

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 337

K.-Y. Jeong; L. Wu; J.-D. Hong

IDEF method-based simulation model design and

development

Ki-Young Jeong 1, Lei Wu2, Jae-Dong Hong 3

1Engineering Management Program at University of Houston-Clear Lake (USA); 2Software Engineering

at University of Houston-Clear Lake (USA); 3Industrial Engineering Tech at South Carolina State

University (USA)

jeongk@uhcl.edu; wuL@uhcl.edu; jdhong@ms.com

Received May 2009
Accepted August 2009

Abstract: The purpose of this study is to provide an IDEF method-based integrated

framework for a business process simulation model to reduce the model development time

by increasing the communication and knowledge reusability during a simulation project. In

this framework, simulation requirements are collected by a function modeling method

(IDEF0) and a process modeling method (IDEF3). Based on these requirements, a

common data model is constructed using the IDEF1X method. From this reusable data

model, multiple simulation models are automatically generated using a database-driven

simulation model development approach. The framework is claimed to help both

requirement collection and experimentation phases during a simulation project by

improving system knowledge, model reusability, and maintainability through the systematic

use of three descriptive IDEF methods and the features of the relational database

technologies. A complex semiconductor fabrication case study was used as a testbed to

evaluate and illustrate the concepts and the framework. Two different simulation software

products were used to develop and control the semiconductor model from the same

knowledge base. The case study empirically showed that this framework could help

improve the simulation project processes by using IDEF-based descriptive models and the

relational database technology. Authors also concluded that this framework could be easily

applied to other analytical model generation by separating the logic from the data

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 338

K.-Y. Jeong; L. Wu; J.-D. Hong

Keywords: IDEF0, IDEF3, IDEF1X, discrete event simulation, business process

1 Introduction

Simulation is one of the most widely used decision aid tools due to its power,

flexibility, and robustness. Particularly the discrete event simulation (DES) can

model and analyze the behavior of many real life processes such as business

processes, supply chain, and manufacturing processes. However, as Ryan et al.

pointed out (2006), the simulation modeling often becomes a heavy programming

task with the essence of the system being modeled lost in the detailed

programming codes. In this way, the essence of the system is visible only to the

code developers. This could create several potential problems for those who are

involved in a simulation project. For example, it may create a serious information

reusability problem. A simulation model is an abstracted representation of a real

system to solve specific problems. Hence the information collected and extracted

from the real system should be systematically represented and stored for future

reuse in the form of systematic descriptions and formats. It may also cause a

communication problem between developers and users. Typically users are domain

experts who want to experiment with the simulation model to solve domain specific

problems. This task requires frequent parameter changes and modification of the

model. However, the heavy codes add difficulty to the proper management of this

task. If we consider a simulation model development as a project, and if we have a

structured systematic tool to support the simulation project, we believe that these

problems could be managed. Sheppard (1983) proposed a widely cited “40-40-20”

simulation model development time rule which states that analyst’s time should be

distributed as follows for a successful simulation project: (1) 40% to requirement

collection phase such as problem formulation, project planning, conceptual model

development, and data collection; (2) 20% to model translation phase; (3) 40% to

experimentation phase such as model verification, validation, implementation, and

interpretation. Hence, for successful implementation of any simulation project, it is

particularly important to have a right approach to the requirement collection and

the experimentation phases. Hence, this paper intends to provide an integrated

framework for those two phases in a simulation project.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 339

K.-Y. Jeong; L. Wu; J.-D. Hong

The process description methods could play an important role in the simulation

requirement collection phase. Although many process design, analysis and

modeling (DAM) methods have been developed, using these methods in isolation –

non-methodological approach – often fails to capture critical system behaviors due

to the complexities and component interactions within the system. A

methodological approach – systematic usage of a suite of methods – has a greater

chance of success at representing critical system behaviors since it can account for

diverse aspects of DAM activities such as information, function, and process

interactions by a systematic and integrated usage of methods. IDEF (Integrated

DEFinition) is a suite of descriptive modeling methods within which several

different modeling languages are defined to describe systems from different

perspectives. First, since IDEF is a well defined suite, it is considered to be easier

to implement a methodological approach with the IDEF suite rather than with a

completely different set of methods. Second since it is a descriptive modeling

method, it could easily abstract and capture the essence of the system. In a typical

simulation project, a project team consists of many team members such as system

analysts, developers and domain experts. The system analysts collect and refine

requirements with assistance from domain experts. This is an iterative

communication process among all members. The ‘descriptiveness’ of IDEF methods

could make this communication process easier and smoother than any other non-

descriptive methods. For these reasons, IDEF methods have been a continued

research subject.

