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Abstract:

Purpose: We consider the long-term survival of  the newsvendor’s supply chain (SC). In this regard, the 
main contribution of  this paper is to identify and analyze, two risks arising from the random nature of  the 
demand, a fundamental feature of  the newsvendor problem (NVP).  These risks include a decrease in 
demand caused by stock shortages and vendor bankruptcy due to insufficient inflows.

Design/methodology/approach: We present a mathematical model of  the newsvendor’s SC with three 
components: the Producer (P), the Vendor (V) and the Consumers (C). The model takes into account the 
relation between the components of  the SC, the income and operative costs of  P and V and the initial 
funds of  V. We solve the model considering several assumptions related with the cost, the initial funds and 
the demand of  C.

Findings: We identify and analyze two risks that threaten the continuity of  the newsvendor’s SC in 
the long term. The first  comes from the decreasing in the demand derived from the low level of  
service that can result from optimizing the joint income of  P and V without considering a level of  
service  constraint,  which  has  deserved  little  attention  in  the  literature  on  the  NVP.  In  fact,  an  
unacceptable low service level conflicts with the assumption that demand remains stable over time.  
The second risk is that of  V’s bankruptcy due to insufficient monetary inflows, what can happen even 
if  the expected value of  V’s daily net income is positive.  The expected value of  the daily unsatisfied 
demand and the probability of  V’s survival throughout a given time horizon are respectively proposed 
as indicators of  the two risks mentioned. Procedures to calculate the indicators are described and  
illustrated with a numeric example.

Practical implications: First, in the design of  the SC, under conditions similar to those of  the NVP, a 
decision-maker must compare the options of  resorting to V or not, considering the consequences on 
income and risk. Second, the objective of  coordinating the SC, understood as the maximization of  the 
joint income of  P and V, has the limitation of  not taking into account that the consumers, which are also 
part of  the SC, can leave it when they deem that the service is unsatisfactory. Third, P must be aware, when 
setting  the  parameters  of  the  SC,  that  its  decisions  determine  those  of  V  and  their  consequences; 
therefore, P must take into consideration the economic survival of  V, in order to avoid disruptions in the 
SC and the negative consequences they imply for P itself.

Originality/value: Our approach is different from the most usual, which is focused on the criteria and the 
optimization  procedures  of  the  vendor.  Instead,  we  consider  the  whole  SC,  including  one  essential 
component of  it, namely, the consumers. 
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1. Introduction
The traditional version of  the newsvendor problem (NVP) deals with a supply chain (hereafter, SC) consisting of 
three  entities  (the  publisher,  P,  the  vendor,  V,  and the  consumers,  C,  who generate  a  random demand of  a 
perishable product, which lasts only for one period, say a day). P decides and informs V of  the price at which V 
may purchase the product and the price at which it will pay for the units that V returns at the end of  the period. 
Then V, who is assumed to know C’s probability law of  demand, calculates how many units he should buy from P, 
at the beginning of  the period, to maximize a function of  its own daily net revenues (their expected value, for 
instance). This determines the sales, service level and income of  P and V. There are also versions of  the problem in 
which the SC consists of  only two entities, P and C (P manufactures the product and undertakes its sale).

In the basic versions of  the NVP the question consists in determining the size, q, of  the daily order from V to P.

The randomness of  the demand implies risks that can be more or less shared by P, V, and C. The literature dealing 
with  this  question  sometimes  refers  to  the  risk  of  P,  but  mostly  to  that  of  V,  basically  in  relation  to  the 
newsvendor’s criteria for determining the value of  q. 

The approach taken in this work is different, because it is not concerned with the risk inherent to the dispersion of 
income in a stable SC, but with the risk that the SC cannot survive, taking into account that, when the SC have to  
work indefinitely (like, of  course, that of  the newspaper vendor) the concatenation of  periods involves risks that,  
despite the fact that they may even involve the collapse of  the SC, have been little studied.

We adopt two assumptions already present in the first formalization of  the problem, namely, that both P and V 
know the distribution law of  the demand, which is the same for all periods, and that the price at what V sells the 
product to C is a fixed market value.

It is also assumed that P’s total revenue, i.e., the sum of  that provided by the newsvendor SC and that coming from 
other sources (e.g.  newspaper subscriptions) is  sufficient to ensure the continuity of  P,  what implies that the 
collapse of  the SC can only come from V and C. Therefore, this article focuses on two critical risks that threaten 
the survival of  newsvendor’s SC. 

First, coordinating P and V may lead to a daily order size, q, that results in a very low service level for C, with fill 
rates that would be considered unacceptable in real-world inventory management. This situation can lead to a 
gradual decline in demand due to frequent stockouts. A high proportion of  unsatisfied demand contradicts the 
assumption that the probability distribution of  demand remains stable over time. In practice, this typically would 
lead to a loss of  customers, who will turn to other suppliers or substitute products. Eventually, this can cause V to 
suffer from a lack of  income, which may result in the collapse of  the entire SC.

