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Abstract:

Purpose: This study examines the quick switching sampling (QSS) system. This well-established sampling
scheme incorporates two single sampling plans (SSPs) with adaptive transition rules between normal and
tightened inspections. The QSS system dynamically adjusts inspection stringency in response to
fluctuations in product quality, implementing normal inspection when quality meets satisfactory standards,
and tightened inspection when quality deterioration is detected.

Design/methodology/approach: Traditional acceptance sampling plans often evaluate product quality
based on process yield, which overlooks subtle variations within specification limits. To address this
limitation, a novel performance metric, the process loss index L., was developed to quantify quality loss.
This index is calculated as the ratio of expected quadratic loss to the square of half the specification width.
Utilizing this index, two models of QSS sampling schemes were constructed by solving nonlinear
optimization mathematical models and evaluated using general metrics. The efficacy and characteristics of
these schemes were investigated, compared, and discussed.

Findings: The results highlight the potential of QSS systems to enhance the effectiveness of quality
control while maintaining stringent quality standards. Besides, the proposed plan demonstrates superiority
over the conventional plan in terms of adaptability, particularly with sample size adjustments, when
switching to a stricter inspection plan in response to detetiorating lot quality and improved efficiency.

Originality/value: This study presents a novel approach to quality control by integrating the process loss
index into the QSS system, offering a fresh perspective on sampling methodologies. The integration of
QSS with the process loss index L. marks a significant contribution to the field of quality control, enabling
more nuanced evaluations of product quality and providing a groundbreaking framework for optimizing
quality control processes while minimizing sample sizes, thereby enhancing efficiency and effectiveness.

Keywords: quality control and assurance, normal inspection, process loss index, quick switching rules, tightened
inspection, optimization

To cite this article:
Darmawan, A., Armayfa, A., & Sesa, M. (2026). Developing an integrated optimization inspection scheme with

a flexible sampling mechanism for quality determination based on the process loss index. Journal of Industrial
Engineering and Management, 19(1), 120-134. https://doi.org/10.3926/jiem.9061

-120-


http://www.jiem.org/
https://doi.org/10.3926/jiem.9061
mailto:metisesa13796@gmail.com
mailto:afiraharmayfa@gmail.com
mailto:darmawanarmin@gmail.com
http://www.omniascience.com/
https://orcid.org/0000-0001-6763-6992
https://orcid.org/0009-0009-3874-3612
https://orcid.org/0009-0004-3724-3871

Journal of Industrial Engineering and Management — https://doi.org/10.3926/jiem.9061

1. Introduction

The advent of rapid technological advancements has necessitated that industries prioritize quality control and
performance optimization to maintain competitiveness. Empirical evidence suggests that consistency in production
and adherence to stringent quality standards are crucial determinants of customer satisfaction and matket success.
Acceptance sampling plans, as a statistical quality control tool, play a vital role in ensuring product reliability and
facilitating data-driven decision-making, By leveraging these plans, organizations can identify areas for
improvement, reduce variability, and enhance the overall quality of their products. Furthermore, acceptance
sampling plans provide valuable insights into quality history and process control, enabling organizations to refine
their quality control protocols and drive innovation. Ultimately, the effective implementation of acceptance
sampling plans can lead to enhanced customer satisfaction, reduced costs, and improved competitiveness in the
market (Wu, Darmawan & Liu, 2025; Wu & Darmawan, 2025).

The primary objective of a sampling plan is to provide decision-makers with a structured framework for
determining the disposition of product lots based on predefined quality and risk criteria. The efficacy of a sampling
plan can be assessed utilizing the operational characteristic (OC) curve and average sample number (ASN). The OC
curve illustrates the probability of acceptance across varying quality levels, thereby demonstrating a sampling plan’s
discriminatory capability. A steeper OC curve indicates superior discriminatory power, enabling more accurate
differentiation between acceptable and unacceptable product lots. Furthermore, a sampling system can comprise
multiple plans with switching rules, allowing for the tracking of inspection history and optimization of sampling
plan effectiveness. These switching rules facilitate adaptive inspection protocols, where normal inspection plans are
employed for products exhibiting excellent quality, while tightened inspection plans are implemented in response to
significant declines in product quality. By integrating multiple sampling plans with switching rules, organizations can
enhance the precision and efficiency of their quality control processes, ultimately ensuring the delivery of
high-quality products that meet stringent quality standards. This approach enables organizations to respond
dynamically to changes in product quality, thereby minimizing the risk of defective products.

The normal-tightened-normal sampling scheme, commonly referred to as quick switching systems (QSS), is a type
of sampling system that dynamically adjusts inspection stringency in response to fluctuations in product quality.
The genesis of this quick sampling scheme can be attributed to MIL-STD-105D, with seminal contributions from
Dodge (1967). Hald and Thyregod (1965) proposed normal and tightened sampling inspection by attributes.
Romboski (1966) conducted an in-depth analysis of the system’s properties utilizing two distinct process models
(QSS(n, e, er)) and subsequently proposed key recommendations for effective implementation. Soundararajan and
Arumainayagam (1990) further expanded on this concept by developing some enhanced modifications of QSS that
incorporated master tables. Subsequent research by Govindaraju and Ganesalingam (1998) introduced a two-plan
sampling system with a zero acceptance number for inspection, which required a smaller sample size while
maintaining discrimination power.

