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Abstract: 


Purpose: Healthcare is a universally used
service that hugely affects economies and the quality of life. The research of
service supply chains has found a significant role in the past decade. The main
research goal of this paper is to model and simulate the internal service
supply chains of a healthcare system to study the effects of different
parameters on the outputs and capability measures of the processes. The
specific objectives are to analyse medication delivery errors in a community
hospital based on the results of the models and to explore the presence of
bullwhip effect in the internal service supply chains of the hospital.


Design/methodology/approach: System dynamics which
is an approach for understanding the behaviour of complex systems, used as a
methodology to model two internal service supply chains of the hospital with a
sub-model created to simulate medication delivery errors in the hospital. The
models are validated using the actual data of the hospital and the results are
analyzed based on experimental design techniques.


Findings: It is observed that the bullwhip
effect may not occur in a hospital’s internal service supply chains. Furthermore
the paper points out the conditions for reducing the medication delivery error
in a hospital.


Research limitations/implications:
Because of
the community hospital’s data availability the type of service supply chains
modelled in this paper, are small service supply chains, representing only the
tasks which are done inside the hospital. To better observe the bullwhip effect
in healthcare service supply chains, the chains should be modelled more
generally. 


Originality/Value: The original system
dynamics modelling of the internal service supply chains of a community
hospital, with a sub-model simulating the medication delivery error.


Keywords: service supply chains, healthcare
services, medication delivery error, amplification effect, bullwhip effect
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1     
Introduction 


In today’s global market, competition is
ever increasing and companies are widely adopting customer-focused strategies
in integrated-system approaches. Competition is no longer one company against
other companies, but one supply chain against other supply chains. Supply chain
management is a mechanism that will allow companies to respond to these
environmental changes. It has become one of the top priorities on the strategic
agenda of industrial and service businesses. Service supply chains should be
managed differently, because they have the following characteristics not found
in manufacturing supply chains: intangibility, heterogeneity, simultaneous
production and consumption, and perishability (Zeithaml et al., 2009). 


Healthcare is an expensive, complex,
universally used service that hugely affects economies and the quality of life
(Berry & Bendapudi, 2007). The U.S., for example, was projected to spend
more than $2 trillion (nearly $7,000 per person) on healthcare in 2006 and
still only 44% of a national sample of Americans were satisfied with the
quality of U.S. healthcare (Berry & Bendapudi, 2007). The healthcare
industry in the U.S. accounts for 16 percent of GDP, whereas the European Union
average is about 8 percent (Baltacioglu et al., 2007). There are several
reasons for the growth of the healthcare industry. The most important one is
decreasing fertility rates and increasing life expectancy. Several challenges
like the complexity of processes, the need for efficient utilization of
resources, the need to control the workload of the healthcare employees, and
the public pressure on healthcare institutions to control costs while
increasing the quality of services are involved with the healthcare industry
(Baltacioglu et al., 2007). All these challenges prove the importance of supply
chain management in healthcare organizations. 


Most of the discussions in literature focus
on supply chain operations in the healthcare industry from a manufacturing
viewpoint (Fineman & Kapadia, 1978; Bier, 1995; Rivard-Royer et al., 2002),
but there are few discussions about applying service supply chain management
principles to healthcare organizations. Baltacioglu et al. (2007) proposed a
general supply chain model for services, which includes some managerial
activities to be performed for effective management of service supply chains.
These activities are demand management, capacity and resources management,
customer relationship management, supplier relationship management, order process
management, and service performance management. The proposed model is
implemented for the healthcare industry. 


Medication delivery error is an important
issue faced by healthcare systems or, more specifically, hospitals. Recently,
medication errors have become so common in hospitals that the patients should
expect to suffer at least one every day (Baker et al., 2002). In 2006, the
Institute of Medicine estimated that medication-related errors harm
approximately 1.5 million people in the U.S., costing the nation at least $3.5
billion annually. To help with these challenges, improving service supply chain
for medication delivery processes in a hospital is very important. The
medication preparation is usually done in the pharmacy of the hospital and then
delivered to different departments of the hospital. So, analyzing the process
of preparing drugs in the pharmacy of the hospital and measuring medication
errors and wastes and trying to minimize them would have an important role in
reducing the medication-related errors. 