The first category of the IDEF method related research attempted to build a generic

and conceptual descriptive model using IDEF suites in a specific domain (Ang et al.,

1994; Zhang et al., 1996). Another category proposed a way to generate an

analytical model from a specific IDEF model. For example, an IDEF3 method has

been used to generate simulation models using Witness simulation software (KBSI,

1995) and using Arena software (Resenburg et al., 1995). Jeong et al. (2008)

developed a scheme to integrate the IDEF3 with a general open queuing network

where IDEF3 works as a knowledge repository. The third category employed

multiple IDEF methods and attempts to reuse common system knowledge among

the different IDEF methods. For example, Lingzhi et al. (1996) proposed a scheme

to integrate IDEF1 with IDEF0 for a computer integrated manufacturing information

system design. Chen et al. (2004) also proposed a scheme to develop the

enhanced IDEF1 information model based on the IDEF0-based process information,

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 340

K.-Y. Jeong; L. Wu; J.-D. Hong

which could serve as a base representation for an information model. This paper

covers both the second and the third category together. It is an extension of Cho

et al. (1999), KBSI (1995), and Chen et al. (2004) in that it attempts to provide an

integrated framework of IDEF method-based simulation model design and

development to help a successful simulation project.

Figure 1. “Conceptual framework of IDEF-based integrated approach”

The experimentation phase is an iterative process to perform model verification,

validation, actual implementation, and interpretation that requires another 40% of

analyst’s time. The verification, validation, and implementation processes

frequently require significant code changes and model modification. It may also

require multiple models with different parameter values and diverse scenarios.

Hence, it would be helpful to automatically develop diverse versions of a simulation

model from a common knowledge base developed through DAM activities. Although

it is very difficult to develop a generic database-driven simulation model working

for any domain, the domain specific database-driven simulation model

development is feasible and useful. In fact, Pidd (1992) pointed out this fact by

saying “generic simulators will not wholly replace simulation program for specific

application.” In this paper, authors suggest a framework where a simulation model

is automatically generated from the database obtained as a result of IDEF-based

model design and development. Specifically, the functional system knowledge

captured by IDEF0 and the process system knowledge captured by IDEF3 is used

to develop and refine the data model knowledge captured by IDEF1X. Based on

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 341

K.-Y. Jeong; L. Wu; J.-D. Hong

IDEF1X, a simulation model is generated with a database-driven simulation model

generation approach (DBSMGA). In this framework, the IDEF1X model works as a

software independent knowledge base where different simulation software could

access to generate models using their libraries. The framework is explained in

Figure 1.

This framework is claimed to have the following advantages over non-

methodological approaches:

 It facilitates knowledge reusability among different modeling methods

during requirement collection phase.

 It can capture diverse aspects of real systems from different perspectives,

which improve the accuracy of representation.

 It improves simulation model maintainability since the simulation logic can

be changed inside the database as opposed to inside the simulation model.

However, it should be noted that authors do not find it necessary to use this

framework for all situations. Instead, this paper claims that this framework has a

better chance to lead a successful simulation project by improving communication

and knowledge and model reusability. For example, simulation models may be

directly built using an icon-based drag-and-drop approach if analysts have

sufficient simulation software knowledge. However, based on authors’ experience,

this direct model building practice without any methodological approach often

generates incorrect models due to the lack of communication, improper model

abstraction, and inappropriate model management techniques. Particularly, in a

large-scale simulation project, it tends to add more difficulty to the proper

simulation project management.

2 IDEF Methods for Business Process Knowledge Capture

According to Lin et al. (2002), a business process has the following elements:

 A business process has its customers.

 A business process is composed of activities whose objectives are to create

values for customers.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 342

K.-Y. Jeong; L. Wu; J.-D. Hong

 Activities are performed by actors who may be humans or machines

 A business process often involves organizational units which are responsible

for the whole process.

We believe that IDEF methods well support those elements. For example, IDEF0

was designed to capture the ‘decisions’ and ‘activities’ of a system (Mayer et al.,

1995). Those decisions and activities include information on what functions the

system performs, what constraints the functions have, what is needed for

functions, and what input and output are meaningful in performing those functions.

An IDEF0 model is represented with rectangles with four different types of arrows

surrounding the rectangles. A rectangle represents a function or activity described

in a verbal phrase, and arrows represent (1) “Input” (on the left); (2) “Output” (on

the right); (3) “Control” (on the top); and (4) “Mechanism” (on the bottom) called

(ICOM) described in a noun phrase to explain the behavior of the function – see

Figure 2 below. It also supports the hierarchical decomposition of activities for an

appropriate abstraction of a system. We notice that the first three business

elements could be supported by IDEF0. For example, IDEF0 model could be

developed from a specific customer’s perspective and context – first element. The

business activities are part of system activities – second element. The mechanism

in ICOM includes actors – third element.

Figure 2. “IDEF0 function modeling notation”.

IDEF3 is a process capture and description method within the context of a specific

scenario (Mayer et al., 1995). The process schematic of IDEF3 has been widely

accepted as a medium for process description in industry (Mo et al., 1998). As

seen in Figure 3, the process schematic consists of the three main components: (1)

“Unit Of Behavior” (UOB); (2) “Junction”; (3) “Link”.

Function
(Phrase

starting with
Verb)

Control
(noun)

Output
(noun)

Input
(noun)

Mechanism
(noun)

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 343

K.-Y. Jeong; L. Wu; J.-D. Hong

Name Description Symbol

Unit of
Behavior
(UOB)

Capture information on what is going on in the system, which
represents a process or an activity

ID

name

Link
Represent temporal, logical, causal, natural or relational constructs
between UOBs

Junctions

Specify a logical branching of UOBs:

Fan-Out XOR/Fan-In XOR
Fan-Out AND/Fan-In AND
Fan-Out OR/Fan-In-OR

Figure 3. “IDEF3 process schematics”.