Soundararajan and Palanivel (2000) developed a variable quick switching sampling technique (VQSS) for quality
characteristics evaluated by shifted inspection. Known as the QSVSS system, this scheme has been developed for
quality characteristics with double specification limits and normal distributed data. This technique use same sample
size # for both normal and tightened inspections, with distinct critical values (4r and 4x). Balamurali and Usha
(2012) formulated VQSS by using dual specification limits. Balamurali and Usha (2014) established and enlarged a
comparable VQSS scheme by including capability indicators into the model, hence augmenting its efficacy and
application across an additional spectrum of industrial contexts.

As research on sampling plans incorporating capability indices continued to evolve, the VQSS scheme was further
developed to integrate various capability indices. Notably, Liu and Wu (2016) incorporated the Sy index into VQSS,
while Wu, Lee, Liu and Shih (2017) proposed two VQSS variants ((7; £x, £1) and (#, 71; £)) utilizing the Cye index.
Balamurali and Usha (2017a) developed VQSS(#, 4x;, £1) with consideration of process loss functions. In addition,
Balamurali and Usha (2017b) have contributed to this area by integrating the Gy index into VQSS(#; AN, £r),
demonstrating the ongoing evolution of this methodology. These pioneering studies have laid the groundwork for
the development of more sophisticated QSS schemes, enabling organizations to optimize their quality control
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processes and respond adaptively to changes in product quality. By leveraging these advanced sampling schemes,
organizations can enhance the efficacy of their quality control protocols.

Significant research has been conducted in recent years to advance VQSS from many viewpoints, including
contributions from Wang, Wu and Jhu (2021), Wang (2022), Wang and Shu (2023), Liu, Wang and Wang (2023),
Wu, Shu, Wang and Chen (2024), Wang, Wu and Wang (2025), and Wang and Wu (2025). Mostly, VQSS often rely
on process vield and high yield to evaluate product quality, but this approach does not account for variations within
specification limits. The process loss index (L) offers a more nuanced assessment of process performance by
considering the quality loss function. Balamurali and Usha (2017a) have developed the VQSS model for a single
sample size and two critical values (1 £, £r), considering process loss functions. Therefore, this study aims to
create two primary types of VQSS for double sample size and single critical value ((nx, 71; £) and (#x, 7nx; £)) that
utilize the L, index, and to further explore, analyze, and contrast their behavior and effectiveness.

The subsequent sections of this work are organized as follows. Section 2 delineates the process loss index and
examines the statistical characteristics of its estimator. Section 3 delineates the operating mechanism of the
proposed scheme, encompassing the OC and ASN functions, along with a mathematical model for ascertaining
plan parameters. Section 4 presents a comprehensive analysis and discussion of plan parameters under vatious
scenarios, followed by a comparative examination of the devised sample methods and a case study that
demonstrates the applicability and viability of the proposed sampling strategy. Ultimately, Section 5 culminates this
investigation by encapsulating the principal results and conclusions.

2. Process Loss Index (L)

The process performance evaluation often relies on the yield index as a primary measure, which indicates the
percentage of products that meet specifications. However, this index has a limitation in distinguishing between
products that fall within different specification limits. To address this limitation, a quadratic loss function is
frequently employed to identify products within the limits, penalizing deviations from the target value. The concept
of applying loss functions to quality improvement was first introduced by Hsiang and Taguchi (1985), focusing on
reducing variation around the target value. Nevertheless, relying solely on a quadratic loss function fails to compare
performance with specification limits due to its dependence on the unit of the quality characteristic.

Johnson (1992) subsequently introduced the notion of relative expected squared error loss (L) for scenatios with
symmetric tolerance, evaluating process capability in terms of quality loss. Tsui (1997) further refined the process
loss index L, by introducing two sub-indices, I and L,, which enable the assessment of potential relative expected
loss and relative off-target squared deviation, respectively. The mathematical representation of this relationship is
given by:

| =) _ o H(u-1)
L, ‘L[T]f(x)dx‘T |

T
R e

The probability density function of the measured characteristic X, denoted by f{x), is a critical component in
evaluating process capability, where the process mean (1) and standard deviation (o) play pivotal roles. The target
value of the quality characteristic is represented by T, and the half-length of the specification interval, defined by
the upper and lower specification limits (USL and L.SL), is denoted by d = (USL — L.S1.)/2. This formulation
enables the detivation of mathematical relationships, specifically I, = (3G,,) 7, L, = 3C) and L, = (1 — C,)*, can
be formulated, where C, = d/(30), C,, = d/{3[ + (#— T)’]"*}, and C, = 1—|u — T|/d. These are rooted in three
fundamental capability indices previously established by Kane (1986), Chan, Cheng and Spiring (1988), and Pearn,
Kotz and Johnson (1992), respectively. Furthermore, the L, index has been extensively built upon in recent decades,
with notable contributions from researchers such as Pearn, Chang and Wu (2004), Pearn, Chang and Wu (2000),
Yen and Chang (2009), Aslam, Yen and Jun (2011), Wu and Shu (2011), Aslam, Yen, Chang, Jun, Ahmad and
Rasool (2012), Aslam, Yen, Chang and Jun (2013), Aslam, Yen, Chang and Jun (2014), Balamurali and Usha
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(2017b), Erfanian and Gildeh (2021), Darmawan, Wu, Wang and Chiang (2025), Darmawan and Wu (2025), and
Darmawan, Bahri, Amar, Do-Bagus and Tahir (2025).

Pearn et al. (2000) established a framework for evaluating process performance based on the L, index, categorizing
it into five distinct levels. According to this framework, a process with a L, value of 0.11 or higher is deemed
“inadequate,” indicating a need for adjustment in the process mean or reduction in process variation to achieve
improvement. Processes with L, values between 0.06 and 0.11 are considered “capable,” suggesting that quality
managers should implement stringent quality control measures. L, value between 0.05 and 0.06 is classified as
“satisfactory,” while values ranging from 0.03 to 0.05 indicate an “excellent” quality condition, where no immediate
quality improvement is necessary. The highest level of process performance is achieved when the L, value is 0.03 or
less, categorized as “super,” signifying exceptional process capability.

The L, index is typically unknown in practice due to the presence of two commonly unknown parameters, the
process mean () and standard deviation (0). To overcome this challenge, Pearn et al. (2004) proposed a statistical
estimator for the Le index, enabling practitioners to estimate process capability with greater accuracy.

1< S\2
n _ln (Xi—T)z_;;(Xi_X) +(A_’—T)2_S_: ()?—T)Z ©)
e d i d? a

With X = z; X./nand S = z; (X,-X)/n being the maximum likelihood estimates of x# and ¢, respectively,

which were calculated based on the data observation.

Then,
: D Y AR YO S 0%
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Under normality situation, L, has a non-central chi-squared distribution with # degrees of freedom and non-
centrality parameter 8 =né> =n(u~1)" /0% ie, I, ~ I, Z.s/ (n+0) (Pearn et al., 2006). Notably, 8 = 0 implies the
process mean is at the target value. Therefore, the L’ cumulative distribution function (CDF) can then be
represented as

P @

L

e

F (0=Pli, Sy)=P[Z,i,s <

3. Proposed Model of VQSS Based on the Process Loss Index (L)

In this study, the VQSS framework comprises two single-sampling plans (VSSPs) — one for normal inspection and
one for tightened inspection — with predefined switching rules between them. Two principal variants are
considered: VQSS: VQSS(nx, #1; £) and VQSS(nx, nr = mim; £). The first variant utilizes distinct sample sizes (7
and #r) for normal and tightened inspections, respectively, while maintaining a common critical threshold 4. By
contrast, the second variant employs a single base sample size for normal inspection and a tightened inspection
sample size by a factor 7.

3.1. VQSS (1, 1215 k)

Under the assumption that the quality attribute follows a normal distribution with two-sided specification limits,
Figure 1 presents the flow chart for implementing VQSS(#x, #1; £) based on the estimated Process Loss Index (Le).
The following steps summarize the operational procedure depicted in the flow chart (Figure 1).
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Specify producer’s risk (q) and consumer’s risk (f). Define the acceptable quality level (/aqr) and the rejectable
quality level (kqr). Determine the critical value £ based on the sampling distribution of the estimated Process Loss
Index and the chosen risks (¢ and ) and the sample size (#x and 7r).

1. Normal Inspection:
a) Draw a sample size of #x items from the lot and employing a critical value of 4 for lot sentencing;

b) Measure each unit and compute the sample statistics (X and 5,?) needed to estimate the Process Loss
Index (LAe)

¢) Compare the estimate to the critical threshold 4: If LAe < k, accept the lot. If LAL, > k, reject the lot, and
switch to Tightened Inspection for the next lot.

2. Tightened Inspection:
a) Draw a sample size of #r items from the lot and employing a critical value of £ for lot sentencing.
b) Recalculate the estimated Process Loss Index (L) using the new measured data.

o If L, < & accept the lot and back to Normal Inspection for the next lot. If L, > £, reject the lot and
proceed with Tightened Inspection for the next lot or halt production if quality deterioration persists.

Start

Set the plan parameters:
a, p, Iaqr, and lrqr

‘ Normal Inspection |<7
v

Take a sample of size ny and use critical
value &

v

Calculate the sample statistics and the
estimated process loss index L.