Upstream amplification of inventory and
demand in a supply chain has been a well-known phenomenon to supply chain
managers for several decades. This phenomenon is called bullwhip effect in
which fluctuations in orders increase as one moves up the supply chain from
retailers to wholesalers to manufacturers and to suppliers. The evidence of
bullwhip effect was first found by Forrester (1961) and was then demonstrated
by Sterman (1989a, 1989b) based on the famous Beer Game, an experiment that includes
a supply chain with four stages. Lee et al. (1997) suggested four root causes
of amplification effects in inventory supply chains: demand signaling, batch
ordering, price fluctuations and shortage gaming. Most of the research on
amplification effects, or bullwhip effects, has focused on manufacturing (or
inventory) supply chains (Akkermans & Vos, 2003). Although the research of
service supply chains has found a significant role with the increasing
importance of service industry in recent decade, there are few studies on the
amplification phenomenon in service supply chains. Anderson et al. (2005)
studied the dynamic behavior of service supply chains in the presence of
varying demand and information sharing. Their model presented the relationships
between capacity, processing, backlog and service delays at each stage in the
supply chain. They characterized the conditions under which a bullwhip effect
can occur. They indicated that depending on the policies used to manage each
stage the bullwhip effect may not occur in service supply chains.


This paper focuses on service supply chains
in the area of healthcare services based on a case study from a community
hospital (CH). The main research goal of this paper is to model and simulate
the internal service supply chains of a healthcare system to study the effects
of different parameters on the outputs and capability measures of the
processes. The specific objectives are:


To create system dynamics models for the
internal service supply chains in CH.


To analyze medication delivery errors in CH
based on the results of the models.


To explore the presence of bullwhip effect
in the internal service supply chains of the hospital.



2     
System dynamics modelling


System dynamics is an approach to
understanding the behavior of complex systems over time. In this study, system dynamics is used to model two internal
processes in CH: the pharmacy internal service supply chain (i.e., medication
preparation procedure in the pharmacy) and the emergency room internal service
supply chain (i.e., the patient treatment procedure in the emergency room).
Only one medication type, intravenous (IV), is
considered in this study. The reason that we focused on IV is that medication
errors associated with the highest risk of harm are IV medication errors
(Williams & Maddox, 2005). IV medications are associated with 54% of
potential adverse drug events (ADEs) (Kaushal et al., 2001), 56% of medication
errors (Ross et al., 2000), and approximately 61% of the serious and
life-threatening errors (Vanerveen, 2005). The modelling software used is
Vensim, which is a visual modelling tool that allows conceptualizing,
documenting, simulating, and analyzing system dynamics models. 



2.1    
Pharmacy internal service supply chain model


The pharmacy service supply chain model
contains three main stages: Computer Order Entering (the IV orders received
from the other departments are entered into computer), Order Sorting (the
labels are printed and sorted), and Order Assembling (the IVs are assembled).
Each stage contains three variables: capacity, processing rate, and backlog.
Capacity in each stage represents the number of IVs that a pharmacy staff can
process per period. Capacity is changed by turnaround rate. Turn around rate is
the rate of changing positions of the employees in pharmacy. For example there
may be a need for more people in the order entering stage, so the manager may
ask a pharmacist who is working in the order sorting section to help with the
order entering. Capacity adjustment time is the average nominal delay required
to adjust the pharmacy staff. Target capacity is the desired number of pharmacy
staff required in each stage. Backlogs present the number of orders in queue to
be processed. Backlogs decrease as processing rate increases. The average
service delay is the average nominal delay required to complete a backlogged
order. Figure 1 shows the first two stages of the pharmacy model, which is
built based on Anderson et al. (2005). The following are the variables used in
the model:


Bi (t) = stage i backlog
at time t. We assume that  


Ci (t) = stage i capacity
in job at time t. We assume that  equals end-customer demand at time t. 


Pi (t) = the processing rate at
stage i at time t. 


TC i (t)= target
capacity of stage i at time t.


TR i (t)= turn
around rate of the employees in stage i at time t.


mui = the average nominal delay required to adjust capacity at stage i.
We will refer to muias the capacity adjustment
time. We assume that mui >0.


lambdai = the average nominal
delay required to complete a backlogged order at stage i. We will refer
to lambdaias the average service delay. We assume
lambdai >0.


alphai,1 = the relative weight of end-customer demand in the target capacity
decision of stage i. We assume that 


alphai,i = the relative weight of local demand of stage i in the
target capacity decision of the same stage. We assume that  


D = the average pharmacy’s demand for IV.





Figure 1. Pharmacy service supply chain
model for the first two stages


The followings are the equations describe
the model:
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Equations 1 and 2 describe the rate of
change of backlog and capacity at stage i respectively. The rate of
change of capacity at each stage is equal to the turnaround rate of that stage.
According to equation 3, if stage i backlog is positive, then production
runs at full capacity. Otherwise, what is produced at stage i equals production from the previous
stage if this is less than stage i capacity. In equation 4, the first term represents the degree to which the target capacity
relies on the end-customer demand rate. The second term captures the degree to
which the target capacity depends on the processing rate of the previous stage.
The third term denotes how the target capacity depends on the magnitude of the
local backlog Bi(t). The ratio in this term represents the
capacity required to guarantee that, on average, the orders in each backlog
will not be delayed longer than an acceptable amount of time (i.e., the average
nominal delay).



