
 

doi:10.3926/jiem.2009.v2n2.p337-359  ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953 

 

IDEF method-based simulation model design and development 337 

K.-Y. Jeong; L. Wu; J.-D. Hong 

IDEF method-based simulation model design and 

development 

 

Ki-Young Jeong 1, Lei Wu2, Jae-Dong Hong 3 

1Engineering Management Program at University of Houston-Clear Lake (USA); 2Software Engineering 

at University of Houston-Clear Lake (USA); 3Industrial Engineering Tech at South Carolina State 

University (USA) 

jeongk@uhcl.edu; wuL@uhcl.edu; jdhong@ms.com  

 
Received May 2009  
Accepted August 2009 
 
 

Abstract: The purpose of this study is to provide an IDEF method-based integrated 

framework for a business process simulation model to reduce the model development time 

by increasing the communication and knowledge reusability during a simulation project. In 

this framework, simulation requirements are collected by a function modeling method 

(IDEF0) and a process modeling method (IDEF3). Based on these requirements, a 

common data model is constructed using the IDEF1X method. From this reusable data 

model, multiple simulation models are automatically generated using a database-driven 

simulation model development approach. The framework is claimed to help both 

requirement collection and experimentation phases during a simulation project by 

improving system knowledge, model reusability, and maintainability through the systematic 

use of three descriptive IDEF methods and the features of the relational database 

technologies. A complex semiconductor fabrication case study was used as a testbed to 

evaluate and illustrate the concepts and the framework. Two different simulation software 

products were used to develop and control the semiconductor model from the same 

knowledge base. The case study empirically showed that this framework could help 

improve the simulation project processes by using IDEF-based descriptive models and the 

relational database technology. Authors also concluded that this framework could be easily 

applied to other analytical model generation by separating the logic from the data 
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1 Introduction 

Simulation is one of the most widely used decision aid tools due to its power, 

flexibility, and robustness. Particularly the discrete event simulation (DES) can 

model and analyze the behavior of many real life processes such as business 

processes, supply chain, and manufacturing processes. However, as Ryan et al. 

pointed out (2006), the simulation modeling often becomes a heavy programming 

task with the essence of the system being modeled lost in the detailed 

programming codes. In this way, the essence of the system is visible only to the 

code developers. This could create several potential problems for those who are 

involved in a simulation project. For example, it may create a serious information 

reusability problem. A simulation model is an abstracted representation of a real 

system to solve specific problems. Hence the information collected and extracted 

from the real system should be systematically represented and stored for future 

reuse in the form of systematic descriptions and formats. It may also cause a 

communication problem between developers and users. Typically users are domain 

experts who want to experiment with the simulation model to solve domain specific 

problems. This task requires frequent parameter changes and modification of the 

model. However, the heavy codes add difficulty to the proper management of this 

task. If we consider a simulation model development as a project, and if we have a 

structured systematic tool to support the simulation project, we believe that these 

problems could be managed. Sheppard (1983) proposed a widely cited “40-40-20” 

simulation model development time rule which states that analyst’s time should be 

distributed as follows for a successful simulation project: (1) 40% to requirement 

collection phase such as problem formulation, project planning, conceptual model 

development, and data collection; (2) 20% to model translation phase; (3) 40% to 

experimentation phase such as model verification, validation, implementation, and 

interpretation. Hence, for successful implementation of any simulation project, it is 

particularly important to have a right approach to the requirement collection and 

the experimentation phases. Hence, this paper intends to provide an integrated 

framework for those two phases in a simulation project. 
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The process description methods could play an important role in the simulation 

requirement collection phase. Although many process design, analysis and 

modeling (DAM) methods have been developed, using these methods in isolation – 

non-methodological approach – often fails to capture critical system behaviors due 

to the complexities and component interactions within the system. A 

methodological approach – systematic usage of a suite of methods – has a greater 

chance of success at representing critical system behaviors since it can account for 

diverse aspects of DAM activities such as information, function, and process 

interactions by a systematic and integrated usage of methods. IDEF (Integrated 

DEFinition) is a suite of descriptive modeling methods within which several 

different modeling languages are defined to describe systems from different 

perspectives. First, since IDEF is a well defined suite, it is considered to be easier 

to implement a methodological approach with the IDEF suite rather than with a 

completely different set of methods. Second since it is a descriptive modeling 

method, it could easily abstract and capture the essence of the system. In a typical 

simulation project, a project team consists of many team members such as system 

analysts, developers and domain experts. The system analysts collect and refine 

requirements with assistance from domain experts. This is an iterative 

communication process among all members. The ‘descriptiveness’ of IDEF methods 

could make this communication process easier and smoother than any other non-

descriptive methods. For these reasons, IDEF methods have been a continued 

research subject. 