Yes: Accept the lot
No
Reject the lot

Take a sample of size nr and use critical
value &

v

I I
| |
I I
I I
I ]
I I
I I
I ]
I I
I I
I |
I I
I I
I I
| I
i Calculate the sample statistics anfi the |
i estimated process loss index L,. 1
I I
| ]
I I
I I
| |
I I
I I
| |
I I
I I
I |
I |
I I
I I
I I
I I
I I
I I

Reject the lot No*

Yes

Accept the lot

Figure 1. Flow chart of VQSS(x, #1; £).
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Applying Romboski’s (1966) AQSS framework, the lot acceptance probability P/(I)-or the OC function for the
VQSS(nx, n1; £) plan based on the process loss index L, is defined as:

. , _(n+0)xk
RUL)=P| s S|, o
Pi(L) =P(szg SWJ- ©

To satisfy both producer’s and consumer’ risk requirements, the OC function must attain the values (/qr, 1 — o)
and (kar, ). Imposing these two-point condition on the above expression (Equations (5) and (6)) yields:

I _ PTI (IAQL)
Tl = N B ) 0
Pl
Tl ) = o) ®)

I_PI\IT(IRQL)+P7"I(IRQL) '

Because VQSS employs two inspection modes with distinct sample sizes, the Average Sample Number (ASN)—the
expected count of inspected units before a decision—is a more appropriate performance metric. The ASN is given

by:

B (L)xny +[1- Py (L)]xn,

ASN(L,) = 1-Pi(L)+ PX(L,)

©)

Determining the plan parameters (nn, 71, £) requires solving the two-point OC equations simultaneously. Since
multiple parameter sets may satisfy these constraints, the ASN serves as the objective function to be minimized.
Hence, an optimization model is formulated to identify the combination of #x, 71, and £ that minimizes ASN while
adhering to the specified producers’ and consumers’ risk levels.

Min ASN(,y )= P} 1y ) %1y +[1= Py(Lyg 1%,

ik 1= Py (L) + P (Lygr)
Subject to
Tl 21—, a0
Ty )< B,
np>ng>1, 1y k<l .

3.2. VQSS(nn, nr=mnn; k)

To streamline parameter determination and ease practical implementation, a specialized form of VQSS(n, #r1; £)
assumes that the tightened-inspection sample size 7t is an integer multiple m of the normal-inspection sample size
m (e., 7r = mXnx with m > 1). This variant, denoted VQSS(nx, nr=mnx; ), retains the same operational logic,
acceptance probability function, and mathematical formulation as the general VQSS model. Under this constraint,
only two parameters (#n and £) must be determined via the optimization procedure.

Moreover, when 7 = 1, the VQSS(nn, nr=mnx; ) model simplifies to the conventional VSSP; thus, the proposed
scheme can also be regarded as a generalized extension of VSSP, broadening its applicability and functionality.
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4. Results and Analysis

4.1. Determination of Plan Parameters

To determine the plan parameters of the VQSS based on the framework established in this study, the sequential
quadratic programming algorithm was utilized for this purpose using the “fincon” function provided by MATLAB
R2019a.

4.1.1. Plan Parameters of VQSS(nn, 113 &)

To implement VQSS(ir, 7; £), three plan parameters are necessary to be determined concurrently: the sample sizes
for tightened inspection (71) and normal inspection (i), along with the critical value (£). Table 1 presents the plan
parameters for VQSS(nx, #r; #) under various combinations that can be used by practitioners to carry out the
two-plan sampling system. For example, if the producer and the consumer have predetermined the conditions of
(laqu, Rqr) = (0.03, 0.05) and (x, 5) = (0.10, 0.05), plan parameters (nx, 7r; £) = (25, 164, 0.0406) can be obtained
from Table 1. This means that 25 samples should be taken under normal inspection and 164 samples should be
taken under tightened inspection, with a critical value of 0.0406. Afterward, the L, can be calculated to decide
whether to accept or reject the inspected lot. If L, exceeds the critical value £ = 0.0416, the lot will be rejected;
otherwise, it will be accepted. Moreover, if the lot is rejected under normal inspection, the inspection system has to
be switched to tightened inspection. However, when the lot is accepted during tightened inspection, normal
inspection must be carried out for the next submitted lot to ensure the quality of the delivered products.