Second, the bankruptcy of  V caused by insufficient net income, as a result of  the fluctuations of  the demand, even 
if  its  expected  value  would  be  high  enough  to  ensure  the  newsvendor’s  survival.  This  is  a  very  common 
phenomenon, the specialized media often echo the economic failures of  franchised companies in various sectors of 
activity, such as clothing and fashion sales. Of  course, the risk of  bankruptcy depends on the criteria that V uses to 
determining the size of  the daily order to P; however, once this criterion is known by P, the results, in the frame of 
the contract between P and V, depends exclusively on the values that P itself  decides to give to the parameters of  
the SC. 

The aimed contribution of  the present paper is to analyze both mentioned risks in order to take them into account 
in the design of  the SC. For this purpose, we propose indicators to quantify these risks and procedures to calculate 
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them and we describe a procedure to consider the indicators in the design of  the SC so that they reach the values  
desired by P.

The configuration of  the rest of  the paper is as follows. Section 2 presents a synthesis, focused on the indicated 
objective, of  the state of  the art on NVP. The specification of  the model and the analysis of  the behavior of  the 
SC and its repercussions on its components (in particular on V and C) are dealt with in section 3. Section 4, which 
closes the article, includes the conclusions, with an outline of  the steps of  the decision process in the design of  the 
SC of  a perishable product with random demand, suggestions for prospective research, and managerial insights.

2. State of  the Art
Although  some  authors  trace  the  origins  of  the  NVP  to  an  article  by  Edgeworth  from  the  19th  century 
(Edgeworth,  1888),  others  do  not  find  any  significant  connection.  NVP was  introduced  in  the  literature  of 
inventory management by Arrow, Harris and Marschak (1951) and became popular, so to speak, in the academic 
world following the publication of  Wagner’s book (Wagner, 1969) on operations research (see Porteus, 2008, for a 
historical background of  the problem).

Subsequently, it has given rise to a large number of  publications, among which we mention only those most directly 
related to the objective of  our research. In particular, we do not consider articles on pricing (affecting demand, 
through price changes or discounts), because the assumptions we adopt are incompatible with the possibility that P 
or V modify the market price, p. 

Khouja (1999) reviews the literature, studies extensions of  the NVP and makes suggestions for research. Porteus 
(2008) provides an excellent introduction to the NVP. Qin, Wang, Vakharia, Chen and Seref  (2011) places the NVP 
in the framework of  a SC of  three elements and studies discount policies from P to V, and the repercussion on the 
volume of  the order of  the risk profile of  V and of  actions on the market. Choi (2012) includes sixteen chapters  
that study variants of  the NVP.

The consideration of  the NVP in the frame of  SC management leads very naturally to focus on the question of  the 
coordination. In this regard, Pasternack (1985) is particularly interesting because it considers channel optimization 
(which, in the case of  NVP, comes to be the same as P and V coordination). He concludes that this can be 
achieved, even in an environment with multiple sellers with different distributions of  the demand, with policies of 
admitting unlimited returns with partial credit, provided that the values of  v (unit price at which P sells the product 
to V) and r (return unit price of  the unsold units) satisfy a certain equation that is presented in the article and that  
does not depend on the distribution of  demand. Each of  the infinite pairs of  values that satisfy the equation 
corresponds to a different distribution between P and V of  the expected profit of  the channel. It also shows that 
P’s policy of  not accepting returns is suboptimal and so is that of  accepting unlimited returns for full credit. It also 
shows that policies allowing only partial returns are not appropriate in an environment of  multiple sellers having 
different  demand distributions,  because  then  the  optimal  values  of  r and  v depend on each seller’s  demand 
distribution.

Webster and Weng (2000),  given the results of  Pasternack (1985),  introduces the concept of  risk-free returns 
policies, which are those that, in spite of  including the possibility of  return, are exempt from risk for P, and with an 
expected value of  P’s profit not less than that corresponding to the no-returns policy, which is the most obvious in 
order to avoid the risk of  P.  Koulamas (2006),  instead,  proposes  to achieve coordination with profit-sharing 
policies, without return, which require the ability of  the manufacturer to monitor retail sales. Chen (2011) analyzes 
the revenue optimization of  P with a no-returns policy and hence with deterministic revenue for P, determines v*, 
the optimal value of  v in this framework and compares this policy with those defined by a discount on the price v* 

and admission of  returns, which may be advantageous, relative to that of  no-returns, both for the expected values 
of  profits of  P and V. Becker-Peth, Katok and Thonemann (2013) considers the case when the behavior of  V is 
irrational but predictable. 

Many papers have adopted assumptions different from that of  V’s risk-neutrality, especially after the introduction 
of  prospect  theory by Kahneman and Tversky (1979),  whose impact  on NVP is  analyzed in Nagarajan and 
Shechter (2014) and Surti, Celani and Gajpal (2020). Yamini (2023) offers a literature review on the impact of  loss 
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aversion on the NVP, which is dealt with in Wang and Webster (2007, 2009), Xu, Wang, Dang and Ji (2017) and 
Wu, Bai and Zhu (2018). Keren and Pliskin (2006) and Katariya, Cetinkaya and Tekin (2014) consider risk aversion 
in the NVP, the last comparing risk-neutral  and risk-averse newsvendor. Choi,  Li and Houmin (2008) applies 
mean-variance analysis; Xu, Meng, Shen, Jiang and Ji (2015) and Chen (2024) the Conditional Value at Risk (CVaR) 
approach. 