2.2    
Emergency room internal service supply chain
model


The emergency room service supply chain
model contains four main stages: Patient Registration (by a registration
clerk), Nurse Assessment, Doctor Diagnosis/Prescription, and Medication
Preparation/Treatment (a nurse retrieves the required IV medications from the
ER inventory room, prepares medications, and administers medications to the
patient). Figure 2 shows the two first stages of the ER model. The patients
demand (or patient’s inter-arrival rate) is formulated as a random normal
function based on the actual data of CH. The logic of the ER model is similar
to the logic of the pharmacy model.





Figure 2. ER service supply chain model
for the first two stages



2.3    
The linkage between the pharmacy and ER models


Figure 3 shows a sub-model linking the
pharmacy and ER models. ER’s IV demand is sent to the pharmacy with a delay.
The delay time contains two parts: one is the order delay related to the orders
that reach the pharmacy by phone, fax, or computer; another is the waiting time
delay that depends on how busy the pharmacy staffs are. The following are the
variables used in this sub-model:


D2: ER’s IV Demand


DT: Delay Time


WD: Waiting Time Delay


OD: Order Delay


IV: IV’s per Patient. Number of IVs which a
patient will use during his stay in ER on average. This number is given using
CH’s real data.


The followings are the equations describe
the sub-model:


D2 =
DELAY FIXED (P3-2 *
IV, DT,
Initial)                             
          (5)


DT
=
OD +
WD                                                                           
(6)


WD =
B1 * lambda1                                                                                       
(7)





Figure 3. A Sub-model linking the
pharmacy and ER models


Equation 5 states that, starting at time
Initial, the amount of the IV’s prescribed by the doctors will be delayed for a
fixed amount of time DT. The delay time in equation 6 is the sum of the order
delay and waiting time delay. Equation 7 defines the waiting time delay as the
computer order entering backlog times the average service delay in the stage of
computer order entering.



2.4    
Experience model


The purpose of the experience model is to
analyze the effect of experience on medication delivery errors. An experience
model is built for each of the following positions: pharmacy staff, ER
registration clerk, ER nurses and ER doctors.


Figure 4 shows the experience model for
pharmacists as an example. The employee’s average experience is calculated
based on the average experience of new hires, hours worked per year, and
fractional attrition rate. Fractional attrition rate is assumed constant but
might vary with different organizational structure of the hospital. See Sterman
(2000: page 506) for more information on fractional attrition rate. The
following are the variable and inputs used in the experience model for ER
doctors:


Ex: Pharmacist’s Average Experience 


AR: Pharmacist’s Fractional Attrition Rate


NEx: New Hired Pharmacist’s Average
Experience


H: Pharmacist’s Hours Worked per Year


The following equation is used to define the
pharmacist’s average experience:


Ex =
(AR * NEx +
H)/AR                                                                       
(8)


Equation 8 describes that the pharmacist’s
average experience is a function of the hours worked per year and the average
experience of the new hire, considering the fractional attrition rate.
Pharmacist’s Average Experience is used to calculate the medication delivery
error. However the average experience and the reference experience level of
other positions of the hospital (doctors, nurses and clerks) are calculated but
not used in the rest of the model again.





Figure 4. The Experience model for
pharmacist


Figure 5 shows a sub-model of the pharmacy
model, which simulates medication delivery error based on staff’s workload and
experience level. 


The followings are the variables and input
used in this sub-model:


N: Number of Pharmacists. 


The capacities which we calculated before
are actually the capacities in job. The number of pharmacists is calculated by
separating the total pharmacists to two inexperienced and experienced groups.
Using the productivity of each group which are given by the real data of the
CH, the total number of pharmacists is calculated.


PhTC: Pharmacy’s total capacity, which is
the sum of order entering capacity, order sorting capacity and order assembling
capacity.


TB: Total backlog


W: Total workload of the pharmacists


EE: Total Effective Experience of all the
pharmacists


MDE: Medication Delivery Error


FP: Fractional Decrease in Error per
Doubling the Experience


FW: Fractional Increase in Error per
Doubling the Workload (Zangwill & Kantor, 1998)


REx: Pharmacists Reference Experience
Level. Is found using the CH’s real data.


RE: Reference Error. A reference medication
delivery error which is given by the CH.


RW: Reference Workload. A reference
workload which is given by the CH’s real data.


Per1: Pharmacists Inexperienced Percentage.
This percentage is used to calculate the number of pharmacists and is given by
the CH’s real data.