IAQL = 0-03, IAQL — 0.03, IAQL = 0.04,
IRQL = 0-04 IRQL = 0.05 IRQL = 0.06

0.010 | 178 | 4190 | 0.0379 | 53 | 1319 | 0.0453 | 86 | 2101 | 0.0555 | 36 | 934 | 0.0978
0.010 | 0.050 | 166 | 3155 | 0.0382 | 49 | 994 0.0460 | 80 | 1583 | 0.0562 | 34 | 704 | 0.0995
0.100 | 159 | 2600 | 0.0384 | 47 | 821 0.0464 | 77 | 1306 | 0.0566 | 32 | 582 | 0.1005
0.010 | 130 | 1280 | 0.0363 | 39 | 410 0.0419 | 63 | 0648 0.0522 | 27 | 292 | 0.0891
0.050 | 0.050 | 114 | 898 0.0367 | 34 | 288 0.0428 | 55 | 454 0.0531 | 23 | 205 | 0.0913
0.100 | 105 | 705 0.0370 | 31 227 0.0434 | 51 357 0.0537 | 21 | 162 | 0.0928
0.010 | 103 | 750 0.0352 | 30 | 243 0.0397 | 50 | 381 0.0500 | 21 | 74 0.083
0.100 | 0.050 86 505 0.0357 | 25 | 164 0.0406 | 42 | 257 0.0510 | 18 | 117 | 0.0858
0.100 77 387 0.0360 | 23 | 126 0.0413 | 37 | 197 0.0517 | 16 | 90 0.0875
Table 1. Plan parameters of VQSS(nx, r; £)

4.1.2. Plan Parameters of VQSS(nn, nr=mnn; k)

To simplify the determination of necessary parameters and implementation of VQSS in practical scenarios, an
alternative type of VQSS(n, 7r; £) is proposed. This type assumes that the sample size for tightened inspection (7r)
is equal to » times of the sample size for normal inspection (nn), represented as #X un, where 7 > 1. It is
important to note that when 7 = 1, VQSS and VSSP are identical. The solved plan parameters for the VQSS(xnx,
nr= mnx; #) under vatious conditions are provided in Tables 2-5, with » values of 1.5, 2.0, 2.5, and 3.0. These
results offer practical guidance for practitioners and simplify the implementation of VQSS in their inspection
processes.

For instance, if a contract specifies conditions such as (/sqr, &qr) = (0.04, 0.00), («, ) = (0.05, 0.10), and 7 = 1.5,
then plan parameters (nx, #1; £) = (86, 129, 0.0504) can be obtained by referring to Table 2. This indicates that 129
samples must be collected under tightened inspection, whereas 86 samples are required to be taken under normal
inspection. Then, L, can be calculated based on the collected samples and compared with the critical value for lot
sentencing, If L > 0.0504, the lot is rejected; otherwise, if L< 0.0504, the lot is accepted.
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Lw = 0.03, Lau = 0.03, L = 0.06,
kaow = 0.04 ko = 0.05 hor =0.11

1 k ny k
0.010 428 | 642 0.0350 135 | 203 0.0391 215 | 322 0.0495 9 | 144 0.0820
0.010 | 0.050 | 319 | 479 | 00358 | 100 | 150 | 0.0408 | 159 | 239 | 0.0512 | 71 | 106 | 0.0860
0.100 | 268 | 402 | 0.0364 83 | 125 | 0.0419 | 133 | 200 | 0.0523 | 59 | 88 0.0888
0.010 | 304 | 456 | 0.0341 98 | 146 | 0.0374 | 154 | 231 | 0.0477 | 70 | 104 | 0.0775
0.050 0.050 214 | 321 0.0349 68 102 0.0389 108 | 161 0.0493 48 72 0.0813
0.100 173 | 259 0.0355 54 81 0.0400 86 129 0.0504 39 58 0.0840
0.010 246 | 369 0.0334 80 119 0.0361 125 | 188 0.0465 57 86 0.0745
0.100 | 0.050 | 166 | 249 | 0.0342 53 80 0.0375 84 | 126 | 0.0480 | 38 | 57 0.0779
0.100 | 130 | 194 | 0.0348 41 62 0.0386 65 98 0.0490 | 30 | 44 0.0805
Table 2. Plan parameters of VQSS(nx, #1; £) undet 7 = 1.5

IAQL - 0.03, IAQL = 0.03, ]AQL - 0.04, IAQL = 0.06,
IRQL = 0.05 IRQL =0.11

0.010 | 375 | 750 | 0.0353 | 118 | 235 | 0.0398 | 188 | 375 | 0.0502 | 84 | 167 | 0.0837
0.010 0.050 | 288 | 575 | 0.0361 89 178 | 0.0414 | 143 | 286 | 0.0518 | 63 | 126 | 0.0877
0.100 | 246 | 492 | 0.0366 76 151 | 0.0425 | 122 | 243 | 0.0529 | 53 | 106 | 0.0904
0.010 | 259 | 518 | 0.0344 83 165 | 0.0380 | 131 | 261 | 0.0484 | 59 | 117 | 0.0791
0.050 0.050 | 187 | 374 | 0.0352 59 118 | 0.0395 94 187 | 0.0500 | 42 | 83 0.0829
0.100 | 154 | 308 | 0.0358 48 96 0.0406 77 153 | 0.0511 | 34 | 68 0.0856
0.010 | 205 | 409 | 0.0337 66 131 | 0.0367 | 104 | 207 | 0.0471 | 47 | 94 0.0758
0.100 0.050 | 142 | 283 | 0.0345 45 90 0.0381 71 142 | 0.0485 | 32 | o4 0.0793
0.100 | 113 | 225 | 0.0351 36 71 0.0392 57 113 | 0.0496 | 25 50 0.0818

