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Abstract:

Purpose: This study examines the quick switching sampling (QSS) system. This well-established sampling 
scheme incorporates two single sampling plans (SSPs) with adaptive transition rules between normal and 
tightened  inspections.  The  QSS  system  dynamically  adjusts  inspection  stringency  in  response  to 
fluctuations in product quality, implementing normal inspection when quality meets satisfactory standards, 
and tightened inspection when quality deterioration is detected.

Design/methodology/approach: Traditional acceptance sampling plans often evaluate product quality 
based  on process  yield,  which overlooks  subtle  variations  within  specification limits.  To address  this 
limitation, a novel performance metric, the process loss index Le, was developed to quantify quality loss. 
This index is calculated as the ratio of  expected quadratic loss to the square of  half  the specification width. 
Utilizing  this  index,  two  models  of  QSS  sampling  schemes  were  constructed  by  solving  nonlinear 
optimization mathematical models and evaluated using general metrics. The efficacy and characteristics of 
these schemes were investigated, compared, and discussed. 

Findings:  The results highlight the potential of  QSS systems to enhance the effectiveness of  quality 
control while maintaining stringent quality standards. Besides, the proposed plan demonstrates superiority 
over  the  conventional  plan  in  terms  of  adaptability,  particularly  with  sample  size  adjustments,  when 
switching to a stricter inspection plan in response to deteriorating lot quality and improved efficiency. 

Originality/value: This study presents a novel approach to quality control by integrating the process loss 
index into the QSS system, offering a fresh perspective on sampling methodologies. The integration of 
QSS with the process loss index Le marks a significant contribution to the field of  quality control, enabling 
more nuanced evaluations of  product quality and providing a groundbreaking framework for optimizing 
quality control processes while minimizing sample sizes, thereby enhancing efficiency and effectiveness.
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1. Introduction
The advent of  rapid technological  advancements has necessitated that industries prioritize quality control and 
performance optimization to maintain competitiveness. Empirical evidence suggests that consistency in production 
and adherence to stringent quality standards are crucial determinants of  customer satisfaction and market success. 
Acceptance sampling plans, as a statistical quality control tool, play a vital role in ensuring product reliability and 
facilitating  data-driven  decision-making.  By  leveraging  these  plans,  organizations  can  identify  areas  for 
improvement,  reduce  variability,  and  enhance  the  overall  quality  of  their  products.  Furthermore,  acceptance 
sampling plans provide valuable insights into quality history and process control, enabling organizations to refine 
their  quality  control  protocols  and  drive  innovation.  Ultimately,  the  effective  implementation  of  acceptance 
sampling plans can lead to enhanced customer satisfaction, reduced costs, and improved competitiveness in the 
market (Wu, Darmawan & Liu, 2025; Wu & Darmawan, 2025). 

The  primary  objective  of  a  sampling  plan  is  to  provide  decision-makers  with  a  structured  framework  for  
determining the disposition of  product lots based on predefined quality and risk criteria. The efficacy of  a sampling 
plan can be assessed utilizing the operational characteristic (OC) curve and average sample number (ASN). The OC 
curve illustrates the probability of  acceptance across varying quality levels, thereby demonstrating a sampling plan’s 
discriminatory capability.  A steeper OC curve indicates superior discriminatory power, enabling more accurate 
differentiation between acceptable and unacceptable product lots. Furthermore, a sampling system can comprise 
multiple plans with switching rules, allowing for the tracking of  inspection history and optimization of  sampling 
plan effectiveness. These switching rules facilitate adaptive inspection protocols, where normal inspection plans are 
employed for products exhibiting excellent quality, while tightened inspection plans are implemented in response to 
significant declines in product quality. By integrating multiple sampling plans with switching rules, organizations can 
enhance  the  precision  and  efficiency  of  their  quality  control  processes,  ultimately  ensuring  the  delivery  of 
high-quality  products  that  meet  stringent  quality  standards.  This  approach  enables  organizations  to  respond 
dynamically to changes in product quality, thereby minimizing the risk of  defective products.

The normal-tightened-normal sampling scheme, commonly referred to as quick switching systems (QSS), is a type 
of  sampling system that dynamically adjusts inspection stringency in response to fluctuations in product quality. 
The genesis of  this quick sampling scheme can be attributed to MIL-STD-105D, with seminal contributions from 
Dodge  (1967).  Hald  and Thyregod (1965)  proposed normal  and tightened sampling  inspection by  attributes. 
Romboski (1966) conducted an in-depth analysis of  the system’s properties utilizing two distinct process models 
(QSS(n, cN, cT)) and subsequently proposed key recommendations for effective implementation. Soundararajan and 
Arumainayagam (1990) further expanded on this concept by developing some enhanced modifications of  QSS that 
incorporated master tables. Subsequent research by Govindaraju and Ganesalingam (1998) introduced a two-plan 
sampling  system with  a  zero  acceptance  number  for  inspection,  which  required  a  smaller  sample  size  while 
maintaining discrimination power. 

