and the semantics
of the hydraulic diagram with the structure and semantics of the simulation
models, should be part of the semantic processing pipeline definition.

5.2
Generating a simulation model

Once the semantic process of the case study
was specified, it pointed out an automated generation process, performed in
several steps. First, the hydraulics diagram designed in Vertex HD was first
exported from a proprietary format to XML/SVG for further processing. Second,
information from the exported SVG was extracted into a canonical form in
RDF/cXML:

<!ENTITY semogen
"http://www.tut.fi/projects/semogen/" > ...

<rdf:Description rdf:ID="comp-3_21">

 <rdf:type rdf:resource="&semogen;hydraulicCylinder"/>

 <dc:identifier>E3_21</dc:identifier>

 <dc:title>Cylinder</dc:title>

 <semogen:pistonDiameter>100</semogen:pistonDiameter>

 <semogen:hasPort rdf:resource="#port-2_21"/>

 <semogen:hasPort rdf:resource="#port-2_22"/>

 <semogen:hasPort rdf:resource="#port-2_23"/>

</rdf:Description>

<rdf:Description rdf:ID="port-2_21">

 <rdf:type rdf:resource="&semogen;hydraulicPort"/>

 <dc:title>Piston</dc:title>

</rdf:Description>

Hydraulic components, ports and their connections
(pipes) are modeled as RDF resources with references to a project-scope
RDF-based hydraulics schema. Selected common attributes are translated into RDF
properties, in order to carry the information objects encoded into design
documents into the semantic model.

As a third step in the generation, the
templates of component-specific simulation models (selected from the predefined
Simulink library), with generation-specific parameters, are linked to the
RDF/cXML data. For instance, components typed as hydraulic cylinders are linked
to a cylinder template in the schema (e.g. triple semogen:hydraulicCylinder
semogen:hasSimulationModel “cylinder”).

Finally, a custom generator component
(using Apache Ant and Python) was used to output a script that generates the
simulation model. In this step component- and instance-specific parameters are
also added. For instance, in order to generate the simulation block for the
cylinder, the following code can be generated:

add_block('Semogen/Hydraulics/Cylinder', 'system1/comp-3_21');

set_param('system1/comp-3_21', 'D_piston', 100);

set_param('system1/comp-3_21',
'stroke', 300);

Connecting signal lines due hydraulic
pressure lines can also be added by scripting.

As suspected, the maturity of the resulting
Simulink model depends on the well-formedness of the source data. Outside the
laboratory environment, it may be tricky to connect signals between Simulink
components in a fully automated fashion, since this requires careful
book-keeping of names (Figure 7).

Figure 7. Excerpt of a simulation model
in Simulink

However, once the generation pipeline
utilizing the semantic process is functional, changing the configuration and
the parameters of HD models is relatively easy, and the generation can be
quickly recomputed. Designers can also modify the simulation models directly in
Simulink. This also provides a natural way to develop new component simulation
models, to be added to the library for automatic generation. Note that some of
the global properties of the simulation model are partly due to the properties
of the individual component models. For instance, an acceptable step size of
the global simulation model typically depends on the design of particular
simulation component. Once generated, the simulation model does not Simulink
since an executable can be generated, including a network interface which
provides simulated data for applications, such as browser-based view
applications.

5.3
Discussion

While manual engineering is still needed
both in the hydraulic diagram design and in design of the simulation
components, the above semantic process implementation allows a notable part of
the simulation to be automatically generated. As the generation is based on the
semantic model, simulation models and the configurations of components can be
added in a similar fashion, regardless of their design domain (hydraulics, CAN,
mechanics, etc.). We may thus consider the generation application as
configuration management problem: Doing things for the “second time” gets much
easier since old diagrams may be effectively used as templates, and eventually
taken into account in CAD macro design.