Table 3. Plan parameters of VQSS(nx, #1; £) under 7 = 2.0

IAQL = 003, IAQL = 0.03, IAQL = 0.04, IAQL = 0.06,
hror, = 0.04

0.010 | 342 | 854 | 0.0356 | 107 | 266 | 0.0404 | 171 | 426 | 0.0508 | 75 | 188 | 0.0851
0.010 0.050 | 267 | 667 | 0.0364 83 | 206 | 0.0419 | 133 | 331 | 0.0523 | 58 | 144 | 0.0890
0.100 | 231 | 578 | 0.0369 71 177 | 0.0430 | 114 | 285 | 0.0533 | 50 | 124 | 0.0916
0.010 | 231 | 577 | 0.0347 73 182 | 0.0385 | 116 | 289 | 0.0489 | 52 | 129 | 0.0804
0.050 0.050 | 170 | 425 | 0.0355 53 133 | 0.0400 85 | 212 | 0.0505 | 38 | 94 0.0842
0.100 | 142 | 354 | 0.0360 44 | 110 | 0.0411 71 176 | 0.0515 | 31 77 0.0868
0.010 | 179 | 447 | 0.0340 57 142 | 0.0371 90 | 225 | 0.0475 | 41 | 102 | 0.0769
0.100 0.050 | 126 | 315 | 0.0348 40 99 0.0386 63 158 | 0.0490 | 28 | 70 0.0804
0.100 | 102 | 254 | 0.0353 32 79 0.0396 51 127 | 0.0501 | 23 56 0.0830

Table 4. Plan parameters of VQSS(nx, #1; £) under 7 = 2.5
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L = 0.03,
ki = 0.05

Iy k
0.010 | 318 | 953 | 0.0358 | 99 | 296 | 0.0408 | 158 | 474 | 0.0512 | 70 | 208 | 0.0862
0.010 0.050 | 252 | 756 | 0.0366 | 78 | 232 | 0.0423 | 125 | 374 | 0.0527 | 55 | 163 | 0.0900
0.100 | 221 | 661 0.0370 | 67 | 201 0.0433 | 109 | 326 | 0.0537 | 47 | 141 0.0925
0.010 | 211 | 633 | 0.0349 | 67 | 199 | 0.0389 | 106 | 317 | 0.0493 | 47 | 141 0.0814
0.050 0.050 | 158 | 474 | 0.0357 | 49 | 147 | 0.0405 79 | 236 | 0.0509 | 35 | 104 | 0.0852
0.100 | 134 | 400 | 0.0362 | 41 | 123 | 0.0415 66 198 | 0.0519 | 29 | 86 0.0878
0.010 | 161 | 483 | 0.0342 | 51 | 153 | 0.0375 81 243 | 0.0479 | 37 | 109 | 0.0778
0.100 0.050 | 116 | 346 | 0.0349 | 36 | 108 | 0.0389 58 173 | 0.0494 | 26 | 76 0.0814
0.100 94 | 282 | 0.0355 | 29 | 87 0.0400 47 140 | 0.0504 | 21 62 0.0839
Table 5. Plan parameters of VQSS(nx, #r1; #£) under 72 = 3.0

4.2. Operating Characteristics (OC) Curve

In this section, we assess and compare the performance of the proposed VQSS and VSSP by examining the OC
and ASN curves. Initially, we conduct a performance comparison of the two types of VQSS and VSSP using the
OC curve.

The Operating Characteristic (OC) curve illustrates the performance of a sampling plan’s acceptance probability
(y-axis) across various quality levels (z-axis). A steeper OC curve slope indicates better discriminatory power. The
Operating Characteristic (OC) curve behavior of the proposed Variable Quick Switching Sampling (VQSS) system
is further investigated. This system combines two sampling plans: the Normal-VSS plan with (mn, £) = (41, 0.0415)
and the Tightened-VSS plan with (#1, £) = (123, 0.0415). The OC curves of these plans and the VQSS system are
compared in Figure 2. When the submitted lot’s quality is poor (above the critical value &£ = 0.0415), the VQSS
system’s OC curve closely resembles the Tightened-VSS plan’s curve. Conversely, as the lot’s quality improves, the
VQSS system’s OC curve approaches the Normal-VSS plan’s curve. This demonstrates the VQSS system’s
flexibility in selecting the appropriate inspection based on the actual quality level, while maintaining discriminatory
power. The VQSS system adapts to changing quality levels, making it a robust and efficient sampling system. By
leveraging this flexibility, the VQSS system can provide effective quality control while minimizing unnecessary
inspections.
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Figure 2. The OC curves of Normal-VSS plans, Tightened-VSS plans, and the VQSS system
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Figure 3 and 4 compates the OC curves of the Variable Single Sampling (VSSP) plan and the Variable Quick
Switching Sampling (VQSS) system, both based on process loss index, under specific conditions: (/aqr, &qr) = (0.03,
0.05) with (a, B) = (0.05, 0.05) and (a, ) = (0.10, 0.05). As shown in Figures 3 and 4, both OC curves pass through the
designated points (/aqr, 1 - o) and (kqt, 5), meeting the required conditions.