Soundararajan and Palanivel (2000) developed a variable quick switching sampling technique (VQSS) for quality 
characteristics evaluated by shifted inspection. Known as the QSVSS system, this scheme has been developed for 
quality characteristics with double specification limits and normal distributed data. This technique use same sample 
size  n for both normal and tightened inspections, with distinct critical values (kT and kN). Balamurali and Usha 
(2012) formulated VQSS by using dual specification limits. Balamurali and Usha (2014) established and enlarged a 
comparable VQSS scheme by including capability indicators into the model, hence augmenting its efficacy and 
application across an additional spectrum of  industrial contexts.

As research on sampling plans incorporating capability indices continued to evolve, the VQSS scheme was further 
developed to integrate various capability indices. Notably, Liu and Wu (2016) incorporated the Spk index into VQSS, 
while Wu, Lee, Liu and Shih (2017) proposed two VQSS variants ((n; kN, kT) and (nN, nT; k)) utilizing the Cpk index. 
Balamurali and Usha (2017a) developed VQSS(n; kN, kT) with consideration of  process loss functions. In addition, 
Balamurali and Usha (2017b) have  contributed to this area by integrating the  Cpmk index into VQSS(n; kN,  kT), 
demonstrating the ongoing evolution of  this methodology. These pioneering studies have laid the groundwork for 
the development of  more sophisticated QSS schemes, enabling organizations to optimize their quality control 
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processes and respond adaptively to changes in product quality. By leveraging these advanced sampling schemes, 
organizations can enhance the efficacy of  their quality control protocols.

Significant  research  has  been  conducted  in  recent  years  to  advance  VQSS from many  viewpoints,  including 
contributions from Wang, Wu and Jhu (2021), Wang (2022), Wang and Shu (2023), Liu, Wang and Wang (2023), 
Wu, Shu, Wang and Chen (2024), Wang, Wu and Wang (2025), and Wang and Wu (2025). Mostly, VQSS often rely 
on process yield and high yield to evaluate product quality, but this approach does not account for variations within 
specification limits. The process loss index (Le) offers a more nuanced assessment of  process performance by 
considering the quality loss function. Balamurali and Usha (2017a) have developed the VQSS model for a single 
sample size and two critical values (n; kN,  kT), considering process loss functions. Therefore, this study aims to 
create two primary types of  VQSS for double sample size and single critical value ((nN, nT; k) and (nN, mnN; k)) that 
utilize the Le index, and to further explore, analyze, and contrast their behavior and effectiveness. 

The subsequent sections of  this work are organized as follows. Section 2 delineates the process loss index and 
examines  the  statistical  characteristics  of  its  estimator.  Section  3  delineates  the  operating  mechanism of  the 
proposed scheme, encompassing the OC and ASN functions, along with a mathematical model for ascertaining 
plan parameters. Section 4 presents a comprehensive analysis and discussion of  plan parameters under various 
scenarios,  followed  by  a  comparative  examination  of  the  devised  sample  methods  and  a  case  study  that 
demonstrates the applicability and viability of  the proposed sampling strategy. Ultimately, Section 5 culminates this 
investigation by encapsulating the principal results and conclusions.

2. Process Loss Index (Le)
The process performance evaluation often relies on the yield index as a primary measure, which indicates the 
percentage of  products that meet specifications. However, this index has a limitation in distinguishing between 
products  that  fall  within  different  specification  limits.  To address  this  limitation,  a  quadratic  loss  function  is 
frequently employed to identify products within the limits, penalizing deviations from the target value. The concept 
of  applying loss functions to quality improvement was first introduced by Hsiang and Taguchi (1985), focusing on 
reducing variation around the target value. Nevertheless, relying solely on a quadratic loss function fails to compare 
performance with specification limits due to its dependence on the unit of  the quality characteristic. 