A UOB captures information on what is going on in a system to represent a process

or an activity. It is depicted by a rectangle with a unique label. Junctions provide a

mechanism specifying a logical branching of UOBs and introduce the timing –

temporal – and sequencing of multiple processes. Junction types include an

exclusive OR denoted by “X”, a conjunctive AND junction denoted by “&”, and an

inclusive OR denoted by “O”. Since IDEF3 uses a scenario as a basic organization

structure to describe how things work, it could easily fit with the first three

elements of a business process. It also supports the top-down and bottom-up

modeling sequences and hierarchical decomposition for multiple levels of

abstraction. IDEF1X produces a data model that represents the structure and

semantics of information within an enterprise or a system, known as business

rules. An IDEF1X diagram is refined into three levels of detail: (1) an entity-

relationship level; (2) a key-based level; (3) an attribute level. Diverse business

rules are specified according to different levels of detail, and the model

development is defined by these three level modeling procedures. Figure 4 shows

summary of these three levels with symbols. Interested users are encouraged to

read (KBSI, 1994) for detailed grammar and graphical symbols for the IDEF1X

method.

Lin et al. (2002) also identified ten essential concepts useful in defining a business

process, and we creatively used these concepts to investigate the fitness of the

proposed IDEF method-based integrated framework for business process

simulation model design and development. The results are summarized in Table 1.

This table shows all but one concept are handled and represented by this

framework.

X X

& &

O O

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 344

K.-Y. Jeong; L. Wu; J.-D. Hong

Name Description Symbol

1) Entity

A set of real or abstract things which have
common attributes or characteristics. An
individual member of the set is called an instance

Identifier-
Independent
Entities

An instance that can be uniquely identified
without determining its relationship to another
entity

Entity Name

key

Attribute

Identifier-
Dependent Entities

An instance whose identification depends on its
relationship to another entity.

Entity Name

key

Attribute

2) Relationships Relationship among entities

Identifying
Connection
Relationships

If an instance of a child is identified by its
association with a parent entity, it is referred to
as an identifying relationship. It has one of the
following cardinalities (zero, one or more/one or
more/zero or one/exactly n/from n to m)

/(P Z n n-m/ //)

Non-Identifying
Connection
Relationships

If every instance of the child entity can be
uniquely identified without knowing the
associated instance of the parent entity, it is
called as a non-identifying relationship.

/(P Z n n-m/ //)

3) Keys Attributes of each entity

Primary Keys Attributes which uniquely identifies an entity (PK)

Alternate Keys Attributes which can work as a primary key (AK)

Foreign Keys Attributes migrated from other entities (FK)

Figure 4. “IDEF1X building blocks and symbols”.

Concepts Descriptions IDEF0 IDEF3 IDEF1X

Activity Task, function or operation
Behavior Action, business rules or control
Resource Mechanism or location

Relation
Relation class, junctions and links,
interaction, and dependencies

Agent Social actor or role
Information Message

Entity Object represented by attributes

Event
Represented by as event objects or
inputs/outputs

Verification and
validation

Model built as intended? Model well
represents reality?

Modeling
procedure

Specific procedures to build a model

Table 1. “Business concepts vs. IDEF methods”.

At the same time, it also suggests the intervention from model developers and

users are still necessary for verification and validation. In fact, authors do not claim

that an automatic model development process could completely replace the

insights and knowledge from humans - we even believe that it is not desirable.

Instead, this integrated framework should be considered as an aid to support

humans and their judgment.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 345

K.-Y. Jeong; L. Wu; J.-D. Hong

3 IDEF1X Data Model Knowledge Base for Simulation Model

An IDEF1X data model should be robust enough to make the structural and

semantic aspects of the simulation included in the model. One way to consider the

semantic aspects of the simulation model is to study the simulation ontology, and

reflect it within the data model design, since ontology provides the definition of the

terminologies and relationship between them. Although several DES software

packages are available in the market, they have some common basic structures or

objects, while the unique structures are variations of these common structures. If a

data model incorporates these structures into its design, it could be shared by

different DES software packages.

Table 2 lists some of these basic common structures with their definitions within

the context of business process simulation. Note that the neutral terminologies,

Generator, Entity, Location, Resource, Queue, and Destroyer are used to avoid

favoring a particular simulation language. For example, ED (2001) uses Source,

Product, Server or Multiple-Service, Operator, Queue, and Sink while Flexsim

(2007) uses Source, FlowItem, Processor or Multiprocessor, Operator, and Sink

instead of these neutral terminologies.

Name Definition

Generator A structure that creates entities to populate a model

Entity
A structure that flows through the model to represent customers, orders and any
moving items in the model.

Location
A structure that interacts with an entity. This interaction is called a service, and it
usually delays the progress of an entity through the model.

Resource
A structure that may be required by an entity or a location to provide a service.
The difference between a location and a resource is that a location does not move,
and a resource is moving toward a location when it is requested.

Queue
A structure that stores entities. The queue is awaiting service, not receiving
service.

Destroyer A structure that destroys entities

Table 2. “Basic simulation objects and definition”.