1.0¢ T 1.0 T T
——VSSP — VSSP

0.9 —==VQSS (1, mn; k) with m=2.0| | 0.9 —==VQSS (n,, mn; k) with m=2.0| |
§ 08" . ==V QSS (nN, mn; k) with m=3.0 |- 2 08T =t VQSS (nN, mn; k) with m=3.0|-
= | Jannnn VQSS (nN, n k) = [ \\ N CEEE L VQSS (n,n_; k)
£0.7 £0.7 N T
%) D
0.6 ] 0.6 ]
< <
305 305
& z
=045 1 =047 1
e S
2031 1 2031 1
= £
A< 0.21 A~0.21 1

0.17 1 0.1

0 ‘ , ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
Lp Value Lp Value
(a) (o, §) = (0.05, 0.05) ®) (o, B) = (0.10, 0.05)

Figure 3. The OC curves of the VSSP, VQSS (i, nr=rmmx; £) with 7 = 2.0, 3.0, VQSS(nx, #1; £), and (/aqr, kar) = (0.03, 0.05)
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Figure 4. The OC curves of the VSSP, VQSS(nx, nr=mnx; £) with 7 = 2.0, 3.0, VQSS(nx, 113 £), and (/aqr, &aor) = (0.06, 0.11)

Notably, the VQSS system’s OC curve exhibits a shape closer to the ideal OC curve, demonstrating its superior
discriminatory power compated to the VSS plan. This suggests the VQSS system can more effectively distinguish
between acceptable and unacceptable quality levels. The figures indicate that for the VQSS system with
parameters VQSS(m, #r = mnx; £), increasing the value of  leads to a steeper OC curve slope, which translates
to improved discriminatory powet. In other words, larger values of 7 enhance the system’s ability to distinguish
between high- and low-quality lots.

4.3. Average Sample Number (ASN)

Another general measurement system, we generate the ASN curves for VSSP and the two types of VQSS to
evaluate their sampling efficiency from an economic standpoint. Figures 5-6 present the ASN curves for VSSP,
VQSS(nx, nr; £), VQSS (i, nr=mmx; £) with different 7 values (7 = 2, 3), and risk levels («, §) = (0.05, 0.05), (0.10,
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0.05), quality levels (/aqr, &qr) = (0.03, 0.05) and (0.06, 0.11). It is evident that VSSP and VQSS (i, #r=mmn; £) with
different 7 values and VQSS(#n, #1; ) heavily depend on the lot’s quality. When the lot is of excellent quality, both
VQSS(nn, mr=mmnn; &) (regardless of the value of 7) and VQSS(nx, #1; £) require a smaller sample size than VSSP.
In addition, when the lot’s quality is not satisfactory (with a relatively large value of L), VQSS(nx, #r=mnx; &) and

VQSS(nx, 713 £) tend to require a larger number of sample items for inspection as tightened inspection may be
necessary to ensure the lot’s quality.
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Figure 5. The ASN curves of the VSS, VQSS(i, nr=mnx; £) with m = 2.0, 3.0, VQSS(n, 715 £), under (/aqr, &kar) = (0.03, 0.05)
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Figure 6. The ASN curves of the VSS, VQSS(i, #r=nm; £) with m = 2.0, 3.0, VQSS(nx, #1; £), under (/aqr, &ar) = (0.06,0.11)

4.4. Example Demonstration

The proposed methodology was validated through a case study of an amplified pressure sensor, sourced from Yen
and Chang (2009), which is a representative example of sensors used in electronic device modules. The study
emphasizes the importance of precise span control and monitoring in amplified pressure sensors, highlighting the
need for consistent and reliable performance in these critical components.

The specification limit for this particular case is set at 2.0 £ 0.1 V, which translates to a target value (T) of 2.0, a
lower specification limit (I.SL) of 1.9, and an upper specification limit (USL) of 2.1. According to the agreement,
the multiplication number sample size for tightened inspection (7) is assumed to be 2. The quality level
requirements are specified as (/aqr, &qr) = (0.06, 0.11), while the risk levels are set at (, §) = (0.01, 0.05).
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1.9422 1.9651 2.0230 1.9712 1.9975 2.0164 1.9927 1.9566
1.9738 1.9541 1.9800 1.9596 1.9811 2.0088 1.9858 1.9677
2.0001 1.9659 1.9955 1.9842 1.9909 1.9829 1.9684 1.9942
1.9897 1.9836 1.9891 1.9608 2.0109 1.9912 2.0077 1.9803
2.0106 1.9885 1.9704 1.9882 1.9689 1.9553 1.9741 1.9825
1.9640 2.0187 1.9616 1.9865 1.9556 1.9817 1.9774 1.9316
1.9841 1.9919 1.9737 1.9958 2.0121 2.0021 1.9665 1.9773
1.9841 1.9570 1.9610 2.0015 1.9750 1.9825 1.9758