Johnson (1992) subsequently introduced the notion of  relative expected squared error loss (Le) for scenarios with 
symmetric tolerance, evaluating process capability in terms of  quality loss. Tsui (1997) further refined the process 
loss index Le by introducing two sub-indices, Lpe and Lot, which enable the assessment of  potential relative expected 
loss and relative off-target squared deviation, respectively. The mathematical representation of  this relationship is 
given by:

(1)

The probability density function of  the measured characteristic  X,  denoted by  f(x),  is a critical component in 
evaluating process capability, where the process mean (µ) and standard deviation (σ) play pivotal roles. The target 
value of  the quality characteristic is represented by T, and the half-length of  the specification interval, defined by 
the upper and lower specification limits (USL and  LSL), is denoted by  d = (USL –  LSL)/2. This formulation 
enables the derivation of  mathematical relationships, specifically Le = (3Cpm)–2, Lpe = (3Cp)–2 and Lot = (1 – Ca)2, can 
be formulated, where Cp = d/(3σ), Cpm = d/{3[σ2 + (μ – T)2]1/2}, and Ca = 1–|μ – T|/d. These are rooted in three 
fundamental capability indices previously established by Kane (1986), Chan, Cheng and Spiring (1988), and Pearn, 
Kotz and Johnson (1992), respectively. Furthermore, the Le index has been extensively built upon in recent decades, 
with notable contributions from researchers such as Pearn, Chang and Wu (2004), Pearn, Chang and Wu (2006), 
Yen  and Chang (2009), Aslam,  Yen  and Jun (2011), Wu  and Shu (2011), Aslam,  Yen, Chang, Jun, Ahmad  and 
Rasool (2012),  Aslam,  Yen,  Chang  and Jun (2013),  Aslam,  Yen,  Chang  and Jun (2014),  Balamurali  and Usha 
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(2017b), Erfanian and Gildeh (2021), Darmawan, Wu, Wang and Chiang (2025), Darmawan and Wu (2025), and 
Darmawan, Bahri, Amar, Do-Bagus and Tahir (2025). 

Pearn et al. (2006) established a framework for evaluating process performance based on the Le index, categorizing 
it into five distinct levels. According to this framework, a process with a  Le value of  0.11 or higher is deemed 
“inadequate,” indicating a need for adjustment in the process mean or reduction in process variation to achieve 
improvement. Processes with  Le values between 0.06 and 0.11 are considered “capable,” suggesting that quality 
managers should implement stringent quality control measures.  Le value between 0.05 and 0.06 is classified as 
“satisfactory,” while values ranging from 0.03 to 0.05 indicate an “excellent” quality condition, where no immediate 
quality improvement is necessary. The highest level of  process performance is achieved when the Le value is 0.03 or 
less, categorized as “super,” signifying exceptional process capability.

The  Le index is typically unknown in practice due to the presence of  two commonly unknown parameters, the 
process mean (μ) and standard deviation (σ). To overcome this challenge, Pearn et al. (2004) proposed a statistical 
estimator for the Le index, enabling practitioners to estimate process capability with greater accuracy.

(2)

With  and  being the maximum likelihood estimates of  μ and σ2, respectively, 
which were calculated based on the data observation.

Then, 

(3)

Under normality situation,  L̂ e has a non-central  chi-squared distribution with  n  degrees of  freedom and non-
centrality parameter , i.e.,  (Pearn et al., 2006). Notably, δ = 0 implies the 
process  mean is  at  the  target  value.  Therefore,  the  L̂ e’s  cumulative  distribution  function  (CDF)  can  then  be 
represented as

(4)

3. Proposed Model of  VQSS Based on the Process Loss Index (Le)
In this study, the VQSS framework comprises two single-sampling plans (VSSPs) — one for normal inspection and 
one  for  tightened  inspection  — with  predefined  switching  rules  between  them.  Two  principal  variants  are 
considered: VQSS: VQSS(nN, nT; k) and VQSS(nN, nT = mnN; k). The first variant utilizes distinct sample sizes (nN 

and  nT) for normal and tightened inspections, respectively, while maintaining a common critical threshold  k. By 
contrast, the second variant employs a single base sample size for normal inspection and a tightened inspection 
sample size by a factor m.

3.1. VQSS(nN, nT; k)

Under the assumption that the quality attribute follows a normal distribution with two-sided specification limits, 
Figure 1 presents the flow chart for implementing VQSS(nN, nT; k) based on the estimated Process Loss Index (Lₑ). 
The following steps summarize the operational procedure depicted in the flow chart (Figure 1).
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Specify producer’s risk (α) and consumer’s risk (β). Define the acceptable quality level (lAQL) and the rejectable 
quality level (lRQL). Determine the critical value k based on the sampling distribution of  the estimated Process Loss 
Index and the chosen risks (α and β) and the sample size (nN and nT).

1. Normal Inspection:

a) Draw a sample size of  nN items from the lot and employing a critical value of  k for lot sentencing.

b) Measure each unit and compute the sample statistics (X̅  and Sn
2) needed to estimate the Process Loss 

Index (L̂ e). 

c) Compare the estimate to the critical threshold k: If  L̂ e ≤ k, accept the lot. If  L̂ e > k, reject the lot, and 
switch to Tightened Inspection for the next lot.