The first category of the IDEF method related research attempted to build a generic 

and conceptual descriptive model using IDEF suites in a specific domain (Ang et al., 

1994; Zhang et al., 1996). Another category proposed a way to generate an 

analytical model from a specific IDEF model. For example, an IDEF3 method has 

been used to generate simulation models using Witness simulation software (KBSI, 

1995) and using Arena software (Resenburg et al., 1995). Jeong et al. (2008) 

developed a scheme to integrate the IDEF3 with a general open queuing network 

where IDEF3 works as a knowledge repository. The third category employed 

multiple IDEF methods and attempts to reuse common system knowledge among 

the different IDEF methods. For example, Lingzhi et al. (1996) proposed a scheme 

to integrate IDEF1 with IDEF0 for a computer integrated manufacturing information 

system design. Chen et al. (2004) also proposed a scheme to develop the 

enhanced IDEF1 information model based on the IDEF0-based process information, 
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which could serve as a base representation for an information model. This paper 

covers both the second and the third category together. It is an extension of Cho 

et al. (1999), KBSI (1995), and Chen et al. (2004) in that it attempts to provide an 

integrated framework of IDEF method-based simulation model design and 

development to help a successful simulation project. 

 

Figure 1. “Conceptual framework of IDEF-based integrated approach” 

The experimentation phase is an iterative process to perform model verification, 

validation, actual implementation, and interpretation that requires another 40% of 

analyst’s time. The verification, validation, and implementation processes 

frequently require significant code changes and model modification. It may also 

require multiple models with different parameter values and diverse scenarios. 

Hence, it would be helpful to automatically develop diverse versions of a simulation 

model from a common knowledge base developed through DAM activities. Although 

it is very difficult to develop a generic database-driven simulation model working 

for any domain, the domain specific database-driven simulation model 

development is feasible and useful. In fact, Pidd (1992) pointed out this fact by 

saying “generic simulators will not wholly replace simulation program for specific 

application.” In this paper, authors suggest a framework where a simulation model 

is automatically generated from the database obtained as a result of IDEF-based 

model design and development. Specifically, the functional system knowledge 

captured by IDEF0 and the process system knowledge captured by IDEF3 is used 

to develop and refine the data model knowledge captured by IDEF1X. Based on 
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IDEF1X, a simulation model is generated with a database-driven simulation model 

generation approach (DBSMGA). In this framework, the IDEF1X model works as a 

software independent knowledge base where different simulation software could 

access to generate models using their libraries. The framework is explained in 

Figure 1.  

This framework is claimed to have the following advantages over non-

methodological approaches: 

 It facilitates knowledge reusability among different modeling methods 

during requirement collection phase.  

 It can capture diverse aspects of real systems from different perspectives, 

which improve the accuracy of representation. 

 It improves simulation model maintainability since the simulation logic can 

be changed inside the database as opposed to inside the simulation model. 

However, it should be noted that authors do not find it necessary to use this 

framework for all situations. Instead, this paper claims that this framework has a 

better chance to lead a successful simulation project by improving communication 

and knowledge and model reusability. For example, simulation models may be 

directly built using an icon-based drag-and-drop approach if analysts have 

sufficient simulation software knowledge. However, based on authors’ experience, 

this direct model building practice without any methodological approach often 

generates incorrect models due to the lack of communication, improper model 

abstraction, and inappropriate model management techniques. Particularly, in a 

large-scale simulation project, it tends to add more difficulty to the proper 

simulation project management. 

2 IDEF Methods for Business Process Knowledge Capture 

According to Lin et al. (2002), a business process has the following elements: 

 A business process has its customers. 

 A business process is composed of activities whose objectives are to create 

values for customers. 
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 Activities are performed by actors who may be humans or machines 

 A business process often involves organizational units which are responsible 

for the whole process. 

We believe that IDEF methods well support those elements. For example, IDEF0 

was designed to capture the ‘decisions’ and ‘activities’ of a system (Mayer et al., 

1995). Those decisions and activities include information on what functions the 

system performs, what constraints the functions have, what is needed for 

functions, and what input and output are meaningful in performing those functions. 

An IDEF0 model is represented with rectangles with four different types of arrows 

surrounding the rectangles. A rectangle represents a function or activity described 

in a verbal phrase, and arrows represent (1) “Input” (on the left); (2) “Output” (on 

the right); (3) “Control” (on the top); and (4) “Mechanism” (on the bottom) called 

(ICOM) described in a noun phrase to explain the behavior of the function – see 

Figure 2 below. It also supports the hierarchical decomposition of activities for an 

appropriate abstraction of a system. We notice that the first three business 

elements could be supported by IDEF0. For example, IDEF0 model could be 

developed from a specific customer’s perspective and context – first element. The 

business activities are part of system activities – second element. The mechanism 

in ICOM includes actors – third element. 