Chen (2024) uses also CVaR and points out that the objective of  maximizing this criterion is in conflict with that of 
having a satisfactory fill rate. This is very interesting, because manifests that some approaches of  the NVP show 
scarce connection with the usual theory and practice of  inventory management. In fact, maximizing the utility 
criteria of  V may result in unacceptable values of  the fill rate and, thus, is surprising that this issue had deserved so 
little attention so far.

Therefore, we can conclude from this review of  the literature that:

On the one hand, there is abundant research work on the way in which V can deal with risk, within a framework set 
by P. But little attention has been devoted to the way in which P’s decisions impact the risk of  V and, finally, in that 
of  the whole SC. 

And,  on the other  hand,  there  is  a  need to integrate  the consideration of  the  fill  rate  in  the design of  the 
newsvendor SC. 

The aim of  the present paper is to contribute to fill these just now mentioned gaps.

3. The model and an illustrative example
Presented with current terminology, the NVP is considered, as indicated above, in the frame of  a SC with three 
components:

P: the publisher or in general the manufacturer of  a perishable product (such as printed newspapers, bakery,  
fashion or holiday products…) with a useful life of  one period (which, WLOG, we usually will refer to as one 
day). P is risk-neutral and can produce and make available at the beginning of  every day any amount of  the  
product, with a variable unit production cost c monetary unit (hereafter, MU), a market price p MU and a null 
residual  value at  the end of  the period.  P can choose to sell  the product directly to the market,  without 
intermediaries (with a fixed cost per period equal to K MU) or to use an intermediary, V.

V: the vendor (perhaps a single newsvendor; however, it can also be a set of  vendors with disjoint business 
areas, but we will not consider this possibility). V, which is risk-neutral, can make at the beginning of  each period 
(i. e., before observing the actual demand), a single order to P for the number of  units, q, it considers convenient 
that P will sell to it at a price v MU, where c < v < p. V determines the size of  the order for the purpose to 
optimize the expected value of  its utility, assimilated here to the expected value of  the corresponding income. V 
has a daily fixed cost equal to  k MU and has no variable costs (that is, those that depend on the volume of 
sales).

C: the consumers, who present a finite random demand, with a probability distribution known to P and V. V 
sells daily to C, at the price p, determined by the market, a number of  units that is the minimum between q and 
the total demand from C, since V does not have the possibility to make a complementary order to P in the  
course of  the day. If  P so stipulates, V may return to P, at the end of  the period, the unsold units and receive a 
return unit price, r MU, such that r < v. We therefore limit ourselves to policies with unlimited returns paid from 
P to V below the price v.

Sometimes disposal costs are also considered, but we dispense with them for the sake of  simplicity and because 
that they would not contribute anything substantial to the consideration of  the risks that are the subject of  our 
article.

The daily demand is represented by a random continuous variable,  x, with a probability density function,  h(x), 
continuous, such that h(x)>0 for xm ≤ x ≤ xM and h(x) = 0 elsewhere, known by P and V, with an expected value x̄ ; 
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let H(x) the corresponding distribution function. Obviously, in practice xM is finite, although, if  appropriate, in the 
model one can deal with a law such that h(x) > 0 for xm ≤ x < ∞.

We do not consider here costs or benefits derived from the elimination or recycling of  unsold units, nor costs for 
unsatisfied demands due to lack of  stock (shortage costs). Although shortage cost is a very present parameter in the 
inventory management literature and can easily be introduced in the model (see, for example: Pasternack, 1985; 
Chen,  2011),  in practice it  is  difficult  to determine its value, so we have preferred to take into consideration 
stockouts by way of  service level, measured as the expected value of  the daily number of  units not sold due to lack 
of  stock, U(q) or that of  the fill rate φ(q) = 100 · S(q)/x̄ , where S(q) is the expected value of  the daily sales.

We will assume that P cannot go bankrupt because it has other safe and sufficient sources of  income, other than 
those coming from the SC considered, but that V only has a fund of  F MU for contingencies and no other income 
that the corresponding to sales to C. So, V can go bankrupt, given the random nature of  the demand, unless its 
income has a high enough lower bound.

Under the indicated assumptions, it is easy to adapt the results that can be found in several papers and particularly 
in Pasternack (1985) and that, therefore, do not need to be justified here. 

Let q represent the number of  units of  the product available for sale each day, regardless of  whether P sells directly 
or through V. The expected value of  the number of  units sold in a period, denoted as S(q), is:

 + (1)

Therefore, the expected value of  the number of  unsold (and therefore returned) units, denoted as R(q), is:

(2)

And that of  the unsatisfied demand, denoted as U(q):

(3)

Table 1 shows the notation that has been defined up to this point and other that will be used later.

P The publisher|producer, risk-neutral.

c Unit variable production cost of  the item.

p Market price of  the item.

K Fixed  daily  cost  assumed  by  P if  it  decides  to  sale  directly  the  item  to  the  market,  without 
intermediaries.

V The vendor, risk-neutral.

v The price at which P sells the item to V.

r The price at which P buys to V the unsold units of  each period.

q The number of  units that P or V put for sale daily.

k Fixed daily cost of  V.