2. Tightened Inspection:

a) Draw a sample size of  nT items from the lot and employing a critical value of  k for lot sentencing.

b) Recalculate the estimated Process Loss Index (L̂ e) using the new measured data. 

c) If   L̂ e ≤ k, accept the lot and back to Normal Inspection for the next lot. If   L̂ e > k, reject the lot and 
proceed with Tightened Inspection for the next lot or halt production if  quality deterioration persists.

Figure 1. Flow chart of  VQSS(nN, nT; k).
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Applying Romboski’s (1966) AQSS framework, the lot acceptance probability  PI(Le)-or the OC function for the 
VQSS(nN, nT; k) plan based on the process loss index Le is defined as:

(5)

(6)

To satisfy both producer’s and consumer’s risk requirements, the OC function must attain the values (lAQL, 1 – α) 
and (lRQL, β). Imposing these two-point condition on the above expression (Equations (5) and (6)) yields: 

(7)

(8)

Because VQSS employs two inspection modes with distinct sample sizes, the Average Sample Number (ASN)—the 
expected count of  inspected units before a decision—is a more appropriate performance metric. The ASN is given 
by:

(9)

Determining the plan parameters (nN,  nT,  k) requires solving the two-point OC equations simultaneously. Since 
multiple parameter sets may satisfy these constraints, the ASN serves as the objective function to be minimized. 
Hence, an optimization model is formulated to identify the combination of  nN, nT, and k that minimizes ASN while 
adhering to the specified producers’ and consumers’ risk levels.

(10)

3.2. VQSS(nN, nT=mnN; k) 

To streamline parameter determination and ease practical implementation, a specialized form of  VQSS(nN,  nT;  k) 
assumes that the tightened-inspection sample size nT is an integer multiple m of  the normal-inspection sample size 
nN (i.e.,  nT = m×nN with m > 1). This variant, denoted VQSS(nN,  nT=mnN;  k), retains the same operational logic, 
acceptance probability function, and mathematical formulation as the general VQSS model. Under this constraint, 
only two parameters (nN and k) must be determined via the optimization procedure.

Moreover, when m = 1, the VQSS(nN, nT=mnN; k) model simplifies to the conventional VSSP; thus, the proposed 
scheme can also be regarded as a generalized extension of  VSSP, broadening its applicability and functionality.
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4. Results and Analysis 
4.1. Determination of  Plan Parameters

To determine the plan parameters of  the VQSS based on the framework established in this study, the sequential  
quadratic programming algorithm was utilized for this purpose using the “fmincon” function provided by MATLAB 
R2019a.

4.1.1. Plan Parameters of  VQSS(nN, nT; k)

To implement VQSS(nT, nN; k), three plan parameters are necessary to be determined concurrently: the sample sizes 
for tightened inspection (nT) and normal inspection (nN), along with the critical value (k). Table 1 presents the plan 
parameters for VQSS(nN,  nT;  k) under various combinations that can be used by practitioners to carry out the 
two-plan sampling system. For example, if  the producer and the consumer have predetermined the conditions of 
(lAQL, lRQL) = (0.03, 0.05) and (α, β) = (0.10, 0.05), plan parameters (nN, nT; k) = (25, 164, 0.0406) can be obtained 
from Table 1. This means that 25 samples should be taken under normal inspection and 164 samples should be 
taken under tightened inspection, with a critical value of  0.0406. Afterward, the  L̂ e can be calculated to decide 
whether to accept or reject the inspected lot. If  L̂ e exceeds the critical value k = 0.0416, the lot will be rejected; 
otherwise, it will be accepted. Moreover, if  the lot is rejected under normal inspection, the inspection system has to 
be  switched to tightened inspection.  However,  when the  lot  is  accepted during  tightened inspection,  normal 
inspection must be carried out for the next submitted lot to ensure the quality of  the delivered products.

α β

lAQL = 0.03,
lRQL = 0.04

lAQL = 0.03,
lRQL = 0.05

lAQL = 0.04,
lRQL = 0.06

lAQL = 0.06,
lRQL = 0.11

nN nT k nN nT k nN nT k nN nT k

0.010

0.010 178 4190 0.0379 53 1319 0.0453 86 2101 0.0555 36 934 0.0978

0.050 166 3155 0.0382 49 994 0.0460 80 1583 0.0562 34 704 0.0995

0.100 159 2600 0.0384 47 821 0.0464 77 1306 0.0566 32 582 0.1005

0.050

0.010 130 1280 0.0363 39 410 0.0419 63 648 0.0522 27 292 0.0891

0.050 114 898 0.0367 34 288 0.0428 55 454 0.0531 23 205 0.0913

0.100 105 705 0.0370 31 227 0.0434 51 357 0.0537 21 162 0.0928

0.100

0.010 103 750 0.0352 30 243 0.0397 50 381 0.0500 21 74 0.083

0.050 86 505 0.0357 25 164 0.0406 42 257 0.0510 18 117 0.0858

0.100 77 387 0.0360 23 126 0.0413 37 197 0.0517 16 90 0.0875

Table 1. Plan parameters of  VQSS(nN, nT; k)