 

Figure 2. “IDEF0 function modeling notation”. 

IDEF3 is a process capture and description method within the context of a specific 

scenario (Mayer et al., 1995). The process schematic of IDEF3 has been widely 

accepted as a medium for process description in industry (Mo et al., 1998). As 

seen in Figure 3, the process schematic consists of the three main components: (1) 

“Unit Of Behavior” (UOB); (2) “Junction”; (3) “Link”. 

 

Function
(Phrase 

starting with 
Verb)

Control 
(noun)

Output
(noun)

Input
(noun)

Mechanism
(noun)
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Name Description Symbol 

Unit of 
Behavior 
(UOB) 

Capture information on what is going on in the system, which 
represents a process or an activity 

ID

name

 

Link 
Represent temporal, logical, causal, natural or relational constructs 
between UOBs  

Junctions 

Specify a logical branching of UOBs: 
 
Fan-Out XOR/Fan-In XOR 
Fan-Out AND/Fan-In AND 
Fan-Out OR/Fan-In-OR 

 

 
 

Figure 3. “IDEF3 process schematics”. 

A UOB captures information on what is going on in a system to represent a process 

or an activity. It is depicted by a rectangle with a unique label. Junctions provide a 

mechanism specifying a logical branching of UOBs and introduce the timing – 

temporal – and sequencing of multiple processes. Junction types include an 

exclusive OR denoted by “X”, a conjunctive AND junction denoted by “&”, and an 

inclusive OR denoted by “O”. Since IDEF3 uses a scenario as a basic organization 

structure to describe how things work, it could easily fit with the first three 

elements of a business process. It also supports the top-down and bottom-up 

modeling sequences and hierarchical decomposition for multiple levels of 

abstraction. IDEF1X produces a data model that represents the structure and 

semantics of information within an enterprise or a system, known as business 

rules. An IDEF1X diagram is refined into three levels of detail: (1) an entity-

relationship level; (2) a key-based level; (3) an attribute level. Diverse business 

rules are specified according to different levels of detail, and the model 

development is defined by these three level modeling procedures. Figure 4 shows 

summary of these three levels with symbols. Interested users are encouraged to 

read (KBSI, 1994) for detailed grammar and graphical symbols for the IDEF1X 

method. 

Lin et al. (2002) also identified ten essential concepts useful in defining a business 

process, and we creatively used these concepts to investigate the fitness of the 

proposed IDEF method-based integrated framework for business process 

simulation model design and development. The results are summarized in Table 1. 

This table shows all but one concept are handled and represented by this 

framework.  

 

X X

& &

O O
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Name Description Symbol 

1) Entity 

A set of real or abstract things which have 
common attributes or characteristics. An 
individual member of the set is called an instance 
 

 

Identifier-
Independent 
Entities 

An instance that can be uniquely identified 
without determining its relationship to another 
entity 
 

Entity Name

key

Attribute
 

 

Identifier-
Dependent Entities 

An instance whose identification depends on its 
relationship to another entity. 

Entity Name

key

Attribute
 

2) Relationships Relationship among entities 
 

 

Identifying 
Connection 
Relationships 

If an instance of a child is identified by its 
association with a parent entity, it is referred to 
as an identifying relationship. It has one of the 
following cardinalities (zero, one or more/one or 
more/zero or one/exactly n/from n to m) 
 

/( P Z n n-m/ // )
 

Non-Identifying 
Connection 
Relationships 

If every instance of the child entity can be 
uniquely identified without knowing the 
associated instance of the parent entity, it is 
called as a non-identifying relationship. 

/( P Z n n-m/ // )
 

3) Keys Attributes of each entity  

Primary Keys Attributes which uniquely identifies an entity (PK) 

Alternate Keys Attributes which can work as a primary key (AK) 

Foreign Keys Attributes migrated from other entities (FK) 

Figure 4. “IDEF1X building blocks and symbols”. 

Concepts Descriptions IDEF0 IDEF3 IDEF1X 

Activity Task, function or operation    
Behavior Action, business rules or control    
Resource Mechanism or location    

Relation 
Relation class, junctions and links, 
interaction, and dependencies 

   

Agent Social actor or role    
Information Message    

Entity Object represented by attributes    

Event 
Represented by as event objects or 
inputs/outputs 

   

Verification and 
validation 

Model built as intended? Model well 
represents reality? 