Figure 5 shows one possible mapping between an IDEF1X data model and

corresponding neutral simulation structures (objects). The data model has multiple

– one or more, denoted by P – Order/Product, Office/Shop, Employee/Equipment

or Operator, and Storage/Queue objects. Each of which is mapped to Entity,

Location, Resource and Queue object, respectively, in the simulation model. Note

that since Generator and Destroyer are purely functional objects for an entity

creation and destroy respectively, they do not need to be included in a data model.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 346

K.-Y. Jeong; L. Wu; J.-D. Hong

Once a data model is built with consideration of simulation structures, the database

can be easily created from which multiple simulation models could be automatically

developed.

Figure 5. “Simulation and data model mapping”.

From a simulation perspective, the data model characterizes the required

functionalities of simulation libraries. Hence if those functionalities are not

supported by specific target simulation software, those functionalities should be

developed to make the database-driven simulation model development easier.

4 Database-Driven Simulation Model Development

Most simulation software provides its own script language with structured query

language (SQL) and Open Database Connectivity (ODBC) capability. Hence, the

interface between the simulation and database management system (DBMS)

becomes easier but it still requires some coding efforts. In this study, both Flexsim

and ED libraries were adopted to implement DBSMGA since both provide the

Object-Oriented customized library development capability in addition to the rich

standard libraries. The customized library development capability is supported

using Flexscript (Flexsim’s script language) or C/C++ in case of Flexsim and 4D

Scripts in case of ED. Each object (library) consists of a set of attributes

(characteristics) and methods (functions) that can be implemented when an

associated event handler is activated in the library. In case of Flexsim, some

typical examples of an event handler are OnReset – triggered when users click the

IDEF1X
Data Model

Simulation
Model

P

P

Employee/
Equipment

or
Operator

Storage/
Queue

Order/
Product

Office/
Shop

Entity

Resource

Queue

Location

Generator

Destroyer

P

P

P

IDEF0 &
IDEF3
Model

P

P

P

P

P

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 347

K.-Y. Jeong; L. Wu; J.-D. Hong

reset button, OnMessage – triggered when an object receives a message from

other objects, OnEntry – triggered when an entity enters current object, and

OnExit – triggered when an entity leaves from a current object. All properties of a

class are inherited to the instances of the class when they are created in a model.

By combining the standard library and the customized library, users can develop

their own user-specific and/or domain-specific simulation software, which makes

mapping from the data model to the simulation easier.

In the case study to be discussed later, we first developed a Flexsim model. A

customized library named “simulation-generator” was developed to generate

simulation models from a database. Note that this corresponds to the Simulation

Model Generator in Figure 1. All codes were written in the User event handler and

the total lines of the codes are less than 250 including all user-interface and screen

embellishment.

NO Code Description

1
dbopen(“MyDSN”,”select * from
Equipment”,0);

Connected to the database table Equipment through
the DSN defined at MyDSN and perform SQL
statement.

2

settablenum(“InfoTb”,1,1,dbgetnum
rows());

Store total number of records in database at
cell(1,1) in InfoTb. “dbgetnumbrows()” is a key word
to count the number of records in the current
database.

3
for(int i = 1; i <= dbgetnumrows();
i++) {

Repeat the function defined at { } dbgetnumrows()
times.

4
createinstance(node("/SHOP-
Equipment",library()),model());

Creates an instance of the SHOP-Equipment class
(library) and places it in the model. Note that SHOP-
Equipment is a customized library.

5

setname(last(model()),dbgettablecel
l(i,1));

Change the name of an instance using the name
stored at the Equipment database.
dbgettablecell(i,1) reads the string data stored at ith
row and 1st column

6
createinstance(node("/SHOP-
Buffer",library()),model());

Creates an instance of the SHOP-Buffer class
(library) and places it in the model. This serves as a
queue for equipment.

setname(last(model()),concat(dbget
tablecell(i,1),”Q”));

Define the name of the queue in front of equipment.
Concat connects multiple strings.

7
contextdragconnection(prev(last(mo
del()),last(model()), "A");

Connect the output port of queue to the input port
of the equipment

8 Set_Equipment_Attributes, set equipment attributes (user-defined function)

9
Set_Queue_Attributes}; set queue attributes (user-defined function) and end

of For statement
10 Dbclose(); Close equipment database

Table 3. “Partial pseudo code in simulation model generator”.

Table 3 shows the partial pseudo-codes to create instances of a library object from

Equipment table to explain how to read the database through ODBC (lines 1 and

10) and create objects (instances of a library) and connect them using the ports

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 348

K.-Y. Jeong; L. Wu; J.-D. Hong

(lines 2-9). One record in Equipment table represents one machine instance whose

field consists of (equipment ID, equipment Name, Capacity, MTBF, MTTR etc).

Lines 8 and 9 are calling user-defined functions to define the attributes of all

instances. It is important to recognize that a model is a set of instances of all

classes (or objects) located in the library. These classes may be provided by

vendors or newly created by users. In this study, the “SHOP-Equipment” object

and “SHOP-Buffer” object were created in the library by authors using Flexscript to

facilitate the mapping from the data model to Flexsim.