4.1.2. Plan Parameters of  VQSS(nN, nT=mnN; k) 

To simplify the determination of  necessary parameters and implementation of  VQSS in practical scenarios, an 
alternative type of  VQSS(nN, nT; k) is proposed. This type assumes that the sample size for tightened inspection (nT) 
is equal to  m times of  the sample size for normal inspection (nN),  represented as  m× nN,  where  m > 1. It is 
important to note that when m = 1, VQSS and VSSP are identical. The solved plan parameters for the VQSS(nN, 
nT = mnN;  k) under various conditions are provided in Tables 2-5, with m values of  1.5, 2.0, 2.5, and 3.0. These 
results offer practical guidance for practitioners and simplify the implementation of  VQSS in their inspection 
processes.

For instance, if  a contract specifies conditions such as (lAQL, lRQL) = (0.04, 0.06), (α, β) = (0.05, 0.10), and m = 1.5, 
then plan parameters (nN, nT; k) = (86, 129, 0.0504) can be obtained by referring to Table 2. This indicates that 129 
samples must be collected under tightened inspection, whereas 86 samples are required to be taken under normal 
inspection. Then, L̂ e can be calculated based on the collected samples and compared with the critical value for lot 
sentencing. If  L̂ e > 0.0504, the lot is rejected; otherwise, if  L̂ e ≤ 0.0504, the lot is accepted. 
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α β