C The consumers (the market).

x Continuous random variable corresponding to the daily demand from C to V (xm ≤ x ≤ xM).

h(x) Probability density function of  x.

x̄ Expected value of  x.

H(x) Cumulative distribution function of  x.
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S(q) Expected value of  the daily sales.

R(q) Expected value of  the daily unsold units, which V returns to P.

U(q) Expected value of  the daily unsatisfied C’s demands.

Û Maximum admissible value for the expected unsatisfied daily demands

φ(q) Fill rate, expected value of  the ratio between unsatisfied and satisfied demands from C to V, expressed 
usually as a percentage φ(q) = 100 · S(q)/x̄ .

E(q) Expected value of  the daily gross income of  P if  P sells the product directly to C.

Ẽ(q) = E(q) – K Expected value of  the daily net income of  P if  P sells the product directly to C.

q*
p Value of  q that maximizes the expected value of  P’s daily income if  P sells the product directly to C.

E(r,v,q) Expected value of  the daily income of  P if  the product is sold by V.

e(r,v,q) Expected value of  the daily gross income of  V if  the product is sold by V.

ẽ(r,v,q) = e(r,v,q) – k Expected value of  the daily net income of  V if  the product is sold by V.

∑(q) Expected value of  the daily net income of  the SC if  the product is sold by V.

q*
v Value of  q that maximizes the expected value of  V’s daily income.

q*
sc Value of  q that maximizes the expected value of  the SC’s daily income.

ê Target value for the expected value of  the daily gross income of  V.

r̂� Highest value of  r so that e is no lower than ê.

ρ The ratio (p – v)/(p – r).

F Initial reserve of  V’s funds.

T Periodicity (number of  days) of  the payments from V to P and, also, of  the payments of  the fixed cost 
of  V.

n Number of  cycles of  T days.

s(T,n) Survival probability of  V after n cycles of  T days.

ŝ Minimum admissible value of  s(T,n).

Table 1. Notation used in this section and the following ones

To illustrate with an example the developments that follow we will use the data indicated below:

c = 0.3 MU, p = 1.5 MU, h(x) = 0.002 (0 ≤ x ≤ 500), K = 10, k = 5

The fact that  h(x) is a uniform law U[0,xM] (i.e.,  h(x) = 1/ xM, 0 ≤  x ≤  xM ;  h(x) = 0,  x>xM) makes easier 
calculations:  H(x) = x/xM, 0 ≤ x ≤ xM; H(x) = 1,  x>xM;  x̄  = xM/2; H-1(x) = xM·x. In the example,  x̄  = 250, 
H-1(x) = 500·x.

3.1. The Case of  Direct Sale From P to C and the Risk Derived from Unsatisfied Demand 

In this case (SC with two components) P’s income is random and it must assume the fixed cost K.

The expected value of  P’s income is: 

(4)

And, deducting the fixed costs, K, we get the expected value of  net income:

(5)

The value of  q that  maximizes the income is deduced from the zero-derivative condition,  which, due to the 
concavity of  the functions, is necessary and sufficient for maximum. As this gives , we have:
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(6)

With the data of  the example, it results q*
p = H-1(0.8) = 400, and, according respectively to eqs. (1), (2), (3) and (5): 

S(q*
p) = 160+400·0.2 = 240, R(q*

p) = 400-240 = 160, U(q*
p) = 250-240 = 10, Ẽ(q*

p) = 1.5·240-0.3·400-10 = 230; and, 
in accordance of  this definition in Table 1, φ(q*

p) = (240/250)·100 = 96.00,

If  the fill rate is too low (as that of  the example would might be in practice), the assumption that the demand 
density function remains unchanged over time is unrealistic.

If  P considers that the value of  U(q*
p) is too high, it must increase the value of  q, what implies a reduction in the 

value of  E(q). 

If  the admissible value for the expected unsatisfied daily demands is Û, a value (q̂ *
p)  must be found such that 

S(q̂ *
p) = x̄  – Û.

In the example, with  Û = 1, the result is  S(q*
p)  = 249. From which we deduce  q̂ *

p = 468.38. By imposing the 
condition Û ≤1 the value of  E goes from 240 MU, when the value of  U is not restricted, to 232.99 MU. 

Note that Û = 0 can only be attained, with q = xM, if  the demand has a finite maximum value.

3.2. The Case of  Sale Through V and the Risk of  the Newsvendor’s Bankruptcy

If  the product reaches C via V, the expected values of  the revenues of  P and V, disregarding V’s fixed costs, are,  
respectively

(7)

(8)

And therefore, the expected value of  the daily gross income of  the SC is:

(9)

Which coincides with the expected value of  the daily gross income of  P in the case analyzed in 3.1 (if  we ignore the 
fixed costs, the monetary exchanges between P and V, which take place inside the SC, have no repercussions on the 
overall result).

Note that, unlike Σ, which depends only on q,  E and e depend on r and v as well. In other words, the value of  q 
determines the overall result of  the SC, but the distribution of  this result between P and V depends on the pair (r,v).