   

Modeling 
procedure 

Specific procedures to build a model 
   

Table 1. “Business concepts vs. IDEF methods”. 

At the same time, it also suggests the intervention from model developers and 

users are still necessary for verification and validation. In fact, authors do not claim 

that an automatic model development process could completely replace the 

insights and knowledge from humans - we even believe that it is not desirable. 

Instead, this integrated framework should be considered as an aid to support 

humans and their judgment. 
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3 IDEF1X Data Model Knowledge Base for Simulation Model 

An IDEF1X data model should be robust enough to make the structural and 

semantic aspects of the simulation included in the model. One way to consider the 

semantic aspects of the simulation model is to study the simulation ontology, and 

reflect it within the data model design, since ontology provides the definition of the 

terminologies and relationship between them. Although several DES software 

packages are available in the market, they have some common basic structures or 

objects, while the unique structures are variations of these common structures. If a 

data model incorporates these structures into its design, it could be shared by 

different DES software packages.  

Table 2 lists some of these basic common structures with their definitions within 

the context of business process simulation. Note that the neutral terminologies, 

Generator, Entity, Location, Resource, Queue, and Destroyer are used to avoid 

favoring a particular simulation language. For example, ED (2001) uses Source, 

Product, Server or Multiple-Service, Operator, Queue, and Sink while Flexsim 

(2007) uses Source, FlowItem, Processor or Multiprocessor, Operator, and Sink 

instead of these neutral terminologies.  

Name Definition 

Generator A structure that creates entities to populate a model 

Entity 
A structure that flows through the model to represent customers, orders and any 
moving items in the model. 

Location 
A structure that interacts with an entity. This interaction is called a service, and it 
usually delays the progress of an entity through the model. 

Resource 
A structure that may be required by an entity or a location to provide a service. 
The difference between a location and a resource is that a location does not move, 
and a resource is moving toward a location when it is requested. 

Queue 
A structure that stores entities. The queue is awaiting service, not receiving 
service. 

Destroyer A structure that destroys entities 

Table 2. “Basic simulation objects and definition”. 

Figure 5 shows one possible mapping between an IDEF1X data model and 

corresponding neutral simulation structures (objects). The data model has multiple 

– one or more, denoted by P – Order/Product, Office/Shop, Employee/Equipment 

or Operator, and Storage/Queue objects. Each of which is mapped to Entity, 

Location, Resource and Queue object, respectively, in the simulation model. Note 

that since Generator and Destroyer are purely functional objects for an entity 

creation and destroy respectively, they do not need to be included in a data model. 
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Once a data model is built with consideration of simulation structures, the database 

can be easily created from which multiple simulation models could be automatically 

developed.  

 

Figure 5. “Simulation and data model mapping”. 

From a simulation perspective, the data model characterizes the required 

functionalities of simulation libraries. Hence if those functionalities are not 

supported by specific target simulation software, those functionalities should be 

developed to make the database-driven simulation model development easier. 

4 Database-Driven Simulation Model Development 

Most simulation software provides its own script language with structured query 

language (SQL) and Open Database Connectivity (ODBC) capability. Hence, the 

interface between the simulation and database management system (DBMS) 

becomes easier but it still requires some coding efforts. In this study, both Flexsim 

and ED libraries were adopted to implement DBSMGA since both provide the 

Object-Oriented customized library development capability in addition to the rich 

standard libraries. The customized library development capability is supported 

using Flexscript (Flexsim’s script language) or C/C++ in case of Flexsim and 4D 

Scripts in case of ED. Each object (library) consists of a set of attributes 

(characteristics) and methods (functions) that can be implemented when an 

associated event handler is activated in the library. In case of Flexsim, some 

typical examples of an event handler are OnReset – triggered when users click the 

IDEF1X
Data Model

Simulation 
Model

P

P

Employee/
Equipment 

or 
Operator

Storage/
Queue

Order/
Product

Office/
Shop

Entity

Resource

Queue

Location

Generator

Destroyer

P

P

P
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reset button, OnMessage – triggered when an object receives a message from 

other objects, OnEntry – triggered when an entity enters current object, and 

OnExit – triggered when an entity leaves from a current object. All properties of a 

class are inherited to the instances of the class when they are created in a model. 

By combining the standard library and the customized library, users can develop 

their own user-specific and/or domain-specific simulation software, which makes 

mapping from the data model to the simulation easier. 

In the case study to be discussed later, we first developed a Flexsim model. A 

customized library named “simulation-generator” was developed to generate 

simulation models from a database. Note that this corresponds to the Simulation 

Model Generator in Figure 1. All codes were written in the User event handler and 

the total lines of the codes are less than 250 including all user-interface and screen 

embellishment.  

