
Journal of  Industrial Engineering and Management
JIEM, 2026 – 19(1): 99-119 – Online ISSN: 2013-0953 – Print ISSN: 2013-8423

https://doi.org/10.3926/jiem.8741

Clustering–Based Column Generation and Heuristic Methods 
for the Container Loading Problem with Practical Constraints: A Case Study

Sezgi Tekil-Ergün1,2* , Ferhan Çebi1 

1Department of  Management Engineering, Istanbul Technical University, Istanbul (Turkey)
2INFORM GmbH, Aachen (Germany)

*Corresponding author: tekil17@itu.edu.tr
cebife@itu.edu.tr 

Received: February 2025
Accepted: January 2026

Abstract:

Purpose: This study addresses a real-world container loading problem (CLP) encountered in a logistics 
company in Turkey, filling a gap in the literature by solving practical constraints using a state-of-the-art 
algorithm. The problem involves constraints such as rotations, stackability, loading priorities, and mixed 
loading constraints.

Design/methodology/approach: To  overcome  the  computational  challenges  posed  by  large-scale 
instances, a novel three-step approach is proposed. First, the K-Means clustering algorithm is applied to 
group objects  with  similar  dimensions.  Then,  each group is  allocated  to  containers  using  a  Column 
Generation  (CG)  method  combined  with  a  3D-Best  Fit  Decreasing  with  Orientation  (3D-BFDO) 
algorithm. Additionally, the CG process is enhanced by integrating a  machine learning (ML)  model to 
predict reduced-cost columns, improving computational efficiency and solution quality.

Findings:  Extensive  experiments  demonstrate  that  the  proposed  approach  significantly  improves 
container space utilization while reducing operational costs. The results highlight the effectiveness of  ML 
and K-Means in enhancing traditional optimization techniques.

Research limitations/implications: The study focuses on a specific set of  practical constraints relevant 
to real-world logistics applications. Further research could explore additional constraints and scalability to 
different logistics environments.

Practical implications: The approach offers a practical solution for logistics companies dealing with a 
large-scale CLP by optimizing space utilization and reducing operational costs. The integration of  ML into 
CG presents a viable method for improving decision-making in logistics.

Originality/value: The  study  bridges  the  gap  between  theoretical  models  and  real-world  logistics 
challenges by introducing a data-driven enhancement to traditional optimization techniques. The proposed 
integration of  K-Means clustering and  ML into CG represents an innovative contribution to container 
loading optimization.
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1. Introduction
Nowadays, managing logistics operations requires higher analytical capabilities and a contextual understanding of 
logistics systems because of  the significant increase in transportation demand. As logistical challenges become 
greater, managing this complexity is becoming more intricate. At the forefront of  these considerations lies the 
problem of  CLP, an area that attracts the authors’ attention due to its central role in promoting efficiency through 
cooperative and collaborative logistics operations. The CLP is concerned with optimizing capacity utilization while 
minimizing the number of  containers used, thereby increasing operational efficiency.

Within this framework, geometric allocation models are the cornerstone to ensure a reasonable allocation of  all 
rectangular objects to the corresponding containers. This approach not only rationalizes logistical processes but also 
has  a  significant  impact  on  environmental  sustainability.  Hence,  the  optimization  of  container  loading  is  of 
outstanding importance in the environmental context, as it has a direct impact on the use of  resources and carbon 
emissions in transport logistics. By maximizing capacity utilization and reducing the number of  containers required, 
companies can reduce the environmental footprint associated with transport activities. This phenomenon is notably 
evident in European Union (EU) countries with major container ports acting as primary entry points for goods into 
the  EU.  For  instance,  countries  like  Greece,  Germany,  the  Netherlands,  and  Belgium  exemplify  this  trend 
(European Commission, 2018).

The CLP is a variant of  the bin packing problem, which is inherently NP-hard (Garey & Johnson, 1979). Early  
research  in  this  domain  focused  on  heuristic  and  exact  algorithms  for  one-dimensional  (1D)  and  two-
dimensional (2D) bin packing problems (Gilmore & Gomory, 1961; Chung, Garey & Johnson, 1982). However, 
the  three-dimensional  (3D)  variant  poses  additional  challenges  due  to  practical  constraints,  such  as  weight  
distribution, stability, and loading priorities (Junqueira, Oliveira, Carravilla & Morabito, 2013). These challenges 
make the problem highly relevant in real-world logistics operations,  where the goal is  to ensure an efficient 
arrangement of  objects of  varying dimensions within a container while minimizing unused space and satisfying 
stacking restrictions. A recent study by Zhu, Chen, Dai and Tao (2024) addressed the 3D bin packing problem 
(3D-BPP) with stacking constraints, proposing various optimization techniques. However, the study highlighted 
several  limitations,  including  the  absence  of  extensive  real-world  testing  and the  lack  of  consideration  for 
additional  logistics  constraints,  such  as  transportation-induced  vibrations,  weight  distribution,  and 
multi-container utilization. Furthermore, the generalizability of  the proposed methods across different container 
types and industry-specific packaging regulations, such as cold storage or hazardous materials handling, requires 
further investigation and adaptation. Unlike previous studies, our proposed approach addresses not only the 
stacking  constraints  but  also  incorporates  real-world  practical  constraints.  Our  method considers  additional 
logistics factors, such as mixed loading patterns, mixed containers, stackability, customized rotation rules, weight 
distribution, and multi-container utilization, which have not been fully explored in prior works. This holistic  
approach enhances the practicality and generalizability of  our solution, bridging the gap between theoretical 
models and real-world applications.

From a theoretical standpoint, the proposed approach relies on a decomposition framework that addresses the 
structural complexity of  large, heterogeneous 3D-CLP. In our industrial dataset, nearly 4,000 items with widely 
varying dimensions create substantial  geometric  variance;  therefore,  K-Means clustering is  used not only as  a 
decomposition tool but also as a way to impose geometric structure by grouping volumetrically similar items, 
reducing variance, and enabling stack-based subproblems that are more tractable than the original instance. CG is 
then employed to explore the global pattern space efficiently because it can theoretically generate high-quality 
loading patterns without enumerating all feasible configurations; however, due to its well-known convergence issues 
in highly heterogeneous settings, a  ML module is integrated after the initial iterations to predict columns with 
negative  reduced  cost  and  restrict  the  search  to  promising  regions,  thereby  accelerating  CG and  preventing 
degeneracy.  Finally,  a  3D-BFDO heuristic ensures that the generated patterns translate into physically feasible 
placements under stackability,  stability,  and rotation constraints,  which pure optimization models alone cannot 
guarantee. This combination of  clustering, ML-assisted CG, and constructive heuristics thus forms a coherent 
theoretical  framework that balances geometric feasibility,  computational tractability,  and operational realism for 
real-world CLP applications.
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This study addresses a real-world CLP faced by a filter factory company in Turkey. The problem involves specific 
operational constraints, such as mixed loading patterns, stackability, and customized rotation rules. To solve this 
problem efficiently, we propose a novel three-step approach:

• Step 1: The K-Means clustering algorithm is applied to group packages with similar dimensions, reducing 
the complexity of  the packing process.