Pr1: Productivity of Inexperienced
Pharmacists


Pr2: Productivity of Experienced
Pharmacists


The following are the formulas which
describe the model:


N
=
(PhTC * Per1 / Pr1) + ((PhTC * (1 – Per1)) /
Pr2)           
              (9)


W= TB /
N                                                                                  
(10)


EE = Ex
* TC         
                                                                    
(11)


Error =
RE * ((EE /
REx) ^ C1) * ((W / RW) ^
C2)            
            
     (12)


Where C1 = ln(1+fp)/ln(2), C2 =
ln(1+fw)/ln(2)                    
 


Equation 9 defines the number of
pharmacists as a function of the productivity of the inexperienced and
experienced pharmacists. The workload in equation 10 is the total backlog
divided by the number of pharmacists. Equation 11 defines the total effective
experience as the average experience times the capacity. In equation 12, the
medication delivery error is equal to a function of the experience and
workload. The constants fp and fw are fractional decrease in
error per doubling the experience and fractional increase in error per doubling
the workload, respectively. The fractional decrease in error fp is
negative because increasing experience will reduce error, while the fractional
increase in error fw is positive since higher workload increases error
(Zangwill & Kantor, 1998).





Figure 5. A Sub-model for medication
delivery errors



3     
Model validation


CH provided us the data of the medication
delivery errors for 44 continuous weeks. Therefore, the model can be validated
by comparing the medication delivery error values given by the simulation run
and the real data from CH. The unit time of entire model is hour. The model has
been simulated for 500 hours and 44 medication delivery errors have been
selected randomly from the simulation data. To be more precise about the error
values given by the simulation run as well as to gain insights into the impact
of the other parameters on medication delivery errors, an experimental design
was employed. The experimental design consists of three parameters which have
the most impact on the medication delivery error. Each parameter has two
levels, which are shown in Table 1. In order to find how to change the current
values of each parameter, many simulations were run, some trial and error
experiments were performed, and the most appropriate new values for each
parameter were chosen. The experimental design is done for three parameters:
pharmacist reference experience level, reference error, and reference workload.
By running some simulations it is found out that these parameters have the
greatest impact on the medication delivery errors. The purpose of this
experimental design is to find a set of values for these three parameters that
result in a reasonable value for the medication delivery error to be as close
as possible to the medication delivery error data of CH.







	
  Factor

  
  	
  Mean Square Deviation

  
 
	
  Factor Level

  
  	
  Pharmacist Reference Experience Level (A)

  
  	
  Reference Error (B)

  
  	
  Reference Workload (C)

  
 
	
  Units

  
  	
  Hour

  
  	
  IV/Hour

  
  	
  IV/Hour

  
 
	
  Low

  
  	
  4000

  
  	
  0.75

  
  	
  15

  
 
	
  High

  
  	
  8000

  
  	
  1

  
  	
  30

  
 
	
  Run

  
  	
  Factor A

  
  	
  Factor B

  
  	
  Factor C

  
 
	
  1

  
  	
  -1

  
  	
  -1

  
  	
  -1

  
  	
  0.175410

  
 
	
  2

  
  	
  -1

  
  	
  +1

  
  	
  +1

  
  	
  0.162899

  
 
	
  3

  
  	
  -1

  
  	
  -1

  
  	
  +1

  
  	
  0.180175

  
 
	
  4

  
  	
  -1

  
  	
  +1

  
  	
  -1

  
  	
  0.166093

  
 
	
  5

  
  	
  +1

  
  	
  +1

  
  	
  +1

  
  	
  0.164949

  
 
	
  6

  
  	
  +1

  
  	
  -1

  
  	
  -1

  
  	
  0.172450

  
 
	
  7

  
  	
  +1

  
  	
  +1

  
  	
  -1

  
  	
  0.169004

  
 
	
  8

  
  	
  +1

  
  	
  -1

  
  	
  +1

  
  	
  0.176864

  
 




Table 1. Values for the simulation
model parameters which has impact on errors in the experimental design and
experimental design formation and the mean square deviations for each run


Eight simulations were run (three factors
at two levels). Each simulation is run for 500 hours, with the first 14 hours
truncated in order to eliminate initialization effects (the first 14 error
values are related to the warm-up period and are relatively small compared to
others). The mean square deviation—which is the squared of each simulation’s
average medication delivery error minus the hospital’s average medication
delivery error—is calculated in Table 1. The experimental design was created
using the Design-Expert Software. From the contrast constants for the 23
design, the seven factorial effects and the sum of squares are estimated and
shown in Table 2.