NO Code Description 

1 
dbopen(“MyDSN”,”select * from 
Equipment”,0); 

Connected to the database table Equipment through 
the DSN defined at MyDSN and perform SQL 
statement. 

2 

settablenum(“InfoTb”,1,1,dbgetnum
rows()); 

Store total number of records in database at 
cell(1,1) in InfoTb. “dbgetnumbrows()” is a key word 
to count the number of records in the current 
database. 

3 
for(int i = 1; i <= dbgetnumrows(); 
i++) { 

Repeat the function defined at { } dbgetnumrows() 
times. 

4 
createinstance(node("/SHOP-
Equipment",library()),model()); 
 

Creates an instance of the SHOP-Equipment class 
(library) and places it in the model. Note that SHOP-
Equipment is a customized library. 

5 

setname(last(model()),dbgettablecel
l(i,1)); 

Change the name of an instance using the name 
stored at the Equipment database. 
dbgettablecell(i,1) reads the string data stored at ith 
row and 1st column 

6 
createinstance(node("/SHOP-
Buffer",library()),model()); 

Creates an instance of the SHOP-Buffer class 
(library) and places it in the model. This serves as a 
queue for equipment. 

 
setname(last(model()),concat(dbget
tablecell(i,1),”Q”)); 

Define the name of the queue in front of equipment. 
Concat connects multiple strings. 

7 
contextdragconnection(prev(last(mo
del()),last(model()), "A"); 

Connect the output port of queue to the input port 
of the equipment 

8 Set_Equipment_Attributes, set equipment attributes (user-defined function) 

9 
Set_Queue_Attributes}; set queue attributes (user-defined function) and end 

of For statement 
10 Dbclose(); Close equipment database 

Table 3. “Partial pseudo code in simulation model generator”. 

Table 3 shows the partial pseudo-codes to create instances of a library object from 

Equipment table to explain how to read the database through ODBC (lines 1 and 

10) and create objects (instances of a library) and connect them using the ports 
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(lines 2-9). One record in Equipment table represents one machine instance whose 

field consists of (equipment ID, equipment Name, Capacity, MTBF, MTTR etc). 

Lines 8 and 9 are calling user-defined functions to define the attributes of all 

instances. It is important to recognize that a model is a set of instances of all 

classes (or objects) located in the library. These classes may be provided by 

vendors or newly created by users. In this study, the “SHOP-Equipment” object 

and “SHOP-Buffer” object were created in the library by authors using Flexscript to 

facilitate the mapping from the data model to Flexsim. 

5 Guidelines for Knowledge Reusability among IDEF methods 

Developing a descriptive model using IDEF methods requires a feedback loop for 

obtaining consensus and confirmation from domain experts. Considering the fact 

that each IDEF uses a different modeling language to capture different perspectives 

of the real systems, the captured knowledge reuse among different IDEF methods 

has proven difficult to generalize. However, the importance of the knowledge reuse 

is critical – remember 40-40-20 rule, and how much time is required for 

requirement collection and experimentation? Based on our experience, the 

following guidelines seem to be useful in the knowledge reuse among IDEF0, IDEF3 

and IDEF1X. As stated previously, IDEF0 represents the functional behavior of a 

system through four different types of data (ICOM) and a set of activities. The 

ICOM data could be information, objects or anything described in a noun phrase. 

Hence, some of the IDEF0 data may be represented as an object or an attribute in 

the IDEF1X model. Although IDEF0 is not designed to capture the temporal 

relationship among activities, some functional aspects of the system may include 

the temporal relationship among activities. Hence, if this happens, some activities 

in IDEF0 could be also represented in the IDEF3 diagram. Guidelines recommended 

for knowledge reusability among IDEF methods include: 

 An IDEF0 modeling is recommended first since it provides overall system 

level knowledge. 

 Then, an IDEF3 modeling is recommended if temporal information among 

activities is needed. Note that some descriptions in UOBs may provide a 

clue for attributes and objectives in an IDEF1X model. 
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 With help of IDEF0 and IDEF3, the detailed IDEF1X model could be 

developed. 

 A “Mechanism” in IDEF0 may easily turn out to be an object in IDEF1X since 

“Mechanism” often includes resources – a typical object in an IDEF1X 

model. 

 The “Constraint” in IDEF0 may provide a logical object in IDEF1X since this 

“Constraint” often represents the business rules of a system. 

 Check if there is any noun in the verbal phrase (function) in an IDEF0 model 

that needs to be translated into an attribute or object in an IFED1X model. 

Since a verbal phrase explains the behavior of the function, some nouns 

used in the phrase may convey meaningful information for a data model. 