It should be noted that the expected value of  V’s available funds as a result of  daily operations is:

(10)

The optimal values of  q for P, V, and the SC are deduced from the zero-derivative condition, which due to the 
concavity of  the functions, is a necessary and sufficient condition for maximum:

(11)

And it must be borne in mind that the value of  q is determined by V, based on what it considers to be data, among 
which the values of  v and r which for P are decision variables. Although apparently it is V who determines  q, 
actually V’s behavior is the result of  P’s decisions. Therefore, P may predict the value of  q*

v, provided that V knows 
h(x) and is able to determine the optimum value of  q for the adopted criterion (in the present paper, the expected 
value of  the daily income).
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The value of  q*
v (and thus the overall SC result) depends on the pair (r,v), but it is the same for all pairs that yield the 

same result for ρ = (p-v)/(p-r). Instead, the distribution between P and V of  the SC income is different for each pair 
(r,v). 

The best possible result for the tandem P-V as a whole is obtained when:

(12)

Or, equivalently:

(13)

By resorting to the intermediary V, P saves the fixed costs K, but continues to have random income unless it admits 
no returns (r = 0). When this policy is adopted, E, e, and Σ depend only on v and the daily number of  units put on 
sale is:

(14)

Then P, to optimize its income, must solve the following problem:

in relation to which, Chen (2011) shows that, with h(x) continuous, there exists a single optimal value of  v, which, if 
h(x)/H(x) is decreasing, is <p.

However, since the maximum of  Σ(q) is reached for q*
sc = H-1((p-c)/p), it is clear that, with r = 0, the optimal value 

of  Σ(q)  will  be  different  and,  therefore,  less  than  the  one  corresponding  to  the  P-V  coordination  since 
(p-c)⁄p = (p-v)⁄p, unless v = c, with which the SC would be infeasible because P’s income would be nil. 

In the case of  the example, if  the sale is made via V, without return (r = 0), with v = c we have q*
v = H-1(0.8) = 400. 

P and V are coordinated, with S(q*
v) = 240, E(q*

v) = 0, e(q*
v) = 240, Σ(q*

v) = 240, R(q*
v) = 160, U(q*

v) = 10. That is, the 
SC is inviable from the point of  view of  P, as indicated above.

However, with r = 0 the optimal value of  v for P, is 0.9, from which q*
v = H-1(0.4) = 200, S(q*

v) = 160, E(q*
v) = 120, 

e(q*
v) = 60, Σ(q*

v) = 180, R(q*
v) = 40, U(q*

v) = 90, φ(q*
v) = 64.00. 

In this example, the no-returns policy implies a 25% reduction in SC results, relative to those obtainable with the 
P-V coordination, and the expected value of  unserved demands is multiplied by 9, with a clearly unacceptable fill 
rate. P’s expected income, although K is spared, has been reduced to slightly more than half  of  P’s net income 
under the direct sale option. The only advantage for P is that its income is deterministic.

That is, as established in Pasternack (1985), the policy of  not admitting returns is suboptimal and gives rise to a  
result for the total SC lower than that obtained if  P and V are coordinated. And the consequence is (Koulamas,  
2006) the double marginalization, i.e. the fact that P and V obtain a lower income than what they could achieve with 
a policy of  P that coordinated these two components of  the SC.

If  P adopts an unlimited return acceptance policy, with 0 < r < v, the coordination of  P and V is achieved when 
(p-c)⁄p = (p-v)⁄(p-r), equivalent to:

 (15)

Where ρ*
p = (p-c)/p (in the example, v = 0.8·r+0.3). With this condition, q*

v = q*
p and, without considering the fixed 

costs, the total result of  the SC is the same as the optimum corresponding to the case of  the SC with two elements. 
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The distribution of  this result between P and V, depends on the values of  the pair (r,v) linked by the equation 
v = ρ*

p · r + c, from which it results:

(16)

And since, with the P-V coordination, the value of  q = H-1(ρ*
p) and consequently the value of  S do not depend on 

r, E is a linear function of  r, regardless of  the function h(x):

(17)

With α = S[H-1(ρ*
p)] – (1-ρ*

p)·H-1(ρ*
p). Therefore:

(18)

Where Σ, with the P-V coordination, does not depend on r.

So, E  ⟶ 0 as r  ⟶ 0, and E  ⟶ Σ as r  ⟶ v  ⟶ p, while e has the opposite behavior. The SC is not viable for r = p 
nor for r = 0 because, respectively, the revenues of  V and P are zero.

Given these expressions, is straightforward to determine the highest value of  r, r̂, so that e is no lower than a given 
value, ê.

It is worth noting that the latter developments and, specifically, the linear dependence of  E and e with respect to r will 
remain true as long as v i r satisfy an expression of  the form v = ρ · r + p·(1-ρ), since this implies that (p-v)⁄(p-r) = ρ 
and that the pairs (r,v) satisfying this relation lead to the same value of  q. If  (for example, in order to guarantee a 
certain service level) the condition q = q̂  is imposed, this can be achieved with v = ·r + p·(1- ), where  = H(q̂ ).

It is striking that high values of  r, which seem to be favorable to V, when P and V are coordinated actually imply 
low values of  e, because, for a given q, v grows with r. And if  P optimizes its own income quickly drags V into ruin. 
Therefore, P has to settle to obtaining at most an expected value of  its income equal to Σ-k, which is equivalent to 
ensuring V an expected value of  gross income e = k (therefore, an expected value of  the net income equal to 0). 
However, given the random nature of  the income of  V, this does not ensure its survival, as discussed below.