• Step 2:  The resulting clusters  are  allocated to containers  using two state-of-the-art  methods:  the CG 
method and the 3D-BFDO algorithm.

• Step 3: A ML algorithm is applied to a large-scale real-world dataset to decrease the run time of  the CG 
method.

K-Means  clustering,  introduced  by  Forgy  (1965),  has  been  widely  applied  in  optimization  problems  as  a 
preprocessing  step  to  group similar  items (Sheng,  Xiuqin,  Changjian,  Hongxia,  Dayong & Feiyue,  2017).  Its 
integration with advanced packing methods such as CG and 3D-BFDO is a novel aspect of  this study. CG, in 
particular, has demonstrated significant success in solving large-scale combinatorial problems (Pisinger & Sigurd, 
2005), making it a suitable choice for this context.

The primary contributions of  this study include:

• The  introduction  of  a  hybrid  approach  combining  K-Means  clustering  with  CG  and  3D-BFDO 
algorithms to address practical constraints in CLP.

• A first attempt to use a ML algorithm to find promising columns in CG.

• A case study demonstrating the real-world applicability of  the proposed method, with improvements in 
container utilization and operational efficiency.

• Insights into the impact of  operational constraints, such as weight and stackability, on the performance of 
the proposed solution.

The rest  of  this  paper is  organized as  follows:  Section 2 provides a  review of  the literature on bin packing 
algorithms and their applications in CLP. Sections 3 and 4 outline the proposed methodology, covering K-Means 
clustering and packing algorithms. Section 5 introduces the case study, followed by Section 6, which presents the 
case  study results.  Section 7 discusses the results,  and Section 8 concludes  with recommendations for  future 
research.

2. Literature Review
The bin packing (BP) problem aims to place a set of  rectangular items into bins while avoiding overlap and keeping 
items axis-aligned, with the objective of  minimizing the number of  bins required—an NP-hard task (Garey & 
Johnson, 1979). BP variants are typically categorized by dimensionality, including 1D, 2D and 3D extensions. Early 
contributions such as Gilmore and Gomory (1961) introduced decomposition-based approaches for 2D-BP, while 
Chung et al. (1982) developed classical constructive heuristics including Next-Fit Decreasing Height (NFDH). For 
more complex instances, Jakobs (1996) applied genetic algorithms, and Bischoff  and Marriott (1990) compared 
multiple constructive heuristics. Pisinger and Sigurd (2005) further demonstrated that delayed CG can produce 
strong bounds for packing problems.

As the problem evolved toward real-world applications, additional constraints —orientation, stackability, weight 
balancing, stability and unloading priorities— became central in both research and practice. Junqueira et al. (2013) 
incorporated these constraints into a mixed-integer programming (MIP) and CG framework for 3D-CLP, while 
Nascimento,  de-Queiroz  and  Junqueira (2021)  analyzed  the  computational  impact  of  12  practical  loading 
constraints.  More  recently,  Gajda,  Trivella,  Mansini  and  Pisinger (2022)  proposed  a  randomized  constructive 
heuristic  that  considers  unloading  sequences  and  dynamic  stability,  highlighting  the  increasing  focus  on 
operationally realistic settings.

In recent years, the literature has shown a marked shift toward hybrid and advanced heuristic methodologies for 3D 
container loading.  Zhang,  Gu, Fang,  Ji  and Zhang (2022) introduced a multi-strategy hybrid heuristic  for the 
single-container 3D-CLP, demonstrating notable improvements in packing efficiency. Şafak and Erdoğan (2023) 
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developed a Large Neighbourhood Search (LNS) algorithm to address multi-container loading, emphasizing the 
importance of  neighbourhood diversification for large-scale heterogeneous datasets.  Krebs,  Ehmke and Koch 
(2023) integrated container loading with vehicle routing decisions, showing that spatial feasibility strongly affects 
distribution  planning.  These  studies  highlight  the  increasing  relevance  of  large-scale,  multi-container,  and 
operationally integrated loading problems.

Automation-oriented approaches have also emerged. Jiao, Huang, Song, Li and Wang (2024) proposed a robotic 
loader–based formulation (CLP-RLS), incorporating mechanical and operational constraints arising in automated 
warehouses.  Additionally,  multi-objective  metaheuristics  have  received  increasing  attention;  Truong  and Chien 
(2024) introduced a multi-population swarm method capable of  simultaneously optimizing utilization, load balance 
and packing quality. Parallel to these heuristic and robotic developments, learning-enhanced optimization methods 
have gained traction.  Zhao,  Zhu,  Xu,  Huang and Xu (2022)  proposed a deep reinforcement learning (DRL) 
framework  for  online  3D-BPP,  while  Murdivien  and  Um (2023)  introduced  BoxStacker,  a  DRL mechanism 
optimized for stability  and density  in virtual  logistics  systems.  Wong,  Tsai  and Ou (2024)  presented a hybrid 
heuristic–DRL  strategy  for  online  3D-BPP,  and  Tsang,  Mo,  Chung  and  Lee (2025)  released  DeepPack3D, 
integrating heuristic search with learned spatial representations for large-scale online scenarios. Within this hybrid 
and learning-enhanced line of  research, Montes-Franco, Martinez-Franco, Tabares and Álvarez-Martínez (2025) 
proposed a  hybrid  container  loading algorithm that  incorporates  a  dynamic  stability  representation to ensure 
mechanically feasible load patterns, further emphasizing the growing trend toward physically realistic hybrid models.

CG remains an effective decomposition technique for constrained loading, both in classical 2D settings and recent 
3D extensions. CG-based formulations have been shown to improve tractability, especially when combined with 
constructive heuristics or domain-specific decomposition strategies.

Despite these advances, several limitations persist in the literature. First, recent heuristic and hybrid metaheuristic 
studies (Zhang et al., 2022; Şafak & Erdoğan, 2023; Truong et al., 2024) focus on optimization performance but do 
not incorporate clustering-based decomposition, which is essential for large-scale heterogeneous real-world datasets. 
Second, while CG-based models remain powerful, existing work does not combine K-Means clustering, CG and 
3D constructive heuristics  within a  unified framework capable of  handling practical  CLP constraints  such as 
customized rotation rules,  weight balancing, stackability,  mixed loading patterns and multi-container utilization. 
Third, although DRL and learning-supported methods (Zhao et al., 2022; Murdivien & Um, 2023; Wong et al.,  
2024; Tsang et al., 2025; Montes-Franco et al., 2025) have shown promise, they primarily address simplified or 
online settings and do not integrate machine-learning-aided column selection to accelerate CG in industrial-scale 
CLP environments.