With respect to the current (legacy)
engineering design processes, some challenges exist. First, rigorous
codification of names and structures may require rewriting design macros, and
the related features in legacy applications. Second, semantic processes and the
generation applications introduce needs for new kind of information that are
not explicitly produced in a legacy design process. As a consequence, the
designer roles need rethinking (who is responsible to create what information).
Also, the information placeholders and tools need to be identified (which tool
is used and where the data are stored). In addition, the role of component
manufactures as information providers requires rethinking. While it currently
does not seem realistic to try to generate simulation models from exact
component blueprints, it would still be beneficial to retrieve component data
in a precise, semantic form. The challenge, of course, lies in identifying the
subtle level of detail in the access to sensitive design information so that
enough information is available for purposes of fruitful 3rd-party semantic
processing (e.g. generation), but not too much (e.g. for purposes of
non-licensed component manufacturing).

Considering the tool chain, it seems that
to maximize the amount of automation also the design tools need to evolve. For
example, representing semantic structures and performing information validation
might be considered as natural properties of CAD and authoring tools. Syntactic
and semantic extensibility are also important. In particular, while the use of
RDF for data modeling in favor of, e.g., proprietary XML-based file formats
requires some additional work in the beginning, it pays off in the semantic
integration and validation applications in the end.

6
Conclusion

In this article we have identified and
specified the concept of a semantic process for engineering design. The basic
idea is to analyze a design process from the perspective of critical (semantic)
information paths, and to establish a rational work break-down model with
well-defined information interfaces for validating and processing design
information. We have also demonstrated semantic process thinking in terms of a
restricted simulation generation use case, which enables rapid prototyping and
simulation of machines based on relatively simple sketches. In brief, we
believe that semantic process thinking may be widely applied, and that it helps
improving and implementing positive learning and concrete design information
transfer policies within organizations.

Our work continues in two fronts, studying
the issues of particular design applications, and adapting the semantic process
model in the context of mainstream process tools. In particular, semantic
process thinking should become even more attractive when a complete product
life is considered: The machine end-user application/after-sales phase is
typically much longer (and profitable) than the design phase. In turn, we
expect that this work might also lead into improved industry design process
models and novel CAD/CAM/PDM applications.

In applications, the main challenge lies in
managing the inherit complexity of the task, with respect to both coordination
and semantic computing. As such, the semantic process may also be simply used
as a model for existing process analysis. Regardless of the level of
implementation, however, one must take both the technical and the social
system properties into account. Experience shows that concerns related to
personal credit, intellectual property rights, and protection of
business-sensitive information lie in the very core of processes, and need to
be acknowledged in concrete projects. Indeed, the significance of proper policy
management (clear rules for giving and receiving credit) gets typically
highlighted in general data sharing systems research (Smith, Seligman &
Swarup, 2008).

Besides the particular applications of the
Semogen research project, motivation for this work can be found from the
broader context of design engineering. According to the Finnish Association of
Consulting Firms SKOL (2010), the volume of services of its member companies
(mostly industrial and construction) in 2009 was 1.2 billion euros which means
a big design business. Manufacturing and design industries, however, are
undergoing significant structural changes in industrialized countries. Large
companies tend to move manufacturing to countries “close to customers”, and/or
to countries with cheaper production costs. Design industry will likely follow
this trend, and countries (losing jobs) and organizations (losing customers)
suffering from globalization need to rethink their strategies. In Finland, a
recent national report about digital design/product process points out that 1)
“the more challenging design activities” and 2) the design activities that are
able to “increase their productivity/extent of value added”, are more likely to
remain in Finland (Ventä, Taklo & Parviainen, 2007: page 25). Still, it is
estimated that up to 15-20% of the (design) services are at risk. Thus, the
importance of introducing more powerful methods to design industry must be
acknowledged.

Acknowledgements

This work has been supported by the
Technology Industries of Finland Centennial Foundation, and the partners of the
Semogen project. We wish to thank both the organizations and the individual
experts that have helped us throughout this work.

References

Airila, M., Pietola, H., & Kuuva, M.
(2001). Smart machines and systems: Recent advances
in mechatronics in Finland. Helsinki University of
Technology publications in machine design, 1/2001.

Alanen, J., Vidberg, I., Nikula, H., Papakonstantinou, N.,
Pirttioja, T., & Sierla, S. (2011). Engineering data
model for machine automation systems engineering data model for machine
automation systems. VTT Tiedotteita – Research
Notes 2583.

Almeida da Silva, M.A, Mougenot, A.,
Blanc, X., & Bendraou, R. (2010). Towards automated inconsistency handling
in design models. Lecture Notes in Computer Science, 6051/2010, 348-362.