In  the  example,  without  the  service  level  condition,  E = 160·r,  e = 240-160·r;  with  ê =  k = 5  it  results 
r ≤ r̂  = 1,46875, v≤1,475.

Given the random nature of  demand, V has a risk of  bankruptcy that depends on the distribution of  demand and 
the parameters that shape the system. In the example considered, the probability that any day V does not have an 
income equal to or greater than 0, with values of  r and v that coordinate P and V (v = 0.8·r + 0.3) is 0.16. With the 
same assumption, the probability that the income does not exceed the value of  k = 5 goes from 1/6 for r = 0 to 
0.8 for r = 1.484375 (and is equal to 1 for higher values).

However, in general determining the risk of  bankruptcy is more complex, because it depends not only on k, but 
also on the amount,  F, the reserve of  funds of  V, on the periodicity of  liquidations from V to P, and of  the 
payment of  the daily fixed costs, k.

If  the fixed sales do not ensure a sufficient income, in general the random nature of  the demand implies the risk of 
bankruptcy of  V.

We propose as a criterion, in relation to this risk, that the survival probability of  V, after a certain number of  days, 
must be greater than or equal to a certain threshold ŝ.

We will assume that the periodicity of  the payments from V to P and of  the payment of  the daily fixed costs, k, is 
equal, in both cases, to T days. And it must be determined the minimum value of  the expected value of  the gross 
income of  V, ê, so that the survival probability of  V after n cycles of  T days, s(T,n), satisfies the indicated criterion.

Once ê is determined, it is immediate to calculate the pair (r,v) that ensures this value of  the expected value of  V’s 
income.
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To calculate ê it must be taken into account that the probability law of  the gross income of  V has the peculiarity of 
being continuous in the interval [(p-r)·xm-(v-r)·q,(p-v)·q), with a value of  1-H(q) when it reach the value (p-v)·q. For 
this reason, unless T is very large, the approximation to the normal distribution of  the sum of  the incomes of  the T 
days comprising a settlement cycle is not appropriate and the specific development shown in the Appendix is 
required (the Appendix also includes the application to the case that the demand follows a uniform distribution).

Thus, it has been calculated, with the data of  the example and r = 1.46875 (which implies v = 1.4727 and e = 5), the 
probability law of  the gross income of  V generated during a cycle of  T = 7 days (which is shown in Figure 1). 
Moreover, the survival probability of  V has been calculated, with F = 0, as a function of  n, the number of  cycles of 
7 days elapsed since the start of  its activity (Figure 2), and the probability law of  the funds of  V available after 10 
weeks, in case it has survived the previous weeks (Figure 3).

Figure 1. Probability law of  the gross income of  V generated during a cycle of  7 days, 
with xm = 0, xM = 500, k = 5, F = 0, and values of  r, v, q satisfying e(r,v,q) = k

Figure 2. Survival probability of  V as a function of  the number of  cycles of  7 days elapsed since the start 
of  its activity, with xm = 0, xM = 500, k = 5, F = 0, and values of  r, v, q satisfying e(r,v,q) = k

Figure 3. Probability law of  the funds of  V available after 10 cycles of  7 days, in case it has survived 
the previous cycles, with xm = 0, xM = 500, k = 5, F = 0, and values of  r, v, q satisfying e(r,v,q) = k
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The value of  ê|s(T,n) ≥ ŝ must be found iteratively, either by progressively increasing the value of  e or by means of 
a binary search, for example. Figure 4 shows the values of  s(7,10) for several values of  e, with k = 5 and F = 0. For 
ŝ = 0.99 and ŝ = 0.999, the resulting values for ê are, respectively, 18.16 and 80.80.

Figure 4. Survival probability of  V after 10 cycles of  7 days as a function of  the expected value 
of  the daily gross income of  V, e(r,v,q), with xm = 0, xM = 500, k = 5, and F = 0

Alternatively, the value of  ê corresponding to a given ŝ, can be obtained by simulation (in short, it is a matter of 
estimating, as a proportion, s(T,n)).

Additionally, some sensitivity analysis has been done to studying how the survival probability depends on the length 
of  the cycle, T, on the fixed daily cost of  V, k, and on the variance of  the demand. In all cases, the values of  r, v, q 
assure that the expected value of  the daily gross income of  V, e(r,v,q), is equal to k.

Figure 5 shows the survival probability during the first 30 days of  activity for T = 1,2,…,7, with k = 5, and F = 0.

Figure 5. Survival probability of  V during the first 30 days of  activity for T = 1,2,…,7, 
with xm = 0, xM = 500, k = 5, F = 0, and values of  r, v, q satisfying e(r,v,q) = k

As for the fixed daily  cost  of  V,  several  values of  k has been considered,  with initial  reserve of  V’s  funds, 
F = 0.01·k, 0.1·k, … , 5·k. With this assumptions, the calculations show that survival probability does not depend 
on  k but,  as  expected,  it  does on  F/k.  Figure 6 shows the survival  probability  after  4 cycles  of  7 days for 
k ∈ [5,100] and F/k  ∈ [0,5].