5 Guidelines for Knowledge Reusability among IDEF methods

Developing a descriptive model using IDEF methods requires a feedback loop for

obtaining consensus and confirmation from domain experts. Considering the fact

that each IDEF uses a different modeling language to capture different perspectives

of the real systems, the captured knowledge reuse among different IDEF methods

has proven difficult to generalize. However, the importance of the knowledge reuse

is critical – remember 40-40-20 rule, and how much time is required for

requirement collection and experimentation? Based on our experience, the

following guidelines seem to be useful in the knowledge reuse among IDEF0, IDEF3

and IDEF1X. As stated previously, IDEF0 represents the functional behavior of a

system through four different types of data (ICOM) and a set of activities. The

ICOM data could be information, objects or anything described in a noun phrase.

Hence, some of the IDEF0 data may be represented as an object or an attribute in

the IDEF1X model. Although IDEF0 is not designed to capture the temporal

relationship among activities, some functional aspects of the system may include

the temporal relationship among activities. Hence, if this happens, some activities

in IDEF0 could be also represented in the IDEF3 diagram. Guidelines recommended

for knowledge reusability among IDEF methods include:

 An IDEF0 modeling is recommended first since it provides overall system

level knowledge.

 Then, an IDEF3 modeling is recommended if temporal information among

activities is needed. Note that some descriptions in UOBs may provide a

clue for attributes and objectives in an IDEF1X model.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 349

K.-Y. Jeong; L. Wu; J.-D. Hong

 With help of IDEF0 and IDEF3, the detailed IDEF1X model could be

developed.

 A “Mechanism” in IDEF0 may easily turn out to be an object in IDEF1X since

“Mechanism” often includes resources – a typical object in an IDEF1X

model.

 The “Constraint” in IDEF0 may provide a logical object in IDEF1X since this

“Constraint” often represents the business rules of a system.

 Check if there is any noun in the verbal phrase (function) in an IDEF0 model

that needs to be translated into an attribute or object in an IFED1X model.

Since a verbal phrase explains the behavior of the function, some nouns

used in the phrase may convey meaningful information for a data model.

6 Case Study

This paper employs a case study of a semiconductor fabrication process to

illustrate the concepts and framework stated in this paper. The IDEF1X data model

created for this case study could also apply to many real-life business process

problems. This case study originally came from Deuermeyer et al. (1993), and it

was adopted here since it involves very complex real-life business processes. This

case analyzes 172-step semiconductor wafer fabrication processes with six work-

areas - CLEAN, STRIP, IMPLANT, DEPOSIT, LITHO and ETCH. These areas perform

wafer cleaning, stripping, ion implantation, deposition, lithography and etch

operation, respectively. Each work-area consists of machines and operators. An

operator is required for wafer-loading and unloading operations at each machine.

In addition, when different wafer-lots are loaded, the set up is required. The

different operations may have different processing times even though they are

performed in the same machine. Each product type can have its own routing as in

a general job shop. However, most operation sequences are similar across product

types in the wafer fabrication process. For example, all wafers start their

operations from CLEAN area and finish at DEPOSIT area after several intermediate

operations. One of the typical operation sequences is cleaning, litho, implantation,

striping, deposition, etching, striping and deposition again. The important shop

information such as the number of machines and operators, MTBF (mean time

between failure), and MTTR (mean time to repair) is summarized in Table 4. Note

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 350

K.-Y. Jeong; L. Wu; J.-D. Hong

that both MTBF and MTTR are exponentially distributed, denoted by expo(). Two

virtual areas were added to indicate the starting (START) and ending (END) of the

process. Note that the second column consists of 8-tuples and each of which

denotes the number of visits to each work-area. This 8-tuples are arranged in the

orders of START, CLEAN, STRIP, IMPLANT, DEPOSIT, LITHO, ETCH and END. It is

assumed that this shop is operating for 24 hours with 3 eight-hour shifts due to

high capital equipment. The main performance measure for this shop is the system

cycle time.

Work
Area

of Visits to Work-
Area

No. of
Machines

No. of
Operators

MTBF (hrs) MTTR
(hrs)

START (0, 1, 0, 0, 0, 0, 0, 0) expo(42.18) expo(2.2)
CLEAN (0, 3, 0, 0, 15,1,0, 0) 4 1 0
STRIP (0, 2, 0, 0, 1,11,9, 0) 3 1 expo(55.18) expo(12.86)

IMPLANT (0, 1, 6, 1, 0, 0, 0, 0) 5 1 expo(75.93) expo(3.88)
DEPOSIT (0, 2, 0, 0, 8, 9, 8, 1) 20 3 expo(100) expo(2.78)
LITHO (0, 5, 12, 7, 2, 33, 6, 0) 33 4 expo(62.91) expo(9.35)
ETCH (0, 5, 5, 0, 3, 10, 6, 0) 28 3
END (0, 0, 0, 0, 0, 0, 0, 0)

Table 4. “Facility data by work-area”.