Apache (2010a). Apache subversion home
page. The Apache Software Foundation. http://subversion.apache.org/ - Accessed 20th December 2010.

Apache (2010a). Apache Ant home page.
The Apache Software Foundation. http://ant.apache.org/ - Accessed 20th December 2010.

Brandt, S.C., Morbach, J., Miatidis, M.,
TheiBen, M., Jarke, M., & Marquardt, W. (2008). An ontology-based approach
to knowledge management in design processes. Computers & Chemical
Engineering, 32(1-2), 320-342. http://dx.doi.org/10.1016/j.compchemeng.2007.04.013

Böhms, M., Leal D., Graves H., &
Clark (Eds.) (2009). Product modelling using Semantic Web Technologies. W3C
Incubator Group Report 08 October 2009. http://www.w3.org/2005/Incubator/w3pm/XGR-w3pm-20091008/ - Accessed 20th December 2010.

Danilovic, M. & Browning, T.R.
(2007). Managing complex product development projects with design structure
matrices and domain mapping matrices. International Journal of Project
Management, 25(3), 300-314. http://dx.doi.org/10.1016/j.ijproman.2006.11.003

Eclipse (2010a). Eclipse foundation
open source community home page. The Eclipse Foundation. http://www.eclipse.org/ - Accessed 20th December 2010.

Eclipse (2010b). Eclipse process
framework project (EPF). The Eclipse Foundation. http://www.eclipse.org/epf/ - Accessed 20th December 2010.

Ellemang, D., & Hendler, J. (2008). Semantic
web for the working ontologist: Effective modeling in RDFS and OWL. Morgan
Kaufmann.

Gómez-Pérez, A., Fernández-López, M., & Corcho, O.
(2004). Ontological engineering: With examples from the
areas of knowledge management, E-commerce and the semantic web. Springer, 2004.

Herrman, J.W. (2010). Progressive design
processes and bounded rational designers. ASME Journal of Mechanical Design,
132, 1-8. http://dx.doi.org/10.1115/1.4001902

Hislop, D., Lacroix Z, & Moeller G.
(2004). Issues in mechanical engineering design management. SIGMOD
Record, 33(2). http://dx.doi.org/10.1145/1024694.1024726

IJSC (2010). Home page of the
international journal of semantic computing (IJSC). http://www.worldscinet.com/ijsc/ijsc.shtml - Accessed 20th December 2010.

Järvinen, P., Puolamäki, K., Siltanen, P.,
& Ylikerälä, M. (2009). Visual analytics: Final report. VTT. ISBN 978-951-38-7178-9. http://www.vtt.fi/publications/index.jsp - Accessed 20th December 2010.

Kroll, P., & Kruchten, P. (2003). The
rational unified process made easy: A practitioner’s guide to the RUP. Boston:
Addison-Wesley.

Kroll, P., & Royce, W. (2005). Key
principles for business-driven development. IBM DeveloperWorks. http://www.ibm.com/developerworks/rational/library/oct05/kroll/index.html - Accessed 20th December 2010.

Lehtonen, M. (Ed.) (2006). Simulation-based
design process of smart machines. VTT Tiedotteita - Research
Notes 2349.

Leino, T., Koskinen, K.T. & Vilenius, M.
(2005). Modelling of fluid dynamics in water
hydraulic seat valve-investigation of pressure distribution. Proceedings of the 9th Scandinavian International Conference on
Fluid Power, SICFP'05, Linköping, Sweden, 1-3 June 2005, 11.

Lensu, M. (2008). Mechanical engineering
research in Finland 2000-2007. Publications of
the Academy of Finland 5/08, ISBN 978-951-715-698-1.