To address these gaps, this study introduces a hybrid three-step methodology that integrates K-Means clustering, 
CG and a 3D-BFDO heuristic, complemented by a ML model for predicting promising columns. By combining 
clustering-based  decomposition  with  CG  and  constructive  3D  placement,  the  proposed  approach  enhances 
scalability, reduces computational effort and improves feasibility under real-world operational constraints.

Synthesizing  across  these  prior  contributions,  three  main  gaps  become  evident:  (i)  heuristic  and  DRL-based 
methods excel  in flexibility  but lack physically realistic  constraint  modeling,  (ii)  CG formulations offer strong 
optimization capability but scale poorly with heterogeneous, industry-sized datasets, and (iii) clustering methods are 
rarely used to reduce item-level variance prior to packing, despite their potential to improve geometric consistency. 
The proposed hybrid methodology unifies these strands by applying clustering for structural decomposition, CG 
for optimized pattern generation, and 3D-BFDO heuristics for feasible placement under practical constraints. This 
integration  directly  addresses  the  scalability,  realism,  and  tractability  limitations  consistently  identified  in  the 
literature.

3. K-Means Clustering
K-Means clustering is a widely used algorithm for partitioning a dataset into groups based on similarity. It partitions 
data  into  K clusters,  where  each data  point  belongs  to  the  cluster  with  the  nearest  centroid.  The  algorithm 
minimizes the sum of  squared distances between data points and their respective cluster centroids.
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Let X = {x1,…, xn} be a dataset residing in a d-dimensional Euclidean space, and let A = {a1,…, aK} represent the 
cluster centers. The objective function of  K-Means is given by:

Where zik is a binary variable indicating whether data point xi belongs to the k-th cluster (zik = 1) or not (zik = 0). 
The algorithm iteratively updates cluster centers ak and cluster memberships zik until convergence:

Here, ||xi – ak||2 represents the Euclidean distance between data point xi and cluster center ak.

K-Means clustering is particularly beneficial as a preprocessing step for complex optimization problems like the 
CLP.  By  clustering  objects  with  similar  dimensions  (e.g.,  length,  width,  height),  K-Means  reduces  problem 
complexity  and facilitates  better  packing efficiency.  This  method enables  the optimization of  container  space 
utilization by grouping objects that fit well together. For instance, Sheng et al. (2017) demonstrated that clustering 
improves computational performance and space utilization in packing algorithms, making it a valuable addition to 
logistics operations.

This study utilizes K-Means clustering to group objects based on their dimensions, serving as a preprocessing step 
before  applying  advanced packing algorithms.  By forming clusters  of  similar  objects,  the  proposed approach 
simplifies  the  packing  problem,  reduces  computational  time,  and  ensures  that  practical  constraints  such  as 
stackability and stability are better addressed. The integration of  K-Means with CG and 3D-Best Fit algorithms 
represents a novel contribution to solving large-scale CLP instances efficiently.

4. Problem Definition and Solution Approach
This study proposes an integrated approach to address the CLP, combining a 3D-BFDO and CG packing model. 
The 3D-BFDO algorithm builds on the work by Dube, Kanavathy and Woodview (2006), while the CG model 
draws on the principles of  Dantzig and Wolfe (1960). The proposed methodology consists of  two phases. In the 
first phase, objects are packed into artificial stacks using the 3D-BFDO algorithm. In the second phase, these stacks 
are assigned to containers, adhering to practical constraints such as stackability, where heavy objects cannot be 
placed atop light objects.

Let I = {1,…, i} represent the set of  heavy objects, where each heavy object i has dimensions li, wi, hi, and a weight qi. 
K = {1,…, k} is the set of  available containers, each characterized by dimensions Lk, Wk, and Hk (length, width, and 
height) and weight Qk. Let U = {1,…, u} denote the set of  light objects, where each light object u has dimensions 
lu, wu, hu,  and a weight qu. The objective is to minimize wasted space in containers after placing all objects.

To facilitate efficient packing, we utilize K-Means clustering for both heavy and light objects based on their  
three-dimensional properties. Heavy objects (I) are grouped into clusters  CI = {c1,…, cc}, where c represents the 
number of  clusters. Similarly, light objects (U) are clustered into CU = {c1,…, cg}, with g denoting the number of 
clusters.

4.1. Model Formulation

In this section, we adapt stackability constraints to the model formulation initially proposed by Chen, Lee and Shen 
(1995). The parameters and decision variables are shown as follows:

Parameters:

• li, wi, hi, qi: Length, width, height, and weight of  heavy object i  I.

• lu, wu, hu, qu: Length, width, height, and weight of  light object u  U.
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• Lk, Wk, Hk, Qk: Length, width, height, and weight capacity of  container k  K.

• M: A sufficiently large constant for big-M constraints.

Decision Variables:

• xik  {0,1}: Binary variable indicating whether stack i  S is packed into container k  K.

•   {0,1}: Binary variables where   = 1 and   = 1 if  stacks  i and  j are assigned to the same 
container and stack i is located to the left and right of  stack j, respectively.

•   {0,1}: Binary variables where   = 1 and   = 1 if  stacks  i and  j are assigned to the same 
container and stack i is located behind and in front of  stack j, respectively.

•   {0,1}: Binary variables where   = 1 and   = 1 if  stacks  i and  j are assigned to the same 
container and stack i is located below and above stack j, respectively.

• nk  {0,1}: Binary variable indicating if  container k  K is selected.

• xi, yi, zi, ≥ 0: Continuous variables representing the coordinates of  stack i  S.

• lix, liy, liz,  {0,1}: Binary variables representing the orientation of  stack i concerning its length, width, and 
height parallel to the X-axis, Y-axis, or Z-axis, respectively.

• wi
x, wi

y, wi
z,  {0,1}: Binary variables representing the orientation of  stack i concerning its width, width, and 

height parallel to the X-axis, Y-axis, or Z-axis, respectively.

• hi
x, hi

y, hi
z,  {0,1}: Binary variables representing the orientation of  stack i concerning its height, width, and 

height parallel to the X-axis, Y-axis, or Z-axis, respectively.