Based on the description above, we attempt to build an IDEF0 model according to

the first guideline in the previous section. Each area could be modeled as an

activity in IDEF0, and these activities are connected with each other through

wafers. For example, Figure 6 shows part of the IDEF0 model in the wafer strip

area with its decomposition to show the wafer strip process in detail. For any

machine, when a batch of wafers (job) arrives, the operators are responsible for

selecting the proper job according to the pre-determined dispatching rule that

decides the job processing sequence at the machine. Once a job is selected, it is

loaded onto a machine, and the set up occurs if the job’s lot number is different

from that of the previous job. Once it finishes its operation, the wafers are

unloaded and are ready to move to the next destination. The wafer changes its

status over time as seen in the figure. For each area, these wafer processes are

repeated.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 351

K.-Y. Jeong; L. Wu; J.-D. Hong

Load a Job to a
Machine

Set Up a
Machine

WIP

Perform an
Operation

selected job

Unload a Job

Available
Jobs Select a Job to

Operate loaded job

finished job

unloaded job

Operator Machine

Dispatching
Rule

Machine
Operation
Recipe

Lot No identity Transfer Batch Size

Figure 6. “Function model of a fabrication process in strip area”.

Next, according to the second guideline, we tried to consider building an IDEF3

process model. All 172 steps are needed to be represented by IDEF3 model. In this

case, the IDEF3 model is same as the process plan of a wafer fabrication, whose

routing was already depicted in Deuermeyer et al. (1993). Hence, it was not

repeated here. According to the fourth guideline, both an operator and a machine –

mechanism – are considered as important objects, and they are incorporated into

the IDEF1X data model as an object. According to the fifth guideline, the constraint

information, Dispatching Rule, is also captured within the data model since it is

considered as an important factor affecting the cycle time from the shop scheduling

perspective. The same is true for the lot size (Transfer Batch Size) constraint

information. It is also observed that the several functions are controlled by a

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 352

K.-Y. Jeong; L. Wu; J.-D. Hong

constraint called Machine Operation Recipe, which may contain the operation

sequence information for each product.

With the help of IDEF0 model and the problem descriptions, the IDEF1X model is

defined as in Figure 7. Based on above discussions associated with the IDEF0

model, the Equipment, Product, Operator and DispatchRule are first defined as an

independent object (entity) with keys and attributes. For example, each equipment

needs capacity, MTBF, MTTR, setup time and run time, WorkingShift, Overtime,

BufferSize and Dispatching_ID information. The BufferSize defines the size of

buffer in front of an equipment holding parts awaiting processing, and the

Dispatching_ID is the set of rules defining the sequence of jobs in the queue.

Typically, it follows FIFO – First-In-First Out. In this case study, the queue object

represented in Table 2 is not handled as a separate object since all queues in front

of each piece of equipment are considered as infinite.

Operator

Operator_ID

Desc
Capacity
SkillCode
WorkingShift
OverTime

P

Product_ID (FK)
Equipment_ID (FK)
Operator_ID (FK)

EquipSetupTime
EquipRunTime
LaborSetupTime
LaborRunTime
Operation_Code (AK)
Desc

Operation

P

P

Routing

Routing_ID

Product_ID (FK)
Operation_Code_From
Operation_Code_To
Percentage

P

Equipment

Name
Capacity
MTBF
MTTR
SetupTime
RunTime
WorkingShift
OverTime
BufferSize
Dispatching_ID (FK)

Product

Product_ID

Name
Demand
LotSize
Quantity in Parent
Parent ID

DispatchRule

Dispatching_ID

Desc

P

Equipment_ID

Figure 7. “IDEF1X data model for case study”.

The Product object can represent a bill-of-material (BOM) information through

Quantity in Parent and Parent ID attributes. The demand and LotSize are attributes

that affect the cycle time. The Operation object is defined as a dependent object

since it can be uniquely identified only through Equipment, Product and Operator

objects. Hence, the relationship between these three objects and an Operation is

an identifying connection with one-to-many (one or more) cardinality. However,

the relationship between DispatchingRule and Equipment is a non-identifying with

one-to-many (at least one) cardinality since DispatchRule_ID is used as a non-

primary foreign key in the Equipment.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 353

K.-Y. Jeong; L. Wu; J.-D. Hong

It is important to understand the difference between the Operation and the Routing

object. The Operation contains all operation information that describes “who

(operator) handles what products with what machines for what time”, and the

Operation_Code can be used as an alternative primary key. The Routing object is

created for simulation model generation to describe the sequence of operations for

each product using the information in an Operation object. For each product type

(non-primary FK), the source operation code (OperationCode_From) and the

destination operation code (OperationCode_To) is described with its corresponding

routing probability (Percentage) to support the probabilistic routing view. The

Routing object provides the sequence of operations for each product type while

these operations are characterized by the Operation object. The prototype data

model in Figure 7 was translated into the corresponding MS-ACCESSTM database

using the SmartERTM case tool developed by KBSI (1994). Figure 8 shows a

snapshot of the Flexsim simulation model generated from the data model in Figure

7 using the codes in “simulation-generator” library whose partial pseudo-codes are

represented in Table 3.

Figure 8. “A snapshot of Flexsim model from database”.

In this figure, each of six work-areas is described in bold while the name of an

object is represented in a regular letter. When multiple Operators are involved, all

operators are directly connected to the Dispatcher object which is directly

controlled by a Processor object. Figure 9 shows that of the ED simulation model

from the same data model. The library object in ED is called an atom. The queue

atom is connected to the operation atom, which is connected to the routing atom

that connects the work-areas. The operator control atom (OP CONTROL) is

connected to both the operator atom and the operation atom. The first atom

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 354

K.-Y. Jeong; L. Wu; J.-D. Hong

denoted by “1” represents a product atom corresponding to the Product object in

Figure 7. The queue atom denoted by “2” has infinite capacity, which corresponds

to a Buffer object. The operation atom denoted by “3” contains all equipment

information such as MTBF and MTTR as its attributes, and it also includes all sub-

operations such as loading, set up, cleaning operation and unloading operation.