As for the variance, several probability laws of  the demand has been considered, all of  them continuous uniform 
with different values for xm and xM and with the same expected value ((xm+xM)⁄2 = 250). In the case that F = 0, we 
obtained that the survival probability does not depend on xm and xM. For F>0, Figure 7a and Figure 7b show for 
F/k = 0.01 and F/k = 1, respectively, the survival probability for xm∈{0, 50, 100, 150, 200, 225, 245} with T = 7, 
k = 5.
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Figure 6. Survival probability of  V after 4 cycles of  7 days, for several values of  k and F/k, 
with xm = 0, xM = 500, k = 5, F = 0, and values of  r, v, q satisfying e(r,v,q) = k

Figure 7a. Survival probability of  V for several values of  xm and xM with 
T = 7, k = 5, F = 0.05 and values of  r, v, q satisfying e(r,v,q) = k

Figure 7b. Survival probability of  V for several values of  xm and xM with 
T = 7, k = 5, F = 5 and values of  r, v, q satisfying e(r,v,q) = k

4. Conclusions on the SC Design Process for the NVP and Managerial Insights
This  article  adopts  an  approach  to  the  NVP  that  differs  markedly  from  the  standard  one,  which  typically 
emphasizes the vendor’s criteria and optimization procedures in a given setting.

Instead, we focus on the design of  the SC under the assumptions that define the NVP, taking into account one of 
its essential components: the consumers. This point of  view come to the light two risks that pose long-term threats 
to the continuity of  the newsvendor’s SC.

The first of  the two mentioned risks comes from the decreasing in the demand derived from the low level of 
service  that  can result  from optimizing the joint  income of  P and V without considering a  level  of  service 
constraint, which, although it is an essential characteristic of  any system of  inventory management, has deserved 
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little attention in a substantial portion of  the literature on the NVP. In fact, an unacceptable low level of  service is  
hardly compatible with the assumption that the law of  the demand does not change throughout the time.

The second risk is that of  V’s bankruptcy due to insufficient monetary inflows, what can happen even if  the 
expected value of  V’s daily net income is positive. 

Indicators are proposed to measure these risks and procedures to calculate them.

The results shown in the previous section suggest, to tune the SC, the sequence of  steps shown in Figure 8.

Data: 

Calculate , , 

If  , calculate  |

calculate 

Calculate, with , 

calculate 

Figure 8. Calculations for SC tuning

The decision between SC with or without V must take into account the results obtained with the calculation 
process summarized in Figure 8. It is clear that the specific criteria for choosing one or another option depend on 
the characteristics of  P, V and C.

It is clear that the adoption, in this article, of  some of  the most common assumptions in the definition of  NVP 
imply limitations in some of  our proposals, although the qualitative considerations on the survival risks of  the SC 
are essentially derived from the randomness of  demand. In general, the probability law of  demand will not be 
known a priori, but can be inferred from the available market data in successive periods. Other assumptions, of 
course, may be incompatible with specific real situations, which suggests lines of  research aimed at expanding the 
scope of  our findings. Specifically, the extension of  the calculations to the assumption that P or V, or both, are not  
risk-neutral or agree to different types of  contracts than that assumed in this article. Also, on the impact of  the level 
of  service on the evolution of  the law of  demand, on the procedures that P can arbitrate to avoid the bankruptcy 
of  V in the event that there is a succession of  numerous periods of  low demand, on the criteria to deciding 
between selling directly to market or contracting V as an intermediary between P and C and on the sensitivity 
analysis of  the survival probability of  V with respect to the variance, considering different demand probability laws. 
Also, as it may be the case that P has monopolistic power and can influence the selling price of  the product to C, a 
particularly challenging line of  research consists of  including this assumption in the design process of  the SC 
considered in our article.

Our analysis suggests some managerial insights as well. First, that in the design of  the SC, under conditions similar 
to  that  of  the  NVP,  the  decision  maker  must  compare  the  options  of  resort  or  not  to  V,  considering  the  
consequences on income and risk. Second, the objective of  coordinating the SC, understood as the maximization 
of  the joint income of  P and V, has the limitation of  not taking into account that the consumers, which are also  
part of  the SC, can leave it when they deem that the service is unsatisfactory. Third, P must be aware, when setting  
the parameters of  the SC, that its decisions determine those of  V and their consequences; therefore, P must take 
into consideration (when setting the values of  v, r, and T) the economic survival of  V, in order to avoid disruptions 
in the SC and the negative consequences they imply for P itself.

It could be said that randomness disorients the invisible hand and that, consequently, a global consideration of  SC 
is needed in order to ensure its survival and, with this restriction, the best possible results.
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Appendix: Computing V’s Risk of  Failure
The survival probability of  V after a cycle of  T days is equal to the probability that its available funds at the end of 
this period are not negative.

To calculate this probability, we first determine FV, the cumulative distribution function (CDF) of  the income of  V 
generated in a single day. The income of  V in a single day, y, is a random variable with the following values

(A.1)

Where x is a random variable such that xm ≤ x ≤xM with a known CDF H. So,

(A.2)

Where ym = (p-r)·xm – (v-r)·q and yM = (p-v)·q. Observe that FV is a function with a jump discontinuity at the point 
(p-v)·q and that size of  the jump is 1-H(q). 