The objective function and constraints are formulated as follows:

(1)

• Packing Constraints:

(2)

(3)

• Dimensional Constraints:

(4)

(5)

• Height Constraint:

(6)

• Weight Constraint:

(7)
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• Relative Positioning Constraints:

(8)

(9)

(10)

(11)

(12)

(13)

• Orientation and Validity Constraints:

(14)

(15)

(16)

(17)

(18)

(19)

(20)

• Stacking Constraint:

(21)

Objective function (1) minimizes the number of  containers used. Constraint (2) ensures that all stacks are packed 
into a container, while Constraint (3) guarantees that a container is considered used only if  it contains at least one 
stack. Constraints (4)–(6) ensure that all stacks are placed within the container’s physical dimensions (length, width, 
and height). Constraint (7) imposes the weight limit for each container, ensuring the total weight of  packed heavy 
and light objects does not exceed the container’s capacity. Constraints (8)–(13) enforce relative positions of  stacks 
(left, right, behind, in front, below, and above). Constraints (14)–(19) define the proper orientation of  a stack, while 
Constraint (20) imposes non-negativity on the coordinates. Finally, Constraint (21) ensures that heavy-weight stacks 
are not placed above lightweight stacks.

Additionally, we define stacks as groups of  objects placed together, with the following relationships: a container 
contains multiple stacks, and each stack consists of  one or several objects. In the next section, we introduce how 
the 3D-BFDO algorithm generates these stacks. Subsequently, we assign these stacks to containers using the CG 
algorithm introduced in Section 4.2.2.
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4.2. K-Means Integrated Column Generation and 3D-BFDO Algorithm

The K-Means Integrated CG and 3D-BFDO (KM-3DCGBFO) algorithm combines K-Means clustering with the 
CG and 3D-BFDO algorithm to optimize packing efficiency. The KM-3DCGBFO algorithm operates in two main 
phases: (1) the 3D-BFDO method generates stacks by assigning objects based on spatial and weight constraints, 
and (2) the CG method assigns these stacks to containers. This approach minimizes wasted space while adhering to 
clustering results and constraints defined in the problem definition section.

4.2.1. 3D-BFDO Algorithm 

The 3D-BFDO algorithm is employed to assign objects to stacks, considering spatial and weight constraints. By 
iteratively placing objects in stacks, the algorithm minimizes unused space by selecting the stack configuration that 
leaves the least remaining space after placement. The method also accounts for six possible rotations of  each object 
to maximize packing efficiency.

To facilitate stacking, the set of  feasible stacks for heavy-weight clusters (SI) and light-weight clusters (SU) are 
generated, forming S = SI + SU. Each stack is initialized with dimensions matching the minimum container size to 
ensure compatibility with all containers in  K.  The KM-3DCGBFO algorithm begins by initializing clusters for 
heavy and light objects using K-Means clustering. The heavy objects (C1) and light objects (CU) are processed 
independently to ensure compatibility with weight and spatial constraints. Once clusters are defined, stacks are 
initialized with dimensions matching the smallest container, ensuring compatibility across all available containers in 
the system. During the stack creation process, objects are added to stacks only if  the total weight of  the stack, 
including the object to be added, does not exceed the weight capacity of  the container (Qk). After adding an object, 
the stack dimensions are dynamically updated to reflect the maximum coordinates of  the contained objects. These 
updates ensure accurate placement for subsequent objects in the stack. To optimize the utilization of  container 
space,  the  algorithm  considers  all  six  possible  orientations  for  each  object  and  selects  the  most  efficient 
configuration based on spatial  constraints.  This  rotation flexibility  enhances  packing efficiency  by  minimizing 
unused space. Finally, the algorithm returns updated stacks (S = SI + SU) as the output, which are subsequently 
assigned to containers in the next phase using the CG method. The algorithm processes objects in each cluster,  
ensuring weight and spatial constraints are respected: 

By integrating clustering with 3D-BFDO, the algorithm achieves efficient  packing while  respecting practical  
constraints.  The generated stacks are subsequently assigned to containers using the CG method, detailed in 
Section 4.2.2.
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4.2.2. Column Generation Approach

In this section, we introduce a CG model for assigning stacks to containers. CG is an efficient method for solving 
variants of  bin packing problems, as the problem is  split  into a set partitioning (master problem)(MP) and a 
sub-problem (SP). In this approach, CG is applied to assign stacks to the relevant containers.

Master Problem:

The initial step to solving the 3D-BPP involves expressing it as a set-partitioning formulation using Dantzig-Wolfe 
decomposition,  which  enables  the  use  of  the  CG  technique.  The  central  concept  of  this  set-partitioning 
formulation for the 3D-BPP is to systematically list all feasible packing arrangements. Let P be the set of  all feasible 
packing configurations for containers. For each packing configuration p  P, a binary variable dp is defined, which 
equals 1 if  the packing configuration is selected and 0 otherwise. A binary parameter θsp  {0,1} indicates whether 
stack s  S is included in configuration p. The master problem is formulated as follows:

(22)

(23)

(24)

The objective function (22) minimizes the number of  containers used. Constraints (23) ensure that each stack is 
allocated to exactly one packing pattern, while constraints (24) enforce the binary nature of  the decision variables. 
Initially, the MP can start with a single packing pattern P' containing all stacks. This set P' is iteratively extended by 
generating promising packing patterns using the SP. Based on the relaxed MP (allowing dp ≥ 0) and restricted master 
problem (RMP) (limited to P'), we compute dual variables βs ≥ 0. The dual of  the MP is given by:

(25)

(26)

(27)

The reduced cost of  a packing pattern p is computed as:

(28)

Sub-Problem:

In the SP, we solve the 3D-BPP to generate new packing patterns with minimum reduced costs. This involves 
solving the following optimization problem, incorporating the constraints introduced in Section 4.1:

(29)
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s.t.     Constraints (3-21) and constraints (2) are modified as:

(30)

The dual parameters βi are derived from the MP. For each iteration of  the CG process, we solve the SP to find a 
feasible packing pattern s with the minimum negative reduced cost. New columns (variables) with negative reduced 
costs are added to the RMP, and the RMP is re-solved to generate updated dual values. This iterative process 
continues until no further variables with negative reduced costs are found. The overall algorithmic steps of  the 
KM-3DCGBFO approach are visually represented in Figure 1.

Figure 1. Algorithmic steps of  KM-3DCGBFO

4.2.3. Machine Learning Integration in Column Generation Approach

To enhance the efficiency of  the CG process for large-scale real-world datasets, we propose integrating a ML model 
to predict the likelihood of  a packing pattern having a negative reduced cost. This integration significantly reduces 
computational overhead by prioritizing columns that are more likely to contribute to an improved solution, thereby 
accelerating convergence.

Master Problem:

The MP formulation remains the same as defined in Section 4.2.2, where dual variables βs ≥ 0 are computed for 
each stack  s  S.  These dual values,  which indicate the marginal contribution of  each stack to the objective 
function, serve as critical features in the ML training phase. Instead of  allowing the SP to generate columns in an  
unrestricted manner, we employ ML to filter and prioritize the most promising candidates.