lAQL = 0.03,
lRQL = 0.04

lAQL = 0.03,
lRQL = 0.05

lAQL = 0.04,
lRQL = 0.06

lAQL = 0.06,
lRQL = 0.11

nN nT k nN nT k nN nT k nN nT k

0.010

0.010 428 642 0.0350 135 203 0.0391 215 322 0.0495 96 144 0.0820

0.050 319 479 0.0358 100 150 0.0408 159 239 0.0512 71 106 0.0860

0.100 268 402 0.0364 83 125 0.0419 133 200 0.0523 59 88 0.0888

0.050

0.010 304 456 0.0341 98 146 0.0374 154 231 0.0477 70 104 0.0775

0.050 214 321 0.0349 68 102 0.0389 108 161 0.0493 48 72 0.0813

0.100 173 259 0.0355 54 81 0.0400 86 129 0.0504 39 58 0.0840

0.100

0.010 246 369 0.0334 80 119 0.0361 125 188 0.0465 57 86 0.0745

0.050 166 249 0.0342 53 80 0.0375 84 126 0.0480 38 57 0.0779

0.100 130 194 0.0348 41 62 0.0386 65 98 0.0490 30 44 0.0805

Table 2. Plan parameters of  VQSS(nN, nT; k) under m = 1.5

α β

lAQL = 0.03,
lRQL = 0.04

lAQL = 0.03,
lRQL = 0.05

lAQL = 0.04,
lRQL = 0.06

lAQL = 0.06,
lRQL = 0.11

nN nT k nN nT k nN nT k nN nT k

0.010

0.010 375 750 0.0353 118 235 0.0398 188 375 0.0502 84 167 0.0837

0.050 288 575 0.0361 89 178 0.0414 143 286 0.0518 63 126 0.0877

0.100 246 492 0.0366 76 151 0.0425 122 243 0.0529 53 106 0.0904

0.050

0.010 259 518 0.0344 83 165 0.0380 131 261 0.0484 59 117 0.0791

0.050 187 374 0.0352 59 118 0.0395 94 187 0.0500 42 83 0.0829

0.100 154 308 0.0358 48 96 0.0406 77 153 0.0511 34 68 0.0856

0.100

0.010 205 409 0.0337 66 131 0.0367 104 207 0.0471 47 94 0.0758

0.050 142 283 0.0345 45 90 0.0381 71 142 0.0485 32 64 0.0793

0.100 113 225 0.0351 36 71 0.0392 57 113 0.0496 25 50 0.0818

Table 3. Plan parameters of  VQSS(nN, nT; k) under m = 2.0

α β

lAQL = 0.03,
lRQL = 0.04

lAQL = 0.03,
lRQL = 0.05

lAQL = 0.04,
lRQL = 0.06

lAQL = 0.06,
lRQL = 0.11

nN nT k nN nT k nN nT k nN nT k

0.010

0.010 342 854 0.0356 107 266 0.0404 171 426 0.0508 75 188 0.0851

0.050 267 667 0.0364 83 206 0.0419 133 331 0.0523 58 144 0.0890

0.100 231 578 0.0369 71 177 0.0430 114 285 0.0533 50 124 0.0916

0.050

0.010 231 577 0.0347 73 182 0.0385 116 289 0.0489 52 129 0.0804

0.050 170 425 0.0355 53 133 0.0400 85 212 0.0505 38 94 0.0842

0.100 142 354 0.0360 44 110 0.0411 71 176 0.0515 31 77 0.0868

0.100

0.010 179 447 0.0340 57 142 0.0371 90 225 0.0475 41 102 0.0769

0.050 126 315 0.0348 40 99 0.0386 63 158 0.0490 28 70 0.0804

0.100 102 254 0.0353 32 79 0.0396 51 127 0.0501 23 56 0.0830

Table 4. Plan parameters of  VQSS(nN, nT; k) under m = 2.5
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α β

lAQL = 0.03,
lRQL = 0.04

lAQL = 0.03,
lRQL = 0.05

lAQL = 0.04,
lRQL = 0.06

lAQL = 0.06,
lRQL = 0.11

nN nT k nN nT k nN nT k nN nT k

0.010

0.010 318 953 0.0358 99 296 0.0408 158 474 0.0512 70 208 0.0862

0.050 252 756 0.0366 78 232 0.0423 125 374 0.0527 55 163 0.0900

0.100 221 661 0.0370 67 201 0.0433 109 326 0.0537 47 141 0.0925

0.050

0.010 211 633 0.0349 67 199 0.0389 106 317 0.0493 47 141 0.0814

0.050 158 474 0.0357 49 147 0.0405 79 236 0.0509 35 104 0.0852

0.100 134 400 0.0362 41 123 0.0415 66 198 0.0519 29 86 0.0878

0.100

0.010 161 483 0.0342 51 153 0.0375 81 243 0.0479 37 109 0.0778

0.050 116 346 0.0349 36 108 0.0389 58 173 0.0494 26 76 0.0814

0.100 94 282 0.0355 29 87 0.0400 47 140 0.0504 21 62 0.0839

Table 5. Plan parameters of  VQSS(nN, nT; k) under m = 3.0

4.2. Operating Characteristics (OC) Curve

In this section, we assess and compare the performance of  the proposed VQSS and VSSP by examining the OC 
and ASN curves. Initially, we conduct a performance comparison of  the two types of  VQSS and VSSP using the 
OC curve. 

The Operating Characteristic (OC) curve illustrates the performance of  a sampling plan’s acceptance probability 
(y-axis) across various quality levels (z-axis). A steeper OC curve slope indicates better discriminatory power. The 
Operating Characteristic (OC) curve behavior of  the proposed Variable Quick Switching Sampling (VQSS) system 
is further investigated. This system combines two sampling plans: the Normal-VSS plan with (nN, k) = (41, 0.0415) 
and the Tightened-VSS plan with (nT, k) = (123, 0.0415). The OC curves of  these plans and the VQSS system are 
compared in Figure 2. When the submitted lot’s quality is poor (above the critical value  k = 0.0415), the VQSS 
system’s OC curve closely resembles the Tightened-VSS plan’s curve. Conversely, as the lot’s quality improves, the 
VQSS  system’s  OC  curve  approaches  the  Normal-VSS  plan’s  curve.  This  demonstrates  the  VQSS  system’s 
flexibility in selecting the appropriate inspection based on the actual quality level, while maintaining discriminatory 
power. The VQSS system adapts to changing quality levels, making it a robust and efficient sampling system. By 
leveraging this flexibility,  the VQSS system can provide effective quality control while minimizing unnecessary 
inspections.
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Figure 2. The OC curves of  Normal-VSS plans, Tightened-VSS plans, and the VQSS system
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Figure 3 and 4 compares the OC curves of  the Variable Single Sampling (VSSP) plan and the Variable Quick 
Switching Sampling (VQSS) system, both based on process loss index, under specific conditions: (lAQL, lRQL) = (0.03, 
0.05) with (α, β) = (0.05, 0.05) and (α, β) = (0.10, 0.05). As shown in Figures 3 and 4, both OC curves pass through the 
designated points (lAQL, 1 - α) and (lRQL, β), meeting the required conditions. 
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Figure 3. The OC curves of  the VSSP, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, VQSS(nN, nT; k), and (lAQL, lRQL) = (0.03, 0.05)