CLEAN

STRIP

IMPLANT

DEPOSIT

LITHO

ETCH

1. PRODUCT 2. QUEUE 3. OPERATION 4. OPERATOR 5. ROUTING 6. OP CONTROL

Figure 9. “A Snapshot of ED model from database”.

When a sub-operation requires an operator, the atom performing the operation

(i.e. cleaning atom) sends an operator-request-message (ORM) to a corresponding

operator control atom (OP CONTROL). The operator control atom matches an ORM

to an available operator, and it sends available operator(s) to the requesting atom.

If there is no available operator for that ORM, it has to wait at the internal message

queue inside an operator control atom. Once the (sub) operation finishes, the

operator is released from the requesting atom and it becomes available again. All

channels are connected using the information in the Routing object, and sub-

operation information in an operation atom comes from the Operation object in

Figure 7. The operator atom corresponds to the Operator object.

This model was executed with the data in Table 4 for 5 times to filter variation,

considered as the first alternative (ALT1). Each run has 60,000 simulation hours

after 10,000 hours warm up period. Since the sum of the three operators’

utilization in CLEAN, STRIP and IMPLANT was around 80 %, we created two other

alternatives where these three areas have two shared operators (ALT2) and one

shared operator (ALT3). The corresponding models were quickly generated again

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 355

K.-Y. Jeong; L. Wu; J.-D. Hong

from the database by changing the “Operator_ID” in the Operation table without

modifying any logic in Flexsim environment for different scenarios. The average

cycle time and throughput (number of units produced per day) were compared and

displayed in Figure 10 where the bar shows the average cycle time and the line

represents the throughput. As seen in the figure, the performance of the second

alternative (ALT2) is almost identical to that of the first alternative (ALT1) even

with less number of operators, and both outperform the third alternative (ALT3).

Figure 10. “Alternative comparison”.

Through this case study, we showed that the IDEF method-based integrated

framework could help improve the process of a simulation project by using IDEF-

based descriptive models to capture requirements and to perform the

experimentation. The IDEF1X-based data model supported by IDEF0 and IDEF3

could reduce the time and effort for simulation model development and

maintenance. Before closing this section, it should be recognized again that the

DBSMGA does not depend on any specific simulation software. Any simulation

software supporting the ODBC and SQL capabilities could be used. If the software

has the capability to customize the standard library, it could also reduce the effort

required to map the data model into the simulation model.

7 Discussion and Conclusion

In this paper, the integrated framework of IDEF method-based simulation model

design and development was provided for a business process. In this framework,

the systematic use of IDEF0 and IDEF3 for business processes was proposed to

help the requirement collection phase in a simulation project. From this systematic

use of both descriptive models, the IDEF1X-based data model was created and

became a knowledge base from which multiple simulation models could be

developed, which could save time and effort in the experimentation phase in a

34.21 34.72

141.63

2.40 2.40

2.24

2.15

2.20

2.25

2.30

2.35

2.40

2.45

0

20

40

60

80

100

120

140

160

ALT1 ALT2 ALT3

T
h

ro
ug

hp
ut

 (u
ni

ts
/d

ay
)

cy
cl

e
tim

e
(d

ay
)

avg cycle time (day)

throughput

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 356

K.-Y. Jeong; L. Wu; J.-D. Hong

simulation project. A case study in a semiconductor manufacturer was conducted

to show the feasibility of this framework where both Flexsim model and ED model

were generated. This paper also discussed the guidelines to reuse the captured

system knowledge among IDEF0, IDEF3 and IDEF1X.

The advantages of this integrated framework are to improve design knowledge

reusability among IDEF0, IDEF3 and IDEF1X. It could also significantly reduce

simulation model development and maintenance effort. By combining both IDEF

methods and the database technologies together, this research significantly

improved the previous IDEF based researches in that this framework provided a

specific, systematic way to implement and execute the previous IDEF based

modeling and design works. Many practitioners and simulation developers have

been using the icon-based graphic user interface, and they should be familiar with

all icons to develop and use the simulation models – This naturally leads to more

focus on the model development phase without the ‘descriptiveness’ for better

communication. However, the framework used here could change this game rule.

The use of IDEF methods leads to more focus on the requirement collection phase

of the simulation project. Also by using database as a knowledge base, this

framework eliminated the dependence on the specific simulation software, and

increased the efficiency in the experimentation phase of a simulation project.

Authors believe that the results will significantly contribute to the successful use of

simulation in the business process area where requirement collection is considered

most difficult but important. Another direct advantage of this framework is that this

could be applied to any analytical model as long as that model supports the

database technology by separating the logic from the data.