6 Case Study 

This paper employs a case study of a semiconductor fabrication process to 

illustrate the concepts and framework stated in this paper. The IDEF1X data model 

created for this case study could also apply to many real-life business process 

problems. This case study originally came from Deuermeyer et al. (1993), and it 

was adopted here since it involves very complex real-life business processes. This 

case analyzes 172-step semiconductor wafer fabrication processes with six work-

areas - CLEAN, STRIP, IMPLANT, DEPOSIT, LITHO and ETCH. These areas perform 

wafer cleaning, stripping, ion implantation, deposition, lithography and etch 

operation, respectively. Each work-area consists of machines and operators. An 

operator is required for wafer-loading and unloading operations at each machine. 

In addition, when different wafer-lots are loaded, the set up is required. The 

different operations may have different processing times even though they are 

performed in the same machine. Each product type can have its own routing as in 

a general job shop. However, most operation sequences are similar across product 

types in the wafer fabrication process. For example, all wafers start their 

operations from CLEAN area and finish at DEPOSIT area after several intermediate 

operations. One of the typical operation sequences is cleaning, litho, implantation, 

striping, deposition, etching, striping and deposition again. The important shop 

information such as the number of machines and operators, MTBF (mean time 

between failure), and MTTR (mean time to repair) is summarized in Table 4. Note 
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that both MTBF and MTTR are exponentially distributed, denoted by expo(). Two 

virtual areas were added to indicate the starting (START) and ending (END) of the 

process. Note that the second column consists of 8-tuples and each of which 

denotes the number of visits to each work-area. This 8-tuples are arranged in the 

orders of START, CLEAN, STRIP, IMPLANT, DEPOSIT, LITHO, ETCH and END. It is 

assumed that this shop is operating for 24 hours with 3 eight-hour shifts due to 

high capital equipment. The main performance measure for this shop is the system 

cycle time. 

Work 
Area 

# of Visits to Work-
Area 

No. of 
Machines 

No. of 
Operators 

MTBF (hrs) MTTR 
(hrs) 

START (0, 1, 0, 0, 0, 0, 0, 0)   expo(42.18) expo(2.2) 
CLEAN (0, 3, 0, 0, 15,1,0, 0) 4 1  0 
STRIP (0, 2, 0, 0, 1,11,9, 0) 3 1 expo(55.18) expo(12.86) 

IMPLANT (0, 1, 6, 1, 0, 0, 0, 0) 5 1 expo(75.93) expo(3.88) 
DEPOSIT (0, 2, 0, 0, 8, 9, 8, 1) 20 3 expo(100) expo(2.78) 
LITHO (0, 5, 12, 7, 2, 33, 6, 0) 33 4 expo(62.91) expo(9.35) 
ETCH (0, 5, 5, 0, 3, 10, 6, 0) 28 3   
END (0, 0, 0, 0, 0, 0, 0, 0)     

 

Table 4. “Facility data by work-area”. 

Based on the description above, we attempt to build an IDEF0 model according to 

the first guideline in the previous section. Each area could be modeled as an 

activity in IDEF0, and these activities are connected with each other through 

wafers. For example, Figure 6 shows part of the IDEF0 model in the wafer strip 

area with its decomposition to show the wafer strip process in detail. For any 

machine, when a batch of wafers (job) arrives, the operators are responsible for 

selecting the proper job according to the pre-determined dispatching rule that 

decides the job processing sequence at the machine. Once a job is selected, it is 

loaded onto a machine, and the set up occurs if the job’s lot number is different 

from that of the previous job. Once it finishes its operation, the wafers are 

unloaded and are ready to move to the next destination. The wafer changes its 

status over time as seen in the figure. For each area, these wafer processes are 

repeated. 
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Lot No identity Transfer Batch Size

 

Figure 6. “Function model of a fabrication process in strip area”. 

Next, according to the second guideline, we tried to consider building an IDEF3 

process model. All 172 steps are needed to be represented by IDEF3 model. In this 

case, the IDEF3 model is same as the process plan of a wafer fabrication, whose 

routing was already depicted in Deuermeyer et al. (1993). Hence, it was not 

repeated here. According to the fourth guideline, both an operator and a machine – 

mechanism – are considered as important objects, and they are incorporated into 

the IDEF1X data model as an object. According to the fifth guideline, the constraint 

information, Dispatching Rule, is also captured within the data model since it is 

considered as an important factor affecting the cycle time from the shop scheduling 

perspective. The same is true for the lot size (Transfer Batch Size) constraint 

information. It is also observed that the several functions are controlled by a 
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constraint called Machine Operation Recipe, which may contain the operation 

sequence information for each product. 