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
L
e
 Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

il
it

y 
of

 A
cc

ep
ta

nc
e

VSSP
VQSS (n

N
, mn

N
; k) with m=2.0

VQSS (n
N

, mn
N

; k) with m=3.0

VQSS (n
N

, n
T

; k)

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
L
e
 Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
ab

il
it

y 
of

 A
cc

ep
ta

nc
e

VSSP
VQSS (n

N
, mn

N
; k) with m=2.0

VQSS (n
N

, mn
N

; k) with m=3.0

VQSS (n
N

, n
T

; k)

(a) (α, β) = (0.05, 0.05) (b) (α, β) = (0.10, 0.05)

Figure 4. The OC curves of  the VSSP, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, VQSS(nN, nT; k), and (lAQL, lRQL) = (0.06, 0.11)

Notably, the VQSS system’s OC curve exhibits a shape closer to the ideal OC curve, demonstrating its superior 
discriminatory power compared to the VSS plan. This suggests the VQSS system can more effectively distinguish 
between  acceptable  and  unacceptable  quality  levels.  The  figures  indicate  that  for  the  VQSS  system  with 
parameters VQSS(nN, nT = mnN; k), increasing the value of  m leads to a steeper OC curve slope, which translates 
to improved discriminatory power. In other words, larger values of  m enhance the system’s ability to distinguish 
between high- and low-quality lots. 

4.3. Average Sample Number (ASN)

Another general measurement system, we generate the ASN curves for VSSP and the two types of  VQSS to 
evaluate their sampling efficiency from an economic standpoint. Figures 5-6 present the ASN curves for VSSP, 
VQSS(nN, nT; k), VQSS(nN, nT=mnN; k) with different m values (m = 2, 3), and risk levels (α, β) = (0.05, 0.05), (0.10, 
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0.05), quality levels (lAQL, lRQL) = (0.03, 0.05) and (0.06, 0.11). It is evident that VSSP and VQSS(nN, nT=mnN; k) with 
different m values and VQSS(nN, nT; k) heavily depend on the lot’s quality. When the lot is of  excellent quality, both 
VQSS(nN, nT=mnN; k) (regardless of  the value of  m) and VQSS(nN, nT; k) require a smaller sample size than VSSP. 
In addition, when the lot’s quality is not satisfactory (with a relatively large value of  Le), VQSS(nN, nT=mnN; k) and 
VQSS(nN,  nT;  k) tend to require a larger number of  sample items for inspection as tightened inspection may be 
necessary to ensure the lot’s quality. 
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Figure 5. The ASN curves of  the VSS, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, VQSS(nN, nT; k), under (lAQL, lRQL) = (0.03, 0.05)
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Figure 6. The ASN curves of  the VSS, VQSS(nN, nT=mnN; k) with m = 2.0, 3.0, VQSS(nN, nT; k), under (lAQL, lRQL) = (0.06, 0.11)

4.4. Example Demonstration

The proposed methodology was validated through a case study of  an amplified pressure sensor, sourced from Yen 
and Chang (2009), which is a representative example of  sensors used in electronic device modules. The study 
emphasizes the importance of  precise span control and monitoring in amplified pressure sensors, highlighting the 
need for consistent and reliable performance in these critical components.

The specification limit for this particular case is set at 2.0 ± 0.1 V, which translates to a target value (T) of  2.0, a 
lower specification limit (LSL) of  1.9, and an upper specification limit (USL) of  2.1. According to the agreement, 
the  multiplication  number  sample  size  for  tightened  inspection  (m)  is  assumed  to  be  2.  The  quality  level 
requirements are specified as (lAQL, lRQL) = (0.06, 0.11), while the risk levels are set at (α, β) = (0.01, 0.05).
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1.9422 1.9651 2.0230 1.9712 1.9975 2.0164 1.9927 1.9566

1.9738 1.9541 1.9800 1.9596 1.9811 2.0088 1.9858 1.9677

2.0001 1.9659 1.9955 1.9842 1.9909 1.9829 1.9684 1.9942

1.9897 1.9836 1.9891 1.9608 2.0109 1.9912 2.0077 1.9803

2.0106 1.9885 1.9704 1.9882 1.9689 1.9553 1.9741 1.9825

1.9640 2.0187 1.9616 1.9865 1.9556 1.9817 1.9774 1.9316

1.9841 1.9919 1.9737 1.9958 2.0121 2.0021 1.9665 1.9773

1.9841 1.9570 1.9610 2.0015 1.9750 1.9825 1.9758

Table 6. The submitted lot yielded 63 measurement data points

Figure 7. The histogram plot of  the sample data and the normal probability plot of  the sample data