	
  Model Term

  
  	
  Effect Estimate

  
  	
  Sum of Squares

  
  	
  Percent Contribution

  
 
	
  A

  
  	
  -0.0003275

  
  	
  2.14513E-07

  
  	
  0.079326222

  
 
	
  B

  
  	
  -0.0104885

  
  	
  0.000220017

  
  	
  81.36187151

  
 
	
  C

  
  	
  0.0004825

  
  	
  4.65613E-07

  
  	
  0.172182417

  
 
	
  AB

  
  	
  0.0028080

  
  	
  1.57697E-05

  
  	
  5.831608652

  
 
	
  AC

  
  	
  -0.0003030

  
  	
  1.83618E-07

  
  	
  0.067901508

  
 
	
  BC

  
  	
  -0.0041070

  
  	
  3.37349E-05

  
  	
  12.47508664

  
 
	
  ABC

  
  	
  -0.0001275

  
  	
  3.25125E-08

  
  	
  0.012023047

  
 




Table 2. Factor effect estimates and
sums of squares


The half-normal probability plot of these
effects is shown in Figure 6. All the effects that lie along the line are
negligible, whereas the large effects are far from the line. The significant
effects based on this analysis are the main effect of B and the BC and AB
interactions.


The mean square deviation is minimal with
the following values for the three parameters:





Figure 6. Half-normal probability plot
of the medication delivery error effects (model validation)


Pharmacist Reference Experience Level= 4000
hours


Reference Error= 1 IV/Hour


Reference Workload= 30 IV/Hour


The partial analysis of variance is
summarized in Table 3. Based on the ANOVA, the main effect B and the
interactions of AB and BC (the effects with the P-Values less than 0.0500) are
significant. If the interactions are not considered, the conclusion is that the
reference error is the most significant factor.







	
  Source of Variation

  
  	
  Sum of Squares

  
  	
  Degrees of Freedom

  
  	
  Mean Square

  
  	
  F Value

  
  	
  P-Value

  
 
	
  A

  
  	
  2.14513E-07

  
  	
  1

  
  	
  2.14513E-07

  
  	
  1.985028

  
  	
  0.2942

  
 
	
  B

  
  	
  0.000220017

  
  	
  1

  
  	
  0.000220017

  
  	
  2035.967

  
  	
  0.0005

  
 
	
  C

  
  	
  4.65613E-07

  
  	
  1

  
  	
  4.65613E-07

  
  	
  4.308624

  
  	
  0.1736

  
 
	
  AB

  
  	
  1.57697E-05

  
  	
  1

  
  	
  1.57697E-05

  
  	
  145.9278

  
  	
  0.0068

  
 
	
  BC

  
  	
  3.37349E-05

  
  	
  1

  
  	
  3.37349E-05

  
  	
  312.1716

  
  	
  0.0032

  
 
	
  Error

  
  	
  2.1613E-07

  
  	
  2

  
  	
  1.08065E-07

  
  	
   

  
  	
   

  
 
	
  Total

  
  	
  0.000270418

  
  	
  7

  
  	
   

  
  	
   

  
  	
   

  
 




Table 3. Analysis of variance for the
medication delivery error


After formulating the medication delivery
error of the model, it is time to use an appropriate test to validate the model
using medication delivery error data. Although the model’s medication delivery
error data hold a normal distribution assumption, the medication delivery error
data of CH do not. Thus, classical t tests cannot be used for model
validation. Instead, nonparametric statistics methods are used. Nonparametric
or distribution-free tests do not require the samples to be normal. However,
they require assumptions for their validity, and these assumptions are less
restrictive than the assumptions needed for the t test (Navidi, 2008).
For validation purposes the Mann-Whitney Test is used (Conover, 1999). Our
samples meet all the assumptions of the test. The hypothesis test is:





X1, X2,…, X44 denote the random
sampleof size n= 44 from the hospital data and Y1,
Y2,…, Y44 denote the random sample of size m=
44 from the model data. The ranks 1 to n + m are assigned to the
values from smallest to largest. R(Xi) and R(Yj)
denote the rank assigned to Xiand Yj
for all i and j. In this case, none of the sample values are
equal, so there is no tie in ranking. The test statistic is the sum of the ranks
assigned to the sample from the real data:





H0 will be rejected at the level of significance alpha if T is less
than its alpha/2 quantile or greater than its (1-alpha/2) quantile obtained
from the following equation:





alpha is equal to 0.05, so z0.95=1.6449
and w0.95=2155.105. (alpha/2)w0.95<T<(1-alpha/2)w0.95.


So there is no sufficient evidence to
reject H0. Therefore, the two means are statistically equal. The variances of
the model medication delivery errors and the hospital medication delivery errors
are also close to each other. Thus the model is validated.