Table 6. The submitted lot yielded 63 measurement data points
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Figure 7. The histogram plot of the sample data and the normal probability plot of the sample data

The plan parameters, which are determined to be (n, 71; £) = (63, 126; 0.0877), can be ascertained by referencing
Table 3. Specifically, a random sample of 63 units is selected from the submitted lot, and the measurements are
compiled and presented in Table 6. The distribution of the sample data is illustrated in Figure 7 through a
histogram and a probability plot, which yields a sample mean and standard deviation of X = 1.9814 and § = 0.0188,
respectively. Furthermore, the Anderson-Darling normality test indicates that the data conform to a normal
distribution, with a p-value of 0.93584 (Figure 7). The calculated value is then compared to the critical value £. 1f
the calculated value is less than or equal to £ = 0.0877, the lot is accepted; otherwise, it is rejected. Following the
outlined operating procedure in Section 3, the lot sentencing is carried out based on the calculation of l:e. In this
sample, the calculated value L is 0.0708, which is less than the critical value & = 0.0877. Therefore, the lot is
accepted based on the original sampling plan.

A comparison with traditional variables sampling plans (VSS) reveals that a larger sample size of # = 84 than the
VQSS(nN, nr=mnx; £) plan is required for inspection, with a critical value of 0.0836. In contrast, the proposed
VQSS(nn, nr=mmnn; £) plan can achieve lot sentencing with a smaller sample size of 7y = 63 under identical
conditions. Moreover, the proposed VQSS(nx, #1; £) plan demonstrates greater efficiency, requiring a sample size of
only nv = 34, which is significantly lower than previous models. However, if product quality deteriorates and a
switch to tightened inspection is necessary, the sample size would need to be substantially increased to 704 for
thorough inspection. The proposed VQSS systems, VQSS(nn, #r1; £) and VQSS(#n, #r=mnn; £), require adjustments
to sample sizes when switching plans, which may lead to additional inspection costs if lot quality declines. However,
these systems offer valuable insights into lot quality, motivating suppliers to improve product quality and reduce
potential costs. By providing more information, VQSS variants encourage suppliers to enhance their processes,
ultimately leading to better quality products and reduced costs. This makes VQSS a beneficial approach for quality
control and supplier improvement.
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5. Conclusions

In today’s competitive market landscape, businesses must prioritize product quality to meet the increasingly
stringent expectations of their customers. Traditional acceptance sampling plans often evaluate product quality
based on process yield, which fails to capture subtle variations within specification limits. To address this limitation,
the process loss index Le was developed to quantify process performance by accounting for quality loss. This study
introduces a novel two-plan sampling system, VQSS, which leverages the Le index to dynamically adjust inspection
stringency in response to fluctuations in product quality. By incorporating both tightened and normal inspection
protocols, VQSS offers enhanced flexibility compared to conventional single sampling plans (VSSP). Two variants
of VQSS were developed and comprehensively evaluated using operating characteristic (OC) and average sample
number (ASN) curves. The results demonstrate the supetiority of VQSS over VSSP in terms of adaptability and
efficiency. By adopting VQSS, organizations can optimize their quality control processes and respond more
effectively to changes in product quality. This study contributes to the advancement of quality control
methodologies and provides practical insights for industries seeking to enhance their product quality.

The VQSS of type (#; £x, £1) as developed by Balamurali and Usha (2017a) emerges as a cost-effective strategy,
characterized by a substantial reduction in required sample size and facile plan switching via critical value
adjustments. Notwithstanding this, the proposed method VQSS(nx, 7r; £) and VQSS(un, nr=mmn; k) offers an
advantage in terms of sample size adjustment when switching to a more stringent inspection plan when lot quality
deteriorates. In addition, these VQSS wvariants provide supplementary information for lot quality assessment,
incentivizing suppliers to enhance product quality and mitigate potential costs. Each VQSS type offers distinct
advantages, rendering them suitable for specific scenarios and enabling practitioners to select the most appropriate
type for their objectives. To facilitate implementation, the study provides comprehensive tables of plan parameters
for each VQSS type, accommodating diverse quality conditions and risk combinations. An illustrative example
demonstrates the practical applicability of the proposed system, underscoring its potential to inform efficient and
cost-effective decision-making in lot disposition. Organizations adopting VQSS can optimize their quality control
processes and adapt to changing product quality requirements. The proposed system offers a valuable framework
for quality control practitioners seeking to enhance their inspection protocols.
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