Training the Machine Learning Model:

To effectively guide the CG process, a supervised learning approach is implemented using an  XGBoost model, 
which has been chosen due to its robustness in handling non-linear relationships and preventing overfitting. The 
training process follows a progressive time-series-based learning strategy:

a.  Feature Engineering:  Historical data from previously solved CG instances is used to create the training dataset. 
Features include stack dimensions (length, width, height), stack weight, dual values  βs ≥ 0 from the MP, packing 
pattern characteristics (e.g., total weight, volume utilization, feasibility checks) and each column is labelled based on 
whether it had a negative reduced cost (i.e., was included in the MP).

b. Target Variable: The target variable is a binary classification label formulated in equation (31) and each column is 
assigned a binary label:

(31)
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c. Training Algorithm: XGBoost is selected due to its ability to handle non-linearity and importance weighting and the 
dataset  is  updated dynamically  using  a  rolling  window strategy,  ensuring  that  only  the  most  recent  iterations 
contribute to training. 

Integration into the Column Generation Process:

The algorithm begins with an empty column pool and an untrained XGBoost model. In the first four iterations,  
standard CG is executed, where the SP generates candidate columns, and all feasible columns are tested without 
ML assistance.  From the tenth iteration onward (based on the data-set this can be higher),  the ML model is 
integrated to predict which columns are most likely to have a negative reduced cost, significantly reducing the 
number of  columns that need to be evaluated. Once these predicted columns are selected, they undergo a feasibility 
check to ensure they satisfy all constraints before being added to the column pool. The RMP is then updated and 
solved with the new columns, refining the solution iteratively. After at least five iterations, the ML model is retrained 
using  the  updated  dataset,  which  includes  newly  generated  columns  and their  reduced  cost  evaluations.  The 
iteration counter is then incremented, and the process continues until the stopping criterion is met, ensuring an 
efficient balance between computational effort and solution quality.The integration of  the trained ML model into 
the CG process involves the following steps:

By filtering irrelevant columns with ML, the CG process converges with fewer iterations and only promising 
columns are evaluated in the SP so it reduced the computational load. The approach scales well to larger problem 
instances with diverse characteristics.

4.3. K-Means Clustering Based 3D-BFDO Algorithm 

In this sub-section, the proposed approach is adapted to the 3D-BFDO algorithm. This adaptation is necessary as  
the KM-3DCGBFO may exhibit  slower  performance with large instances or scenarios where the number of 
clusters is low, requiring heuristic methods for efficiency. The algorithm aims to maximize volume utilization (i.e., 
minimizing the number of  containers used). Similar to the KM-3DCGBFO, we apply K-Means clustering to the 
packages  and  implement  the  solution  approach  using  the  3D-BFDO algorithm (Dube  et  al.,  2006),  named 
KM-3DBFO.

Let S be the set of  clustered objects, consisting of  light-weighted objects SI and heavy-weighted objects SU, such 
that S = SI + SU. Each stack also has length (l), height (h), width (w), volume (v), and weight (q). We obtain Sd by 
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sorting the set S in descending order based on the weight of  items in the clusters to prioritize heavy objects and 
prevent placing them on top of  lighter ones. Initially, we set the parameters for the number of  containers k, volume 
V, length L, and weight Q of  the containers to zero. The set of  assigned items is denoted by β, which starts as an 
empty set, and γ indicates the set of  unassigned items. The general concept of  the algorithm is shown below.

5. Case Study and Data Collection
In the filter manufacturing facility under investigation, various types of  filters are produced, including air filters, oil  
filters, fuel filters, and air dryer filters. Each type plays a crucial role in the operation of  automotive and industrial 
machinery. The company implementing our algorithm specializes in producing these diverse filters. Loading these 
filter boxes into containers or trucks presents a logistical challenge. While air filters are not particularly heavy, they 
occupy considerable volume. Thus, it is crucial to avoid placing heavier boxes on top of  these lightweight filters.  
Conversely, fuel filters, primarily made of  iron, are significantly heavier and must be positioned at the bottom of 
the  container  to  ensure  stability  during  transport.  Proper  load  distribution  within  the  container  is  vital,  as 
imbalances could lead to axle damage. Given the variety of  products, load distribution was meticulously planned, 
accounting for differences in volume and weight. Reflecting the problem’s complexity, we assume all packages must 
be  delivered  to  a  single  customer.  The  standardized  container  lengths  of  20’  and  40’  were  key  parameters 
influencing our loading strategies and container usage efficiency.

Filters are systematically packaged into containers based on their types, dimensions, and package sizes, as detailed in 
Table 1. In this table, “Filter No.” indicates the unique identification number assigned to each filter type, “Inner 
Box” quantifies the number of  small filter boxes within the package, “w” signifies the width of  the small filter  
boxes, “l” represents their length, and “h” denotes their height. Additionally, “W” indicates the width of  the large 
package, “L” specifies the length, and “H” denotes the height. “Total Small Boxes” represents the total count of 
small boxes within the package, “Total Big Boxes” quantifies the number of  large boxes, and “Total Volume” 
denotes the collective volume occupied by the large boxes.

Filter No.
Inner 
Box w l h W L H

Tot. Small 
Boxes

Tot. Big 
Boxes Tot. Vol 

AD2000 8 145 145 175 305 305 365 248 31 1.053

AD2006 8 145 145 175 305 305 365 144 18 0.611

AF4303A 1 335 335 265 - - - 175 175 5.204

AF4340 1 305 305 395 - - - 200 200 7.349

AF4347 1 360 360 380 - - - 25 25 1.231

AF4412 1 200 200 460 - - - 200 200 3.680

AF4532 1 210 210 460 - - - 75 75 1.521

EF1015 12 138 138 158 567 429 173 60 5 0.210

EF1018 12 125 125 315 515 390 330 60 5 0.331

Table 1. Real Case Data
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6. Results of  the proposed method
In  this  section,  we  aim  to  examine  the  performance  of  the  proposed  approaches  KM-3DBFO  and 
KM-3DCGBFO. The model has been implemented using Python, running on a desktop with an Intel® Core™ 
i7-8550U processor with 16GB of  RAM and a  64-bit  platform, using a  Windows 10 operating system. The 
run-time limit for each instance is fixed to the 600s. We first adapted the data set generated by and later on we  
compared our results by adapting 3D-BFDO Algorithm with orientation to handle unstackable constraints and 
IBM ILOG CPLEX optimizer (CPLEX) solver. Consequently, we test our approach on the large data set provided 
by the company and compare our results with the company’s loading results. As the company has two types of 
filters, heavy and light, we first divide them into two groups. For each group, we apply K-Means considering the  
three dimensions of  the packages (see Figure 2).