Lucko, G., Benjamin, P.C., Swaminathan,
K., & Madden, M.G. (2010). Comparison of manual and automated simulation
generation approaches and their use for construction applications.
Proceedings of the 2010 Winter Simulation Conference, Baltimore, USA, 5-8 Dec.,
2010. http://dx.doi.org/10.1109/WSC.2010.5679006

Malhotra, M.K, Heine, M.L., & Grover,
V. (2001). An evaluation of the relationship between management practices and
computer aided design technology. Journal of Operations Management, 19(3),
307-333. http://dx.doi.org/10.1016/S0272-6963(00)00063-2

Marquardt, W. & Nagl, M. (2004).
Workflow and information centered support of design processes—the IMPROVE
perspective. Computers & Chemical Engineering, 29(1), 65-82. http://dx.doi.org/10.1016/j.compchemeng.2004.07.018

Markkula, M. (2009). Automatic
Simulation Model Generation for Hydraulic and Mechanical Systems. Master of
Science Thesis (Automation Technology), Tampere University of Technology.

Markkula, M., Rokala, M., Palonen, T., Alarotu, V.,
Helminen, M., Koskinen, K.T., Ranta, P., Nykänen, O., & Salonen, J. (2011).
Utilization of the hydraulic engineering design information
for semi-automatic simulation model generation.
Proceedings of the twelfth Scandinavian International Conference on Fluid Power,
Tampere, Finland, 18-20 May, 2011, 3, 443-457.

Noran, O.S. (2000). Business
Modelling: UML vs. IDEF. Griffith University School of Computing and
Information Technology. http://www.ict.griffith.edu.au/~noran/Docs/UMLvsIDEF.pdf - Accessed 20th December 2010.

Norton, R.L. (2008). Design of machinery:
An introduction to the synthesis and analysis of mechanisms and machines, (4rd
Ed.). McGraw-Hill.

Nykänen, O. (2007). Interpretation
Logics. Proceedings of the 1st OPAALS Conference, Rome, Italy, 26-27 Nov.,
2007. http://matriisi.ee.tut.fi/hypermedia/julkaisut/2007-nykanen-ilogics.pdf - Accessed 20th December 2010.

Nykänen, O., Salonen, J., Haapaniemi, M.,
& Huhtamäki, J. (2008). A Visualisation system
for a peer-to-peer information space. Proceedings
of OPAALS 2008, Tampere, Finland, 7-8 Oct., 2008, 76-86.

Nykänen, O. (2009a). Semantic Web for
evolutionary peer-to-peer knowledge space. In Birkenbihl, K.,
Quesada-Ruiz, E., & Priesca-Balbin, P. (Eds.) Monograph:
Universal, Ubiquitous and Intelligent Web. UPGRADE, The European Journal for
the Informatics Professional, X(1), February 2009, ISSN 1684-5285, CEPIS
& Novática. http://www.upgrade-cepis.org/issues/2009/1/upgrade-vol-X-1.html. - Accessed 20th December 2010.

Nykänen, O. (2009b). Understanding data
via an RRS in RDF/XML. Proceedings of the IADIS International Conference
Applied Computing 2009, Rome, Italy, 19-21 Nov, 2009, vol. I, ISBN
978-972-8924-97-3.

Nykänen, O. (Submitted). RDF in
Canonical XML (RDF/cXML): A Canonical, Backward Compatible RDF Serialization
Syntax in XML. The 10th International Semantic Web Conference, Bonn,
Germany, 23-27 Oct., 2011.

OASIS (2007). Web Services Business
Process Execution Language Version 2.0: Primer. OASIS. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel - Accessed 20th December 2010.

OMG (2008). Business process model and
notation, V1.1. Object Management Group. http://www.omg.org/spec/BPMN/1.1/PDF/ - Accessed Retrieved 20th December 2010.

Pahl, G., & Beitz, W. (1996). Engineering
design - A systematic approach, (2nd Ed.). London:
Springer.

Palonen, T., Leino, T., Koskinen, K.T.,
Ranta, P., Punki, J., & Mäkelä, T. (2007). TI:
Learning environment for training the forest machine mechanics. Proceedings of the tenth Scandinavian international conference on
fluid power, Tampere, Finland, SICFP'07, 21-23 May, 2007, 69-83.

Raaphorst, A., & Johnson, R. (2007). DITA
Open toolkit user guide (3rd Ed.). DITA open toolkit project, OASIS.
http://dita-ot.sourceforge.net/doc/ot-userguide131/xhtml/index.html - Accessed 20th December 2010.

