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Abstract:

Purpose: Pre-positioning is a crucial choice in pre-disaster humanitarian logistics planning that consists of
deciding  in  advance  how much  aid  and  where  should  it  be  located  to  enable  effective  and  prompt
operations in the case of  an emergency. To support managers making such decisions, we propose four
mathematical formulations that, considering the uncertainty on the demand to satisfy, seek to optimize aid
prepositioning (before the event) and further distribution (after the event) in order to minimize unmet
demand (MUD).  The  purpose  of  this  paper  is  to  evaluate  and  compare  the  performance  of  these
formulations on a real case to discuss when and why should each approach be applied. 

Design/methodology/approach: The two first  formulations  adopt  the  cardinality-constrained  (CC)
approach  to  handle  uncertainty.  These  formulations  differ  in  their  objective  functions,  the  first
formulation’s objective seeks to MUD, whilst the second incorporates equity in the way that demand is
satisfied. The two remaining formulations are scenario-based (SB) and as in the previous two formulations,
seek to MUD with and without equity considerations, respectively.

Findings: Applying our formulations to a case study, we compare the differences between the solutions
produced  by  the  proposed  formulations  and  the  solutions  that  would  have  been  produced  without
uncertainty (perfect information) to have a better understanding of  their performance and their behavior.
A discussion of  the strengths and weaknesses of  each model is provided to help managers choose the
model that best suits their needs.

Originality/value: The formulations are applied to a case study where a food bank is faced with the
arrival of  a hurricane in Mexico. As far as our knowledge, it is the first work in literature to deal with
humanitarian logistics under a cardinality-constrained approach. 

Keywords: demand  uncertainty,  cardinality-constraints,  optimization  models,  humanitarian  logistics,  minimize
unmet demand, equity
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1. Introduction
Natural catastrophes (including hurricanes, earthquakes, droughts, and floods) have affected countries all across the
world  more  and  more  in  the  past  years,  and  predictions  indicate  that  this  will  continue  increasing
(EM-DAT - Emergency Events  Database,  2011).  The problems caused by natural  disasters are  countless,  and
humanitarian organizations have the responsibility to deal with these problems. Given the urgency, unpredictability,
and complexity of  these issues in the global supply chain that is driven by humanitarian entities, improvements in
supply chain management and logistics have a direct impact on the capacity of  humanitarian organizations to
respond to disasters and enhance their overall effectiveness. (Leiras, de Brito Jr, Queiroz-Peres, Rejane-Bertazzo &
Tsugunobu-Yoshida-Yoshizaki, 2014). 

The  process  of  planning,  executing,  and  overseeing  the  efficient  transportation  and  storage  of  goods  and
commodities, together with related information, from the point of  origin to the place of  consumption in order to
meet the needs of  the recipients is known as humanitarian logistics (Thomas & Mizushima, 2005). There are several
issues that separate humanitarian logistics challenges from those of  business logistics. Some of  these challenges are
demand’s unpredictable nature with regard to its time, location, nature, and scale; the abrupt appearance of  demand
in  significant  quantities  following  a  disaster;  risks  related  to  delivery  punctuality;  and  a  shortage  of  supply,
personnel, technology, transportation capacity, and financial resources (Kovács & Spens, 2009).

One of  the most important challenges in humanitarian logistics is uncertainty. The unpredictable nature of  disasters
makes the planning and execution of  relief  operations a complex and dynamic process. Indeed, uncertainty is inherent
in most humanitarian contexts and cannot be disregarded since it could significantly affect the viability and quality of
the problem solution. (Carello & Lanzarone, 2014). Failure to anticipate and manage uncertainty can lead to delayed
response times or inadequate resource allocation. This, in turn, can result in an insufficient response to the needs of
affected populations. Uncertainty can arise from many sources, including changes in the demand, fluctuations in
supply available, and disruptions to transportation roads. There are various approaches to deal with this uncertainty. 

This paper explores the use of  the CC approach to deal with uncertainty in the context of  resource prepositioning
and allocation during the prelude to a natural disaster and compares it to the well-known SB approach. CC limit the
number of  elements in a specific set, thus they can be considered as structural constraints since they limit the
possible structure of  the database (Thalheim, 1992). The CC approach can provide valuable insights into the
trade-offs and risks associated with different decisions and help decision-makers to allocate resources effectively in
the face of  uncertainty.  Two versions of  this  approach are formulated,  one seeking the minimization of  the
unsatisfied demand, and another striving for an equitable distribution of  aid. The approaches are applied to a case
study inspired by Hurricane Odile and the results are reported and analyzed to assess the value of  the CC approach,
comparing results against the SB models.