The plan parameters, which are determined to be (nN, nT; k) = (63, 126; 0.0877), can be ascertained by referencing 
Table 3. Specifically, a random sample of  63 units is selected from the submitted lot, and the measurements are  
compiled and presented in  Table  6.  The distribution of  the sample  data is  illustrated in  Figure 7  through a 
histogram and a probability plot, which yields a sample mean and standard deviation of  X̅  = 1.9814 and S = 0.0188, 
respectively.  Furthermore,  the  Anderson-Darling  normality  test  indicates  that  the  data  conform to  a  normal 
distribution, with a p-value of  0.93584 (Figure 7). The calculated value is then compared to the critical value k. If 
the calculated value is less than or equal to k = 0.0877, the lot is accepted; otherwise, it is rejected. Following the 
outlined operating procedure in Section 3, the lot sentencing is carried out based on the calculation of  L̂ e. In this 
sample, the calculated value  L̂ e is 0.0708, which is less than the critical value  k = 0.0877. Therefore, the lot is 
accepted based on the original sampling plan.

A comparison with traditional variables sampling plans (VSS) reveals that a larger sample size of  n = 84 than the 
VQSS(nN,  nT=mnN;  k) plan is required for inspection, with a critical value of  0.0836. In contrast, the proposed 
VQSS(nN,  nT=mnN;  k) plan can achieve lot sentencing with a smaller sample size of  nN = 63 under identical 
conditions. Moreover, the proposed VQSS(nN, nT; k) plan demonstrates greater efficiency, requiring a sample size of 
only  nN = 34, which is significantly lower than previous models. However, if  product quality deteriorates and a 
switch to tightened inspection is necessary, the sample size would need to be substantially increased to 704 for 
thorough inspection. The proposed VQSS systems, VQSS(nN, nT; k) and VQSS(nN, nT=mnN; k), require adjustments 
to sample sizes when switching plans, which may lead to additional inspection costs if  lot quality declines. However, 
these systems offer valuable insights into lot quality, motivating suppliers to improve product quality and reduce 
potential costs. By providing more information, VQSS variants encourage suppliers to enhance their processes, 
ultimately leading to better quality products and reduced costs. This makes VQSS a beneficial approach for quality 
control and supplier improvement.
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5. Conclusions 
In  today’s  competitive  market  landscape,  businesses  must  prioritize  product  quality  to  meet  the  increasingly 
stringent expectations of  their customers. Traditional acceptance sampling plans often evaluate product quality 
based on process yield, which fails to capture subtle variations within specification limits. To address this limitation, 
the process loss index Le was developed to quantify process performance by accounting for quality loss. This study 
introduces a novel two-plan sampling system, VQSS, which leverages the Le index to dynamically adjust inspection 
stringency in response to fluctuations in product quality. By incorporating both tightened and normal inspection 
protocols, VQSS offers enhanced flexibility compared to conventional single sampling plans (VSSP). Two variants 
of  VQSS were developed and comprehensively evaluated using operating characteristic (OC) and average sample 
number (ASN) curves. The results demonstrate the superiority of  VQSS over VSSP in terms of  adaptability and 
efficiency.  By  adopting  VQSS,  organizations  can  optimize  their  quality  control  processes  and  respond  more 
effectively  to  changes  in  product  quality.  This  study  contributes  to  the  advancement  of  quality  control 
methodologies and provides practical insights for industries seeking to enhance their product quality.

The VQSS of  type (n;  kN,  kT) as developed by Balamurali  and Usha (2017a) emerges as a cost-effective strategy, 
characterized  by  a  substantial  reduction  in  required  sample  size  and  facile  plan  switching  via  critical  value 
adjustments. Notwithstanding this, the proposed method VQSS(nN,  nT;  k) and VQSS(nN,  nT=mnN;  k) offers an 
advantage in terms of  sample size adjustment when switching to a more stringent inspection plan when lot quality 
deteriorates.  In  addition,  these  VQSS variants  provide  supplementary  information  for  lot  quality  assessment, 
incentivizing suppliers to enhance product quality and mitigate potential costs. Each VQSS type offers distinct 
advantages, rendering them suitable for specific scenarios and enabling practitioners to select the most appropriate 
type for their objectives. To facilitate implementation, the study provides comprehensive tables of  plan parameters 
for each VQSS type, accommodating diverse quality conditions and risk combinations. An illustrative example 
demonstrates the practical applicability of  the proposed system, underscoring its potential to inform efficient and 
cost-effective decision-making in lot disposition. Organizations adopting VQSS can optimize their quality control 
processes and adapt to changing product quality requirements. The proposed system offers a valuable framework 
for quality control practitioners seeking to enhance their inspection protocols.
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