Figure 2. K-Means Clustering for 15 clusters for real case data

Each object within the clusters is assigned to the stacks (see Figure 3), and the maximum length, depth, and height 
of  these stacks are determined. To achieve more distributed stacks, the upper bound of  the stacks’ dimensions is 
set to half  the dimensions of  a 20-foot container. It is important to note that when calculating the maximum 
dimensions of  the stacks, the gap resulting from this assumption is considered in the calculation of  the container’s 
filling rate.

Figure 3. An example of  stacks
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Subsequently, we assign these stacks to containers using the proposed KM-3DBFO and KM-3DCGBFO methods. 
Typically, CG can exhibit poor performance for large-sized data. However, by creating stacks and reducing the 
sample size through clustering beforehand, we mitigate this issue. We observe that when the number of  clusters is 
low, KM-3DCGBFO performs better, whereas when the number of  clusters is high, the KM-3DBFO algorithm 
performs better. In other words, when the packages have various dimensions, creating fewer clusters facilitates 
efficient stack creation and CG execution. Conversely, when the packages exhibit high diversity and the number of 
items is high, it is advantageous to implement the KM-3DBFO method. As shown in the tables, we first apply our 
methods to the dataset by varying the cluster numbers. Subsequently, we implement these methods with real-case 
data. In Tables 2 and 3, the column U+I indicates the number of  packages. For the CG and KM-3DCGBFO 
methods  reported  in  Table  2,  and  for  the  3D-BFDO  and  KM-3DBFO  approaches  reported  in  Tables  3,  
respectively, the columns R, CPU, and n denote the filling rate of  the first container, the computational time, and 
the number of  containers found by the corresponding algorithms. |CI| and |CU| indicate the number of  clusters 
for light and heavy weight clusters, respectively. In the table, we formulate the data set wtpack1-25-F-10P as follows: 
the first (F) 25 packages have been selected by taking 10 of  each type, and (L) indicates the last objects. In each of  
the data sets, half  of  the packages are designated as stackable (heavy) objects and the other half  as unstackable 
(light) objects. For example, for wtpack1-25-F-10P, as shown in Table  3, the first 125 out of  250 packages are 
assumed to be heavy, while the remaining packages are light. The table demonstrates that when the diversity of  the 
packages is high in the data set, setting a high number of  clusters is more efficient for achieving a high filling rate. 
Note that the effect of  orientation is not included in the tables, as it was observed to have no significant impact on 
this data model. Therefore, we only show results when the orientation parameter is set to 1. We also observe that 
K-Means achieves better performance when the diversity of  the packages is high. We also set time limit to 600 for  
data set.

Sample U+I

CG KM-3DCGBFO

R CPU n R CPU n

wtpack1-25-F-1P 25 2.31 10.2 1 2.31 0.06 1

wtpack1-50-F-1P 50 2.92 600 3 4.38 0.23 1

wtpack1-25-F-2P 50 1.76 600 3 3.26 0.03 1

wtpack1-50-F-2P 100 2.62 600 3 10.41 0.52 1

wtpack1-25-L-1P 25 3.67 6.78 1 3.67 0.67 1

wtpack1-50-L-1P 50 1.71 600 3 10.28 0.92 1

wtpack1-25-L-2P 100 2.70 600 3 2.70 0.67 1

wtpack1-50-L-2P 200 2.71 600 3 14.82 0.92 1

Table 2. Numerical results of  KM-3DCGBFO Approach in Bischoff  and Ratcliff  (1995)
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Sample U+I

3D-BFDO KM-3DBFOa KM-3DBFOb KM-3DBFOc

R CPU n R CPU n R CPU n R CPU n

wtpack1-25-F-10P 250 0.49 14.6 2 0.76 2.4 2 0.75 10.1 2 0.76 9.1 3

wtpack1-25-F-30P 750 0.56 40.9 4 0.95 10.4 4 0.85 8.6 4 0.92 9.1 5

wtpack1-50-F-10P 500 0.57 5.32 4 0.99 4.3 3 0.8 9.1 4 0.85 4.4 4

wtpack1-50-F-15P 750 0.62 15.1 4 0.93 9.5 3 0.84 9.1 4 0.92 9.1 4

wtpack1-100-F-1P 250 0.49 10.7 2 0.7 8.6 1 0.69 3.8 1 0.45 3.8 2

wtpack1-100-F-2P 750 0.51 52.1 3 0.5 0.5 3 0.6 0.4 3 0.61 0.4 3

wtpack1-50-L-10P 500 0.55 55.9 3 0.76 8.4 3 0.74 3.4 3 0.93 4.5 3

wtpack1-50-L-15P 750 0.65 102.3 4 0.91 0.2 4 0.88 2.7 4 0.85 2.7 4
aClusters set to (|CI| = 2, |CU| = 3); bClusters set to (|CI| = 5, |CU| = 5); cClusters set to (|CI| = 7, |CU| = 8).

Table 3. Numerical results of  KM-3DBFO Approach in Bischoff  and Ratcliff  (1995)

Table 4-6 present the comparative results of  different container loading approaches, including manual assignment 
by the company (Manual), and our proposed algorithms: KM-3DBFO, KM-3DCGBFO, and MLKM-3DCGBFO. 
In the tables, in addition to the Table 3,  column  Ro shows rotation. We have also tested our results with the 
commercial loading solver CargoWiz. According to the results from the company’s manual loading process, the 
filling rates achieved were 0.75 for the 20-foot container in the first dataset (1A_20)  and 0.72 for the second 
(2A_20)  dataset  for  the  first  container.  In contrast,  the commercial  CargoWiz solver,  tested with all  relevant 
problem constraints  activated,  provided  filling  rates  of  0.88  and 0.85,  respectively.  Our  proposed  algorithms 
significantly outperformed both manual assignment and the CargoWiz solver, achieving superior filling rates. As 
shown in Table 4, the KM-3DBFO algorithm achieved a filling rate of  0.93 for the 1A_20 dataset with the rotation 
parameter set to 1, representing a 6% improvement over CargoWiz and a 24% improvement compared to the 
company’s manual approach when the numbers of  clusters is set to 100. 

However, as the number of  clusters increased, the filling rates exhibited a decreasing trend, suggesting that while 
clustering improves space utilization, an optimal number of  clusters is crucial to maintain efficiency. Table 5 further 
compares  the  CG-based  methods,  showing  that  KM-3DCGBFO  achieved  even  better  filling  rates  than 
KM-3DBFO but at the cost of  higher computational time. The MLKM-3DCGBFO method provided the highest 
filling rates across all datasets while significantly reducing computational time compared to traditional CG methods. 
Notably, the MLKM-3DCGBFO algorithm achieved a filling rate of  0.96 for the 2A_20 dataset with a considerable 
reduction in CPU time compared to standard KM-3DCGBFO.