Next, we calculate FV,T(Z), the CDF of  z, the income of  V generated during a cycle of  T days, which are  
with  yi random variables of  the income of  V in a single day. Given that each  yi can take the value  yM with 
probability 1-H(q) and lower values with probability H(q), the probability that t of  these variables take a value less 
than yM and the remaining T-t take the value yM is . Then, the CDF of  the income of  V in a 
cycle T days, FV,T(Z) is

(A.3)

Where zM = T·yM, FV<,t(x) = p( ) and y<,i is a continuous random variable which takes values between ym 

and  yM,  with CDF  FV<(Y) =  H((Y+(v-r)·q)/(p-r))/H(q) for  ym ≤  Y ≤  yM,  0 for  Y  < ym  and 1 for  Y >  yM,  and 
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probability density function  fV<(Y) =  h((Y+(v-r)·q)/(p-r))/H(q) for  ym ≤  Y ≤  yM and 0 elsewhere. We note that 
FV<,t(x) equals 0 for x≤t·ym and equals 1 for x≥t·yM. Moreover, FV,T(Z) = 0 for Z≤T·ym, FV,T(Z) is continuous for any 
value of  Z except zM and the size of  the jump at zM is (1-H(q))T. Let us define

(A.4)

For all Z, where fV<,t is the probability density function of  .

The funds of  V available at the end of  the first cycle of  T days are a1 = z1 + F – k·T, where F is the amount of  the 
funds available at the beginning of  the cycle, z1 the income of  V generated during the cycle and k the daily fixed 
costs. The CDF of  a1 is F1(A1) = FV,T(A1 + k·T – F) for all A1. Let’s define

(A.5)

For F + zm – k·T ≤ A1 < F + zM – k·T, f1(A1): = 0 for A1 < F + zm – k·T and for A1 = F + zM – k·T, we extend the 
function by continuity.

The survival probability of  V at the end of  the first cycle of  T days is s(T,1) = 1-F1 (0).

Let’s S(T,n) denote the survival condition of  V after n cycles of  T days.

In case of  survival, the conditional CDF of  available funds at the end of  the first cycle is

(A.6)

The funds of  V available at the end of  the second cycle of  T days are a2 = z2 + a1 – k·T, where z2 is the income of 
V generated during the second cycle, and its CDF is

(A.7)

For all A2. Observe that F2(A2|S(T,1)) = 0 for A2 ≤ zm – k·T, F2(A2|S(T,1)) = 1 for A2 ≥ F + 2·(zM – k·T), the 
function is continuous for any value of  A2 except F + 2·(zM – k·T) and the size of  the jump at that point is

(A.8)

We define

(A.9)

For all A2 < zM – k·T.
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(A.10)

For all zM – k·T ≤ A2 < F + 2·(zM – k·T) and for A2 = F + 2·(zM – k·T), we extend the function by continuity.

The non-survival probability of  V at the end of  the second cycle is s̄ (T,2) = s(T,1)·F2 (0|S(T,1)) and the survival 
probability, s(T,2) = s(T,1)·(1-F2(0|S(T,1))). In case of  survival at the end of  the second cycle, the conditional CDF 
of  the available funds of  V is

(A.11)

The funds of  V available at the end of  n cycles of  T days and the probability of  bankruptcy after this period, with n 
>2, are calculated iteratively.

Given n ≥ 2, an and fn(An), the funds of  V available at the end of  the cycle n+1 are an+1 = zn+1 + an – k·T, where zn+1 

is the income of  V generated during the cycle n+1, and its CDF is

(A.12)

For all An+1. We note that Fn+1(An+1|S(T,n)) = 0 for An+1 ≤ zm – k·T, Fn+1(An+1 |S(T,n)) = 1 for An+1 ≥ F + (n+1)· 
(zM – k·T), and the function is continuous for any value of  An+1 except F + (n+1)· (zM – k·T) and the size of  the 
jump at that point is

(A.13)

Let us define

(A.14)

For An+1 < zM – k·T.

(A.15)
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For zM – k·T ≤ An+1 < F + (n+1)·(zM – k·T) and for An+1 = F + (n+1)·(zM – k·T), we extend the function by 
continuity.

The non-survival probability of  V at the end of  the cycle n+1 is s̄ (T,n+1) = s(T,n)·Fn+1(0|S(T,n)) and the survival 
probability,  s(T,n+1) =  s(T,n)·(1-Fn+1(0|S(T,n))). In case of  survival at the end of  the cycle  n+1, the conditional 
CDF of  the available funds of  V is

(A.16)

In the case that x is a continuous uniform random variable with values between xm and xM,

(A.17)

(A.18)

(A.19)

(A.20)

Where ui are continuous random variables with values between 0 and 1. 

Using  the  notation  ,  ,  ,  ,  ,   and  

, we have

(A.21)
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(A.22)

Where .

FU,t i fU,t can be calculated from the Irwin-Hall distribution:

(A.23)

(A.24)

where (x – k)+ = max(0,x – k).

From  and  it could be calculated FV,T(Z) and fV,T(Z) with

(A.25)

(A.26)
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