The remainder of  this paper is organized as follows: A brief  assessment of  related works’ literature is provided in
Section 2, focusing on uncertainty in humanitarian logistics and applications of  the CC approach in optimization
models.  Section  3  presents  the  problem description  and proposes  four  mathematical  formulations.  Section  4
presents a case study.  Sections 5 and 6 document the numerical results produced by the various models,  and
additional experiments where the case study is solved under perfect information to better assess these results.
Finally, the paper is concluded with recommendations for further research and conclusions.
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2. Related Work

The aim of  this section is twofold. It first presents papers that have dealt explicitly with uncertainty in the context
of  food bank supply chains. Then, it reviews works devoted to the CC approach and their application to diverse
optimization problems.

2.1. Uncertainty in Humanitarian Logistics

One of  the main obstacles for food banks making operational decisions is the unpredictability of  donations and
demand. (Rivera, Smith & Ruiz, 2023). One of  the primary problems when using optimization models to construct
a humanitarian relief  chain is uncertainty in the necessary data. In large-scale emergencies in particular, data could
not be readily available or easily communicated. (Tofighi, Torabi & Mansouri, 2016).

Different approaches to deal with uncertainty in humanitarian logistics can be found in the literature. They differ in
the way to model uncertainty, the way to manage it, and the parameters considered to be uncertain (Liberatore,
Pizarro, de Blas, Ortuño & Vitoriano, 2013). 

Parameters considered to be uncertain may affect different aspects of  the problem. Some related works consider
uncertainty in parameters such as uncertain road conditions, which is represented by road availability (Gao,  Jin,
Zheng & Cui,  2021),  time needed to transfer  injured people  to other destinations  (Hoseininezhad,  Makui &
Tavakkoli-Moghaddam, 2021), storage capacity of  storage and distribution centers (Vahdani, Veysmoradi, Noori &
Mansour,  2018),  and  hurricane’s  effects  on  each  facility’s  supply  levels,  amount  of  donations  received,  and
anticipated demand for the area that it serves (Marthak, Pérez & Méndez-Mediavilla, 2021).

Besides the parameters considered, uncertainty can be modeled by different approaches. One of  the most common
approaches involves defining probabilistic scenarios. Mete and Zabinsky (2010), and Chan, Kumar and Choy (2007)
model uncertainty through scenarios that define distinct parameters such as the amount of  demand, the location of
affected areas, network routing reliability, and a particular mode of  transportation. Mahtab, Azeem, Ali, Paul and
Fathollahi-Fard (2022) present a model that maximizes the prepositioning of  relief  distribution points and the
fortification of  road segments to guarantee that the greatest number of  affected individuals may effectively receive
assistance. 

Instead of  the use of  scenarios, another approach is to directly consider uncertainty in different parameters under
fuzzy approaches. Fuzzy set theory considers some elements that are essential for dealing with economic, social and
technological  situations:  the  uncertainty  in  data,  and  the  modeler  or  manager  capacity  to  provide  additional
information (Canós & Liern, 2008). This method, called fuzzy logic, permits the processing of  several different
truth values using a single variable. It looks for solutions to issues with imperfect data and heuristics so that precise
conclusions can be reached. The fuzzy logic does not add difficulty to traditional mathematics, and it is closer to
human thought. Fuzzy Theory allows avoiding the requirements of  rigidity which could do a model not to make
sense and it provides us with ignoring solutions that could be useful (Canós, Casasús, Crespo, Lara & Pérez, 2011).
Shaw,  Das  and Roy (2022)  proposes  a  mixed-integer  non-linear  mathematical  model  related  to  resource
management. Uncertainty is considered in multiple parameters, such as in the model presented by Sheikholeslami
and Zarrinpoor (2023), where their method accounts for three sources of  uncertainty: demand, costs, and the
covering area of  facilities. For a detailed explanation of  the mathematics supporting Fuzzy Theory, we refer the
interested reader to Canós et al. (2011).