Sample RO U+I

3D-BFDO KM-3DBFOa KM-3DBFOb Manual

R CPU n R CPU n R CPU n R

1A_20 1 3775 0.81 >1h >1 0.93 100.2 3 0.85 98.4 3 0.75

1A_20 2 3775 0.80 >1h >1 0.92 121.9 3 0.85 103.5 3 0.75

1A_20 3 3775 0.80 >1h >1 0.92 119.4 3 0.85 102.9 3 0.75

2A_20 1 4148 0.85 >1h >1 0.95 156.2 3 0.82 212.1 3 0.72

2A_20 2 4148 0.85 >1h >1 0.95 156.8 3 0.82 256.3 3 0.72

2A_20 3 4148 0.85 >1h >1 0.94 121.1 3 0.82 278.9 3 0.72
aIn this scenario, the number of  clusters has been set to (|CI| = 100, |CU| = 100).
bIn this scenario, the number of  clusters has been set to (|CI| = 150, |CU| = 150).

Table 4. Comparison of  results for 3D-BFDO, KM-3DBFO and Manual Assignment of  the Company

-113-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8741

Sample U+I

CG KM-3DCGBFOa MLKM-3DCGBFOa Manual

R CPU n R CPU n R CPU n R

1A_20 3775 0.87 >1h >=1 0.94 2600.3 2 0.94 1142.7 2 0.75

2A_20 4148 0.89 >1h >=1 0.96 2778.2 2 0.96 1032.7 2 0.72
aIn this scenario, the number of  clusters has been set to (|CI| = 100, |CU| = 100).

Table 5. Comparison of  results for CG, KM-3DCGBFO, MLKM-3DCGBFO and Manual Assignment of  the Company

Sample U+I

CG KM-3DCGBFOb MLKM-3DCGBFOb Manual

R CPU n R CPU n R CPU n R

1A_20 3775 0.87 >1h >=1 0.90 2621.9 2 0.90 1331.7 2 0.75

2A_20 4148 0.89 >1h >=1 0.91 2856.2 2 0.91 986.3 2 0.72
bIn this scenario, the number of  clusters has been set to (|CI| = 150, |CU| = 150).

Table 6. Comparison of  results for CG, KM-3DCGBFO, MLKM-3DCGBFO and Manual Assignment of  the Company

When integrating ML into CG, the standard CG framework is applied for the first ten iterations, where the SP 
generates a large number of  candidate columns, selecting only those with negative reduced costs into the RMP. 
After the tenth iteration, ML is introduced to predict the likelihood of  new columns having a negative reduced cost. 
This enables the SP to focus on a smaller, more promising subset of  columns rather than exhaustively generating a 
large number of  potential candidates. In the |CI|=150 stack case, while the standard KM-3DCGBFO continues to 
produce an increasing number of  columns—reaching 170 in the final iteration—MLKM-3DCGBFO begins with 
70 suggested columns in iteration ten and gradually refines its output over time. Despite generating fewer columns, 
MLKM-3DCGBFO effectively identifies feasible solutions, with the number of  selected columns in the RMP 
closely aligning with those from the standard KM-3DCGBFO approach. By the final iteration, MLKM-3DCGBFO 
significantly  reduces  computational  overhead,  proposing  only  48  candidate  columns  compared  to  170  in  the 
standard approach, while maintaining a similar level of  solution quality. This demonstrates that ML-assisted column 
selection not only accelerates convergence but also minimizes the number of  SP evaluations, making the approach 
highly scalable for large-scale optimization problems.

In summary, while KM-3DBFO offers a balance between quality and computational efficiency, KM-3DCGBFO 
provides  superior  solution  quality,  and  MLKM-3DCGBFO  enhances  computational  performance  without 
sacrificing solution accuracy. Thus, KM-3DBFO is recommended for scenarios requiring adaptability to high cluster 
counts,  whereas  MLKM-3DCGBFO  is  ideal  for  larger-scale  problems  with  computational  constraints.  The 
comprehensive results of  all algorithms for the real dataset are presented in Figure 4.

Figure 4. Graphical representation of  algorithmic results
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7. Discussion 
The  numerical  results  obtained  in  this  study  demonstrate  that  the  proposed  hybrid  methods—KM-3DBFO, 
KM-3DCGBFO, and MLKM-3DCGBFO—achieve substantial  improvements  in  container  utilization,  runtime 
efficiency,  and scalability  when compared both to  baseline  algorithms and to the  performance characteristics 
reported in recent literature.

The comparative results show that our proposed algorithms deliver substantially higher improvements in container 
utilization than recent Large Neighborhood Search based (LNS) methods. While Yang, Zhou, Zhang, Zhang and 
Jin (2025) reports modest gains of  2.71% and 1.66% over Hybrid Adaptive Large Neighborhood Search (HALNS)
—with average loading rates above 85%—these results are obtained on smaller benchmark datasets. In contrast, 
our  industrial  datasets  contain  3775  and  4148  items,  making  the  problem  significantly  more  complex  and 
heterogeneous. Furthermore, their approach does not incorporate physical stackability constraints, whereas our 
methodology explicitly models real 3D stackability, including vertical support, surface alignment, and load-balance 
requirements.  On  the  real-world  datasets  (1A_20  and  2A_20),  KM-3DBFO increases  the  company’s  manual 
loading  rate  from  75%  to  93%  (+24%)  and  improves  upon  CargoWiz  from  88%  to  94%  (+6%).  The 
MLKM-3DCGBFO algorithm further  raises  utilization  to  96%,  far  exceeding  the  1–3% improvement  range 
reported by Yang et al. (2025). While the Large Neighborhood Search Algorithm based on Q-learning (Q-LNS) 
provides stable performance, our ML-assisted CG method reduces computation time by 40–60% (from 2778 s to 
1032 s) without sacrificing container count or loading quality.  In terms of  computational efficiency,  the three 
proposed methods show clear differences: the baseline 3D-BFDO requires more than one hour on both industrial 
datasets, whereas KM-3DBFO solves the same instances in roughly 100–150 seconds. KM-3DCGBFO achieves 
higher utilization but requires approximately 2600–2800 seconds, and the MLKM-3DCGBFO variant reduces this 
to 1032 seconds while maintaining identical solution quality. Overall, combining clustering-based decomposition 
with CG and ML yields not only superior loading efficiency but also improved scalability and physical feasibility for 
large, heterogeneous industrial datasets where traditional LNS-type methods provide only limited improvement.