Ramana, K.V. & Rao, P.V.M. (2004). Data
and knowledge modeling for design-process planning integration of sheet metal
components. Journal of Intelligent Manufacturing, 15(5), 607-623. http://dx.doi.org/10.1023/B:JIMS.0000037711.00532.38

Ramani, K., Ramanujan, D., Bernstein,
W.Z., Zhao, F., Sutherland, J., Handwerker, C., Choi, J.K., Kim, H. &
Thurston, D. (2010). Integrated sustainable lifecycle design: A review. Journal
of Mechanical Design, 132(9), 1-15. http://dx.doi.org/10.1115/1.4002308

Ranta, P. (2005). Metsäkonesimulaatio-opetus
kehittyy hiljaisen tiedon avulla. In Muttonen, J. (Eds.) ITK’05, Missä
pedagogiikka? Interaktiivinen tekniikka koulutuksessa -konferenssi,
Aulanko, Hämeenlinna 20-22.4.2005. Hämeen kesäyliopiston julkaisuja, sarja B.

SFS (2008). SFS-KÄSIKIRJA 174-3 /
Technical documentation. Part 3: Preparation of drawings, diagrams, parts lists
and instructions. Suomen Standardoimisliitto SFS Ry.
ISBN 978-952-5650-55-6.

SKOL (2010). SKOL Visio (Kesäkuu 2010).
Suunnittelu- ja konsulttitoimistojen liitto SKOL ry. ISSN
1457-9073.

Smith, K., Seligman, L., & Swarup, V.
(2008). Everybody share: The challenge of data-sharing systems. IEEE
Computer Magazine, September 2008.

Sommerville, I. (2004). Software
Engineering (7th Ed.). UK: Addison-Wesley.

Tekes (2008). Masina – Koneenrakennuksen
teknologiaohjelma 2002-2007, loppuraportti. Tekes
4/2008. http://www.tekes.fi/fi/document/42730/masina_loppuraportti_pdf - Accesssed 20th December 2010.

Tekes (2010). Home page of the tekes
digital product process programme 2008–2012. Tekes. http://www.tekes.fi/programmes/dtp - Accessed 20th December 2010.

Troussier, N., Pourroy, F., Tollenaere,
M., & Trebucq, B. (1999). Information structuring for use and reuse of
mechanical analysis in engineering design. Journal of Intelligent
Manufacturing, 10, 61-71. http://dx.doi.org/10.1023/A:1008968514421

TUT (2010). Home Page of the Wille
Visualisation System. Tampere University of Technology. http://wiki.tut.fi/Wille/WebHome - Accessed 20th December 2010.

Ventä, O., Takalo, J., & Parviainen, P.
(2007). Digitaalinen tuoteprosessi.
(Selvitysraportti Ver 17.8.2007). Tekes – the finnish
funding agency for technology and innovation.

Virta, P., Aaltonen, J., Koskinen, K.T.,
& Vilenius, M. (2009). Experiences on the condition
monitoring of military aircraft hydraulic systems.
Proceedings of the 6th International Conference on Condition Monitoring and
Machinery Failure Prevention Technologies, Dublin, Ireland, 23-25 June 2009.

W3C (2010). Home Page of the W3C semantic
web activity. World Wide Web Consortium. http://www.w3.org/2001/sw/. - Accessed 20th December 2010.

Walsh, E., Milowski, A., & Thompson,
H.S. (2010). XProc: An XML pipeline language. W3C Recommendation 11 May
2010. http://www.w3.org/TR/xproc/ - Accessed 20th December 2010.

Zhang, W.Y., & Yin, J.W. (2008). Exploring
semantic web technologies for ontology-based modeling in collaborative
engineering design. International Journal of Advanced Manufacturing
Technology, 36, 833-843. http://dx.doi.org/10.1007/s00170-006-0896-5

Journal of Industrial Engineering and
Management, 2011 (www.jiem.org)

Article's contents are provided on a
Attribution-Non Commercial 3.0 Creative commons license. Readers are allowed to
copy, distribute and communicate article's contents, provided the author's and
Journal of Industrial Engineering and Management's names are included. It must
not be used for commercial purposes. To see the complete license contents,
please visit http://creativecommons.org/licenses/by-nc/3.0/.

image007.png

image005.jpg

image006.jpg

image003.jpg

image001.jpg

image004.jpg

image002.jpg

cover.jpeg