With the help of IDEF0 model and the problem descriptions, the IDEF1X model is 

defined as in Figure 7. Based on above discussions associated with the IDEF0 

model, the Equipment, Product, Operator and DispatchRule are first defined as an 

independent object (entity) with keys and attributes. For example, each equipment 

needs capacity, MTBF, MTTR, setup time and run time, WorkingShift, Overtime, 

BufferSize and Dispatching_ID information. The BufferSize defines the size of 

buffer in front of an equipment holding parts awaiting processing, and the 

Dispatching_ID is the set of rules defining the sequence of jobs in the queue. 

Typically, it follows FIFO – First-In-First Out. In this case study, the queue object 

represented in Table 2 is not handled as a separate object since all queues in front 

of each piece of equipment are considered as infinite. 

Operator

Operator_ID

Desc
Capacity
SkillCode
WorkingShift
OverTime

P

Product_ID (FK)
Equipment_ID (FK)
Operator_ID (FK)

EquipSetupTime
EquipRunTime
LaborSetupTime
LaborRunTime
Operation_Code (AK)
Desc

Operation

P

P

Routing

Routing_ID

Product_ID (FK)
Operation_Code_From
Operation_Code_To
Percentage

P

Equipment

Name
Capacity
MTBF
MTTR
SetupTime
RunTime
WorkingShift
OverTime
BufferSize
Dispatching_ID (FK)

Product

Product_ID

Name
Demand
LotSize
Quantity in Parent
Parent ID

DispatchRule

Dispatching_ID

Desc

P

Equipment_ID

 

Figure 7. “IDEF1X data model for case study”. 

The Product object can represent a bill-of-material (BOM) information through 

Quantity in Parent and Parent ID attributes. The demand and LotSize are attributes 

that affect the cycle time. The Operation object is defined as a dependent object 

since it can be uniquely identified only through Equipment, Product and Operator 

objects. Hence, the relationship between these three objects and an Operation is 

an identifying connection with one-to-many (one or more) cardinality. However, 

the relationship between DispatchingRule and Equipment is a non-identifying with 

one-to-many (at least one) cardinality since DispatchRule_ID is used as a non-

primary foreign key in the Equipment. 
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It is important to understand the difference between the Operation and the Routing 

object. The Operation contains all operation information that describes “who 

(operator) handles what products with what machines for what time”, and the 

Operation_Code can be used as an alternative primary key. The Routing object is 

created for simulation model generation to describe the sequence of operations for 

each product using the information in an Operation object. For each product type 

(non-primary FK), the source operation code (OperationCode_From) and the 

destination operation code (OperationCode_To) is described with its corresponding 

routing probability (Percentage) to support the probabilistic routing view. The 

Routing object provides the sequence of operations for each product type while 

these operations are characterized by the Operation object. The prototype data 

model in Figure 7 was translated into the corresponding MS-ACCESSTM database 

using the SmartERTM case tool developed by KBSI (1994). Figure 8 shows a 

snapshot of the Flexsim simulation model generated from the data model in Figure 

7 using the codes in “simulation-generator” library whose partial pseudo-codes are 

represented in Table 3.  

 

Figure 8. “A snapshot of Flexsim model from database”. 

In this figure, each of six work-areas is described in bold while the name of an 

object is represented in a regular letter. When multiple Operators are involved, all 

operators are directly connected to the Dispatcher object which is directly 

controlled by a Processor object. Figure 9 shows that of the ED simulation model 

from the same data model. The library object in ED is called an atom. The queue 

atom is connected to the operation atom, which is connected to the routing atom 

that connects the work-areas. The operator control atom (OP CONTROL) is 

connected to both the operator atom and the operation atom. The first atom 
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denoted by “1” represents a product atom corresponding to the Product object in 

Figure 7. The queue atom denoted by “2” has infinite capacity, which corresponds 

to a Buffer object. The operation atom denoted by “3” contains all equipment 

information such as MTBF and MTTR as its attributes, and it also includes all sub-

operations such as loading, set up, cleaning operation and unloading operation.  

CLEAN

STRIP

IMPLANT

DEPOSIT

LITHO

ETCH

1. PRODUCT 2. QUEUE 3. OPERATION 4.  OPERATOR 5. ROUTING 6. OP CONTROL

 

Figure 9. “A Snapshot of ED model from database”. 

When a sub-operation requires an operator, the atom performing the operation 

(i.e. cleaning atom) sends an operator-request-message (ORM) to a corresponding 

operator control atom (OP CONTROL). The operator control atom matches an ORM 

to an available operator, and it sends available operator(s) to the requesting atom. 