The comparative evaluation indicates that the proposed KM-3DBFO, KM-3DCGBFO, and MLKM-3DCGBFO 
methods achieve substantially stronger performance than the LNS framework of  Şafak and Erdoğan (2023), both 
in terms of  utilization levels and scalability under real-world operational constraints. Their LNS obtains high-quality 
solutions on classical benchmark instances (100–250 items), reaching 80–92% utilization within 3–10 minutes time 
limits and achieving optimality in most LN instances when rotation around horizontal axes is restricted. However,  
these  instances  remain  relatively  small  and  structurally  homogeneous  compared  to  real  industrial  settings.  In 
contrast, our experiments involve significantly larger and more heterogeneous datasets, with 3775 and 4148 items 
per instance, scales not addressed in Şafak and Erdoğan (2023). Despite this considerable increase in complexity,  
KM-3DBFO achieves 93% utilization in approximately 100–150 seconds, while MLKM-3DCGBFO reaches 96% 
utilization with a 1,032-second runtime. These results represent clear improvements over both manual loading 
(75–72%). In Şafak and Erdoğan (2023), improvements over state-of-the-art heuristics typically remain within the 1
–3% range; in comparison, our methods provide 6–24% improvements on real industrial data.

Junqueira et al. (2013) reported that pure CG becomes unsuitable for large heterogeneous 3D-CLP instances, often 
failing to converge within standard computation limits. This is consistent with our results: traditional CG exceeded 
the 600s threshold in all wtpack datasets. However, KM-3DCGBFO consistently solved instances within feasible 
time (0.03–0.92s for medium-sized datasets), and MLKM-3DCGBFO further reduced subproblem expansions by 
3.5× (e.g., 170  → 48 columns). This indicates that the hybrid clustering + ML design effectively overcomes the 
convergence bottleneck historically associated with CG in CLP.

ML-assisted CG provides a scalable and physically realistic framework for large, heterogeneous CLPs. Unlike recent 
LNS- and DRL-based approaches, which typically report modest improvements on small benchmark instances, the 
proposed hybrid methods achieve substantially higher utilization and computationally feasible runtimes on real 
industrial datasets while strictly enforcing 3D stackability and stability constraints. The ML-enhanced CG module 
further mitigates classical convergence limitations in CG by reducing unnecessary column expansion and lowering 
overall computation time. Taken together, these findings indicate that the proposed approach offers a more robust, 
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efficient, and operationally applicable solution than existing heuristic, learning-based, or exact frameworks in the 
current literature.

Beyond performance comparisons, the results reveal important theoretical and practical implications. Theoretically, 
they  show  that  clustering-based  decomposition  is  an  effective  mechanism  for  stabilizing  CG  under  high 
heterogeneity, offering a scalable middle ground between purely heuristic strategies and purely exact formulations. 
The addition of  ML-based column prediction also provides empirical evidence that hybrid learning–optimization 
architectures can systematically alleviate the degeneracy and slow convergence issues traditionally associated with 
CG in 3D-CLP. Practically, the method enables logistics companies to load highly diverse products—such as filters, 
oil containers, and mixed industrial packaging—more efficiently while rigorously satisfying real 3D stackability and 
stability requirements. This leads to reduced transportation costs, fewer containers, and more reliable loading plans, 
directly supporting operational efficiency in real-world logistics environments. 

8. Conclusion 
In  this  study,  we  proposed  three  innovative  heuristic  algorithms:  KM-3DBFO,  KM-3DCGBFO,  and 
MLKM-3DCGBFO, to tackle the CLP in real-world logistics scenarios. These algorithms combine the strengths of 
K-Means clustering with advanced packing techniques such as the 3D-BFDO and CG approaches and incorporate 
ML to enhance solution quality and computational efficiency.

Our contributions are threefold:

1. We developed a novel integration of  K-Means clustering with 3D packing algorithms, enabling improved 
space utilization and computational scalability in large-scale logistics problems.

2. We introduced ML into the CG framework (MLKM-3DCGBFO) to predict promising configurations, 
significantly reducing computational overhead and achieving superior filling rates.

3. We customized practical constraints including container stability, stackability, weight limits, and package 
rotation requirements into the algorithms, making them adaptable to real-world industrial requirements.

Through comparative analysis of  real-case datasets (as detailed in Tables 3 and 4), we demonstrated the superiority 
of  our proposed algorithms. The KM-3DBFO algorithm performed well in scenarios with lower cluster counts, 
leveraging  K-Means  clustering  to  optimize  container  space  while  adapting  to  diverse  item distributions.  The 
KM-3DCGBFO approach, which benefits from the CG framework, showed enhanced performance with higher 
cluster numbers, highlighting its ability to handle detailed packing configurations effectively.

The  ML-enhanced  MLKM-3DCGBFO algorithm consistently  outperformed all  other  methods,  achieving the 
highest  filling  rates  while  maintaining  competitive  runtimes.  For  example,  in  the  1A_20  dataset, 
MLKM-3DCGBFO achieved a filling rate of  0.94, improving upon CargoWiz’s results by 6% and surpassing the 
company’s  manual  assignments  by  25%.  This  demonstrates  the  added  value  of  ML in  predicting  promising 
columns for the CG process, reducing unnecessary computations, and enhancing runtime efficiency. Furthermore, 
the results underscored the importance of  balancing cluster numbers for different algorithms. While higher cluster 
counts favored CG-based approaches, lower cluster counts resulted in better performance for the KM-3DBFO 
algorithm. This highlights the importance of  considering package diversity, dimensions, and problem characteristics 
when selecting an appropriate loading strategy.

The proposed algorithms were validated in a real-world setting at a Turkish Filter Factory, where they successfully 
optimized container loading operations while adhering to specific industrial constraints. Metrics such as filling rate, 
runtime,  and  container  utilization  demonstrated  the  scalability  and  adaptability  of  the  algorithms.  Notably,  the 
MLKM-3DCGBFO algorithm provided the most robust solution,  balancing solution quality  and computational 
efficiency across all tested scenarios. While the proposed approach has shown strong performance in structured 
logistics settings (e.g., filter manufacturing), its effectiveness in highly heterogeneous packaging environments remains 
an open question. Future work should explore adaptations for dynamic and real-time optimization scenarios.

As a result, this study introduces a comprehensive framework for optimizing container loading in logistics, combining 
clustering techniques, advanced packing methods, and ML. By doing so, we address practical constraints and provide 
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scalable  solutions  for  complex  logistics  problems.  The  contributions  of  this  research  extend beyond academic 
relevance, offering actionable insights for real-world logistics operations. Future research can further explore:

1. The integration of  real-time optimization systems to dynamically adapt to changing logistics conditions.

2. Multi-objective optimization frameworks to balance conflicting goals such as cost, time, and environmental 
impact.

3. Enhancing ML models to predict loading configurations with greater accuracy and adaptability to diverse 
datasets.

Our findings demonstrate the potential of  hybrid approaches to revolutionize container loading operations, paving 
the way for greener, more efficient, and cost-effective logistics solutions.
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