4     
Simulation analysis


The model has been simulated for 500 hours.
We first analyze the medication delivery errors. Another important question is
to check if the bullwhip effect (defined here, following Anderson et al.
(2005), as the variance in the processing rate--and therefore the next stage’s
demand--being greater than the input task) occurs in the internal service
supply chains of the hospital? We also analyze if the variance in each stage’s
backlog increases as one proceeds up the supply chain.



4.1    
Medication delivery errors analysis and
discussion


It is clear that we always try to reduce
the medication delivery error. Figure 7 shows the medication delivery error of
the hospital in a normal situation. 


To analyze the impact of the different
parameters on the medication delivery errors, we use experimental design for
the most important ones. Consider Table 4 for the parameters used in the
experimental design.





Figure 7. Medication Delivery Error







	
  Factor

  
  	
  Average Medication Delivery Error

  
 
	
  Factor

  Level

  
  	
  New Hired Pharmacist Average Experience (A)

  
  	
  Pharmacist Fractional Attrition Rate (B)

  
  	
  Productivity of Inexperienced Pharmacist (C)

  
  	
  Productivity of Experienced Pharmacist (D)

  
 
	
  Units

  
  	
  Hours

  
  	
  Fraction

  
  	
  IV/Hour/Person

  
  	
  IV/Hour/Person

  
 
	
  Low

  
  	
  8000

  
  	
  0.02

  
  	
  1.2

  
  	
  3.1

  
 
	
  High

  
  	
  24000

  
  	
  0.08

  
  	
  2.4

  
  	
  6.3

  
 
	
  Run

  
  	
  Factor A

  
  	
  Factor B

  
  	
  Factor C

  
  	
  Factor D

  
 
	
  1

  
  	
  -1

  
  	
  +1

  
  	
  +1

  
  	
  -1

  
  	
  0.79422

  
 
	
  2

  
  	
  -1

  
  	
  +1

  
  	
  -1

  
  	
  +1

  
  	
  0.79934

  
 
	
  3

  
  	
  +1

  
  	
  +1

  
  	
  -1

  
  	
  +1

  
  	
  0.79141

  
 
	
  4

  
  	
  +1

  
  	
  -1

  
  	
  -1

  
  	
  +1

  
  	
  0.76886

  
 
	
  5

  
  	
  -1

  
  	
  +1

  
  	
  -1

  
  	
  -1

  
  	
  0.78686

  
 
	
  6

  
  	
  +1

  
  	
  -1

  
  	
  +1

  
  	
  +1

  
  	
  0.76886

  
 
	
  7

  
  	
  -1

  
  	
  +1

  
  	
  +1

  
  	
  +1

  
  	
  0.81080

  
 
	
  8

  
  	
  +1

  
  	
  +1

  
  	
  -1

  
  	
  -1

  
  	
  0.77906

  
 
	
  9

  
  	
  -1

  
  	
  -1

  
  	
  -1

  
  	
  +1

  
  	
  0.77141

  
 
	
  10

  
  	
  -1

  
  	
  -1

  
  	
  +1

  
  	
  +1

  
  	
  0.78247

  
 
	
  11

  
  	
  +1

  
  	
  -1

  
  	
  -1

  
  	
  -1

  
  	
  0.75685

  
 
	
  12

  
  	
  +1

  
  	
  +1

  
  	
  +1

  
  	
  -1

  
  	
  0.78635

  
 
	
  13

  
  	
  -1

  
  	
  -1

  
  	
  -1

  
  	
  -1

  
  	
  0.78247

  
 
	
  14

  
  	
  +1

  
  	
  +1

  
  	
  +1

  
  	
  +1

  
  	
  0.78635

  
 
	
  15

  
  	
  +1

  
  	
  -1

  
  	
  +1

  
  	
  -1

  
  	
  0.76393

  
 
	
  16

  
  	
  -1

  
  	
  -1

  
  	
  +1

  
  	
  -1

  
  	
  0.75936

  
 




Table 4. Values for the medication
delivery error parameters in the experimental design and formation and results
of the medication delivery error experimental design


For the complete experimental design, we
ran a total of 16 simulations (four factors at two levels). Table 4 contains
each run formation and the average of the medication delivery error for each
run. From the contrast constants for the 24 design, the 15 factorial
effects and the sum of squares are estimated and shown in Table 5. The
half-normal probability plot of these effects is shown in Figure 8. All of the
effects that lie along the line are negligible, whereas the large effects are
far from the line. The significant effects based on this analysis are the main
effects of A, B, D and the ACD interaction. The main effect B is plotted in
Figure 9. Based on the plot related to main effect B, the smaller the
fractional attrition rate the smaller the medication delivery error would be.
Thus, factor B should be chosen 0.02. The optimal settings of the four
parameters are:


Pharmacist new hired average experience=
24000 hours


Pharmacist fractional attrition rate= 0.02 


Productivity of inexperienced pharmacist=
1.2 IV/hour/person


Productivity of experienced pharmacist= 3.1
IV/hour/person







	
  Model Term

  
  	
  Effect Estimate

  
  	
  Sum of Squares

  
  	
  Percent Contribution

  
 
	
  A

  
  	
  -0.0106575

  
  	
  0.000454329

  
  	
  13.62958821

  
 
	
  B

  
  	
  0.0225225

  
  	
  0.002029052

  
  	
  60.87027213

  
 
	
  C

  
  	
  0.0020100

  
  	
  1.61604E-05

  
  	
  0.484801737

  
 
	
  D

  
  	
  0.0088000

  
  	
  0.00030976

  
  	
  9.292603276

  
 
	
  AB

  
  	
  -0.0013550

  
  	
  7.3441E-06

  
  	
  0.220318336

  
 
	
  AC

  
  	
  0.0003175

  
  	
  4.03225E-07

  
  	
  0.012096494

  
 
	
  AD

  
  	
  -0.0014775

  
  	
  8.73202E-06

  
  	
  0.261955204

  
 
	
  BC

  
  	
  0.0032525

  
  	
  4.2315E-05

  
  	
  1.269423876

  
 
	
  BD

  
  	
  0.0015525

  
  	
  9.64103E-06

  
  	
  0.289224627

  
 
	
  CD

  
  	
  0.0023550

  
  	
  2.21841E-05

  
  	
  0.665508911

  
 
	
  ABC

  
  	
  -0.0044650

  
  	
  7.97449E-05

  
  	
  2.392296355

  
 
	
  ABD

  
  	
  -0.0027000

  
  	
  2.916E-05

  
  	
  0.874781481

  
 
	
  ACD

  
  	
  -0.0072125

  
  	
  0.000208081

  
  	
  6.242286601

  
 
	
  BCD

  
  	
  -0.0044175

  
  	
  7.80572E-05

  
  	
  2.341667177

  
 
	
  ABCD

  
  	
  0.0031000

  
  	
  3.844E-05

  
  	
  1.153175587

  
 




Table 5. Medication delivery error
factor effect estimates and sums of squares







	
  Source of Variation

  
  	
  Sum of Squares

  
  	
  Degrees of Freedom

  
  	
  Mean Square

  
  	
  F Value

  
  	
  P-Value

  
 
	
  A

  
  	
  0.000454329

  
  	
  1

  
  	
  0.000454329

  
  	
  11.17063281

  
  	
  0.0124

  
 
	
  B

  
  	
  0.002029052

  
  	
  1

  
  	
  0.002029052

  
  	
  49.88848148

  
  	
  0.0002

  
 
	
  C

  
  	
  1.61604E-05

  
  	
  1

  
  	
  1.61604E-05

  
  	
  0.397337183

  
  	
  0.5485

  
 
	
  D

  
  	
  0.00030976

  
  	
  1

  
  	
  0.00030976

  
  	
  7.616096499

  
  	
  0.0281

  
 
	
  AC

  
  	
  4.03225E-07

  
  	
  1

  
  	
  4.03225E-07

  
  	
  0.009914129

  
  	
  0.9235

  
 
	
  AD

  
  	
  8.73202E-06

  
  	
  1

  
  	
  8.73202E-06

  
  	
  0.21469507

  
  	
  0.6572

  
 
	
  CD

  
  	
  2.21841E-05

  
  	
  1

  
  	
  2.21841E-05

  
  	
  0.545442428

  
  	
  0.4842

  
 
	
  ACD

  
  	
  0.000208081

  
  	
  1

  
  	
  0.000208081

  
  	
  5.116096719

  
  	
  0.0582

  
 
	
  Error

  
  	
  0.000284702

  
  	
  7

  
  	
  4.06718E-05

  
  	
   

  
  	
   

  
 
	
  Total

  
  	
  0.003333404

  
  	
  15

  
  	
   

  
  	
   

  
  	
   

  
 




Table 6. Analysis of variance for the
medication delivery error 





Figure 8. Half-normal probability plot
of the medication delivery error effects 





Figure 9. Main effect of the attrition
rate versus medication delivery error plot



4.2    
Bullwhip effect analysis and discussion


To check if the bullwhip effect occurs in
the modelled service supply chains a pulse has been imposed to the patient
demand at time 70. The chosen duration of the pulse is 80 hours. The pulse is
added to the minimum, maximum and mean values of the random normal
distribution. Thus, the formula of the patient demand is now:


RANDOM NORMAL (1 + PULSE (70, 80), 5 +
PULSE (70, 80), 2.5 + PULSE (70, 80), 0.5, 0.5)