The result of this study could provide many new ideas and suggestions to both

practitioners and researchers. We summarized these into two categories: IDEF

method-based modeling category and the database-based model generation

category. Regarding the first category, it would be very useful to automate the

knowledge conversion mechanism among IDEF methods to support human

judgment and communication during the large scale simulation project. Also

although we have provided many rules and insights for this conversion, more

research is expected to enrich these lists in a specific domain and/or generic

domain. In addition to the IDEF methods, the unified modeling language (UML)

could also be considered for this DAM activities since it also supports the diverse

modeling approaches from different perspectives. Designing more suitable data

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 357

K.-Y. Jeong; L. Wu; J.-D. Hong

model and/or database model could be another direct research area in this

category since there may be an optimal data model in a specific domain. In the

second category, the direct research area includes the development of an

integrated simulation model generator through which the same knowledge in the

database is transformed into software specific simulation models. In this way, the

knowledge reusability will be maximized among simulation software products. Also,

integrating all these – both descriptive modeling methods and the database model

– within single platform could also be considered as another promising future

research area.

References

Ang, C. L., Luo, M., & Gay, R. K. L. (1994). Development of a knowledge-based

manufacturing modeling system based on IDEF0 for the metal-cutting industry.

International Journal of Economics, 34(3), 267 – 281.

Chen, P., Caiyun, W., Tiong, R., Seng, K. T., & Qizhen, Y. (2004). Augmented

IDEF1-based process-oriented information modeling. Automation in Construction,

13(6), 735 - 750.

Cho, H., & Lee, I. (1999). Integrated framework of IDEF modeling methods for

structured design of shop floor control systems. International Journal of Computer

Integrated Manufacturing, 12(2), 113-128.

Deuermeyer, B. L., Curry, G. L., & Feldman, R. M. (1993). An automatic modeling

approach to the strategic analysis of semiconductor fabrication facilities.

Production and Operation Management, 2(3), 195-220.

Enterprise Dynamics. (2001). Reference Guide 4Dscript. Maarssen, The

Netherlands.

Flexsim. (2007). Flexsim Simulation Software User Guide Version 4.0, Flexsim

Software Products, Inc.

Jeong, K. Y., Cho, H. B., & Phillips, D. T. (2008). Integration of queuing network

and IDEF3 for business process analysis. Business Process Management Journal,

14(4), 471-482.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 358

K.-Y. Jeong; L. Wu; J.-D. Hong

KBSI. (1994). SmartERTM user’s manual and reference guide Ver. 2.0, Texas,

College Station, Knowledge Based Systems.

KBSI. (1995). ProSimTM Automatic process modelling for Windows: user’s manual

and reference guide ver. 2.1. College Station, TX, Knowledge Based Systems.

Lin, F. R., Yang, M. C., & Pai, Y. H. (2002). A generic structure for business process

modeling. Business Process Management Journal, 8(1), 19 – 41.

Lingzhi, L., Leong, A. C., & Gay, R. K. L. (1996). Integration of information model

(IDEF1) with function model (IDEF0) for CIM information system design. Expert

Systems With Applications, 10(¾), 373 - 380.

Mayer, R. J., Benjamin, P. C., Caraway, B. E., & Painter, M. (1995). A framework

and a suite of methods for business process reengineering, in Grove, V. and

Kettinger, W. J. (Ed.), Business Process Change: Reengineering Concepts,

Methods and Technologies, (pp. 245 - 290). London: Idea Group Publishing.

Mo, J. O. T., & Menzel, C., P. (1998). An Integrated Process Model Driven

Knowledge Based System for Remote Customer Support. Computers in Industry,

37(3), 171-183.

Pidd, M. (1992). Guidelines for the design of data driven generic simulators for

specific domains. Simulation, 59(4), 237 – 243.

Resenburg, A. V., & Zwemstra, N. (1995). Implementing IDEF techniques as

simulation modelling specifications. Computers and industrial engineering, 29(1-4),

467-471.

Ryan, J., & Heavey, C. (2006). Process modeling for simulation. Computers in

Industry, 57(5), 437-450.

Sheppard, S. (1983). Applying software engineering to simulation. Simulation

Practice and Theory, 10(1), 13-19.

Zhang, J., Chuah, B., Cheung, E., & Deng, Z. (1996). Information modeling for

manufacturing systems: A case study. Robotics & Computer-Integrated

Manufacturing, 12(3), 217-225.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

doi:10.3926/jiem.2009.v2n2.p337-359 ©© JIEM, 2009 – 2(2): 337-359 - ISSN: 2013-0953

IDEF method-based simulation model design and development 359

K.-Y. Jeong; L. Wu; J.-D. Hong

©© Journal of Industrial Engineering and Management, 2009 (www.jiem.org)

Article's contents are provided on a Attribution-Non Commercial 3.0 Creative commons license. Readers are
allowed to copy, distribute and communicate article's contents, provided the author's and Journal of Industrial

Engineering and Management's names are included. It must not be used for commercial purposes. To see the complete
license contents, please visit http://creativecommons.org/licenses/by-nc/3.0/.

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n2.p337-359

	IDEF method-based simulation model design anddevelopment
	Abstract
	Keywords
	1 Introduction
	2 IDEF Methods for Business Process Knowledge Capture
	3 IDEF1X Data Model Knowledge Base for Simulation Model
	4 Database-Driven Simulation Model Development
	5 Guidelines for Knowledge Reusability among IDEF methods
	6 Case Study
	7 Discussion and Conclusion
	References
	Attribution-Non Commercial 3.0 Creative commons license