If there is no available operator for that ORM, it has to wait at the internal message 

queue inside an operator control atom. Once the (sub) operation finishes, the 

operator is released from the requesting atom and it becomes available again. All 

channels are connected using the information in the Routing object, and sub-

operation information in an operation atom comes from the Operation object in 

Figure 7. The operator atom corresponds to the Operator object. 

This model was executed with the data in Table 4 for 5 times to filter variation, 

considered as the first alternative (ALT1). Each run has 60,000 simulation hours 

after 10,000 hours warm up period. Since the sum of the three operators’ 

utilization in CLEAN, STRIP and IMPLANT was around 80 %, we created two other 

alternatives where these three areas have two shared operators (ALT2) and one 

shared operator (ALT3). The corresponding models were quickly generated again 
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from the database by changing the “Operator_ID” in the Operation table without 

modifying any logic in Flexsim environment for different scenarios. The average 

cycle time and throughput (number of units produced per day) were compared and 

displayed in Figure 10 where the bar shows the average cycle time and the line 

represents the throughput. As seen in the figure, the performance of the second 

alternative (ALT2) is almost identical to that of the first alternative (ALT1) even 

with less number of operators, and both outperform the third alternative (ALT3). 

 

Figure 10. “Alternative comparison”. 

Through this case study, we showed that the IDEF method-based integrated 

framework could help improve the process of a simulation project by using IDEF-

based descriptive models to capture requirements and to perform the 

experimentation. The IDEF1X-based data model supported by IDEF0 and IDEF3 

could reduce the time and effort for simulation model development and 

maintenance. Before closing this section, it should be recognized again that the 

DBSMGA does not depend on any specific simulation software. Any simulation 

software supporting the ODBC and SQL capabilities could be used. If the software 

has the capability to customize the standard library, it could also reduce the effort 

required to map the data model into the simulation model. 

7 Discussion and Conclusion 

In this paper, the integrated framework of IDEF method-based simulation model 

design and development was provided for a business process. In this framework, 

the systematic use of IDEF0 and IDEF3 for business processes was proposed to 

help the requirement collection phase in a simulation project. From this systematic 

use of both descriptive models, the IDEF1X-based data model was created and 

became a knowledge base from which multiple simulation models could be 

developed, which could save time and effort in the experimentation phase in a 
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simulation project. A case study in a semiconductor manufacturer was conducted 

to show the feasibility of this framework where both Flexsim model and ED model 

were generated. This paper also discussed the guidelines to reuse the captured 

system knowledge among IDEF0, IDEF3 and IDEF1X. 

The advantages of this integrated framework are to improve design knowledge 

reusability among IDEF0, IDEF3 and IDEF1X. It could also significantly reduce 

simulation model development and maintenance effort. By combining both IDEF 

methods and the database technologies together, this research significantly 

improved the previous IDEF based researches in that this framework provided a 

specific, systematic way to implement and execute the previous IDEF based 

modeling and design works. Many practitioners and simulation developers have 

been using the icon-based graphic user interface, and they should be familiar with 

all icons to develop and use the simulation models – This naturally leads to more 

focus on the model development phase without the ‘descriptiveness’ for better 

communication. However, the framework used here could change this game rule. 

The use of IDEF methods leads to more focus on the requirement collection phase 

of the simulation project. Also by using database as a knowledge base, this 

framework eliminated the dependence on the specific simulation software, and 

increased the efficiency in the experimentation phase of a simulation project. 

Authors believe that the results will significantly contribute to the successful use of 

simulation in the business process area where requirement collection is considered 

most difficult but important. Another direct advantage of this framework is that this 

could be applied to any analytical model as long as that model supports the 

database technology by separating the logic from the data. 

The result of this study could provide many new ideas and suggestions to both 

practitioners and researchers. We summarized these into two categories: IDEF 

method-based modeling category and the database-based model generation 

category. Regarding the first category, it would be very useful to automate the 

knowledge conversion mechanism among IDEF methods to support human 

judgment and communication during the large scale simulation project. Also 

although we have provided many rules and insights for this conversion, more 

research is expected to enrich these lists in a specific domain and/or generic 

domain. In addition to the IDEF methods, the unified modeling language (UML) 

could also be considered for this DAM activities since it also supports the diverse 

modeling approaches from different perspectives. Designing more suitable data 
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model and/or database model could be another direct research area in this 

category since there may be an optimal data model in a specific domain. In the 

second category, the direct research area includes the development of an 

integrated simulation model generator through which the same knowledge in the 

database is transformed into software specific simulation models. In this way, the 

knowledge reusability will be maximized among simulation software products. Also, 

integrating all these – both descriptive modeling methods and the database model 

– within single platform could also be considered as another promising future 

research area. 
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