To begin our analysis, consider Figure 10
which shows the patient demand as well as the processing rates for the four
stages in ER. The phase lags, which show the delay from one stage to the next
one, can be clearly seen. The same effect happens for the backlogs (see Figure
11). However, by looking at the variances of the processing rates and backlogs,
the evidence for the bullwhip effect is unclear. We can justify this phenomenon
using the four major root causes of the bullwhip effect proposed by Lee et al.
(1997). The four root causes are demand signalling, order batching, price
fluctuation, and rationing and shortage gaming. However, because of the intangible
nature of the services and the fact that finished goods inventories cannot be
used as a buffer against demand fluctuations, it is unlikely that demand
signalling will be an important root cause of amplification effects in all the
service supply chains. In the case of CH, among the four stages of the ER,
there is no special room for demand forecasting. The same number of patients
who enter the ER and go through the registration will pass the other stages.
Also, because of the intangibility of services, order batching cannot be a root
cause of amplification effects in service operations. Price fluctuation may be
a root cause of the bullwhip effect in some service supply chains. However, in
this case it certainly cannot be a cause. People go to the ER when they are in
a serious need. They cannot forward buy the ER services in the case of the
price fluctuations. In fact, ER services are not offered at discount prices to
attract customers in anticipation of periods of reduced demand. Service
operations offer no obvious examples of shortage gaming, but when buying
certain services customers, may apply rationing practices. However, because of
the unpredictable nature of the need for ER services, this is not true for the
ER. Thus, none of the four root causes of the bullwhip effect can be a cause
for the ER services. Furthermore, there is a good level of communication
between all the stages in ER. The four stages almost face the same level of
fluctuations.





Figure 10. ER’s demand and processing
rates





Figure 11. ER’s backlogs


The same results are true for the pharmacy
processing rates and backlogs (see Figures 12 and 13). However, it should be noted that the type of service supply chains
modelled in this paper, are internal service supply chains, representing only
the tasks which are done inside the pharmacy and the ER of a hospital. To
observe the bullwhip effect in a healthcare service supply chains, one
should consider and study the whole supply chain from downstream to upstream. For example, the service supply chain may involve the
hospital as one stage along with the insurance company and other related firms
as other stages. 





Figure 12. Pharmacy’s demand and
processing rates





Figure 13. Pharmacy’s backlogs



5     
Conclusions


This paper models and simulates the processes
of two internal service supply chains of a hospital to study the effects of
different input parameters on the outputs and capability measures of the
processes. This study can help the hospital improve processes, reduce errors,
and deliver more efficient services. The paper focuses on medication delivery
errors and amplification effects of demand.


According to the results of this study, the
following managerial policies are suggested to reduce medication delivery
errors of the hospital:


Hiring employees with more average
experiences can reduce medication delivery errors.


Decreasing the fractional attrition rate,
which means having more experienced employees for a longer time in the
pharmacy, can reduce medication delivery errors.


There is a trade-off between the
productivity of the employees and medication delivery errors. Increasing the
productivity could increase the errors. The task of assembling the medications
needs accuracy. Therefore, the manager should try not to allow the productivity
to increase more than a certain level.


Another result from this study is that the
bullwhip effect may not occur in a hospital’s pharmacy and ER service supply
chains. It should be noted that the type of service supply chains modelled in
this paper are internal service supply chains, representing only the tasks
which are done inside the pharmacy and the ER of a hospital. To observe the
bullwhip effect, one should consider and study the whole supply chain from
downstream to upstream because the bullwhip effect indicates that variations
are amplified as one moves from downstream to upstream in the supply chain.
Therefore the chains should be modelled more generally to observe the bullwhip
effect in healthcare service supply chains. For example, the service supply
chain may involve the hospital as one stage along with the insurance company
and other related firms as other stages. In this case the bullwhip effect may
be observed. It is observed that the four root causes mentioned by Lee et al.
(1997) are not valid in the case of the pharmacy and ER service supply chains.
Another reason that the bullwhip effect does not occur is the good level of
communication between the stages in the pharmacy and ER service supply chains. 



6     
Future research


As noted before, the type of service supply
chains modelled in this paper, are small service supply chains, representing
only the tasks which are done inside the pharmacy and the ER of a hospital. To
better observe the bullwhip effect in healthcare service supply chains, the
chains should be modelled more generally. Thus modelling the hospital as a
stage in healthcare service supply chains along with the insurance company and
other related firms is recommended. Also analyzing the relationships between
medication delivery errors and variability of backlogs and capacities is a good
direction for future research. The impact of medication delivery errors on
bullwhip effect is not considered in this paper. Modelling hospital’s service
supply chain in a way to show the relationships between medication delivery
errors and the backlog and capacity variations is recommended. 
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