Nevertheless, most of  contributions to the field of  humanitarian logistics research have been on demand uncertainty.
Seraji, Tavakkoli-Moghaddam, Asian and Kaur (2022) examine the effects of  varying levels of  demand uncertainty on
the combined emergency response and humanitarian logistics problems. The model is solved for each scenario, with
three levels of  demand uncertainty at 0.25, 0.5, and 0.75. Balcik,  Iravani and Smilowitz (2014) establish two goals:
avoiding  waste  and maximizing equity.  They provided  empirical  evidence that  addressing the  issue  in  order  to
minimize waste results in almost negligible waste and fair distribution of  food. Guijarro,  Babiloni, Canós-Darós,
Canós-Darós and Estellés (2020) applies fuzzy set techniques for the calculation of  the on-hand stock levels at order
delivery in the lost sales context, based on the uncertainty that real demand introduces. For a deeper analysis of  how
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authors in literature have dealt with uncertainty, refer to Liberatore et al. (2013), Rahman,  Majchrzak  and Comes
(2019), Hezam and Nayeem (2020), and Dönmez, Kara, Karsu and Saldanha-da-Gama (2021).

To the best of  our knowledge, uncertainty regarding humanitarian logistics has never been modeled before using a
CC approach. This approach has been used successfully in different optimization models to deal with uncertainty.
Its advantages are pointed out in the next section, justifying the reason why we considered using this approach for a
humanitarian logistics problem.

2.2. CC Approach in Optimization Models

The quantity of  items in a mathematical set is referred to as its cardinality. Consequently, a constraint that limits the
number of  members in a set is known as a cardinality constraint (Liddle, Embley & Woodfield, 1993). Cardinality
constraints provide a structured and explicit way to handle uncertainty. However, their effectiveness depends on the
specific problem and the appropriate selection of  the constraint parameters.

As explained by Bertsimas and Sim (2004), for each constraint, cardinality provides complete control over the level
of  conservatism. This method ensures that the solution is practicable if  at most Γi uncertain coefficients change,
protecting  against  deterministically  violations  of  constraint  i when  only  a  predetermined  number  Γi of  the
coefficients change.

Some advantages of  CC approach, as mentioned by Addis, Carello, Grosso,  Lanzarone, Mattia & Tànfani (2015)
are:

a) The approach assumes that parameters reside on an interval and that a subset of  them take the maximum
value rather than the nominal one. This results in a fairly simple geometry for the convex sets. This implies
that knowledge of  the probability density functions of  the uncertain parameters is only partially necessary.

b) It does not rely on a detailed description of  the uncertainty, making it less vulnerable to estimation errors
in the data and associated probability distributions.

c) It grants a robust solution with a manageable amount of  computing work.

Other advantages of  this approach are:

d) Flexibility in specifying the required number of  elements or relationships. By defining ranges instead of
fixed values, the models can adjust uncertainty and adapt to changing situations. This flexibility enables the
system to handle a wide range of  scenarios effectively.

e) Provides valuable decision support and risk management in uncertain situations. By explicitly modeling and
enforcing constraints, they help to identify risks associated with different cardinality scenarios. This can
lead to more informed decision-making and better mitigation strategies in the face of  uncertainty.

We have performed a literature search form 2010 up the end of  2023, on the databases Scopus and Web of  Science,
with the objective of  identifying the applications of  CC in optimization models. Based on our search, there are no
scientific contributions reporting the application of  CC to a humanitarian logistic problem. Even so, this approach
has been well used in various applications in optimization models to deal with uncertainty.

Most of  the work regarding CC in the literature is  related to portfolio optimization and knapsack problems,
although the method has also been applied to supply chain design and healthcare. Ağralı, Geunes and Taşkın (2012)
offers a general model that uses a cardinality constraint on the number of  supply facilities that may serve a client to
take into account a supply chain situation in which many disabled facilities provide a single product to a set of
clients. Carello and Lanzarone (2014) creates a CC robust assignment model that addresses the nurse-to-patient
assignment problem in home care services by utilizing the capabilities of  a mathematical programming model
without the need to create scenarios.  Zhang (2019) provides a  multiperiod mean absolute deviation uncertain
portfolio selection model that takes into account cardinality limitations, transaction costs, and risk management to
assist investors achieve both optimal return and effective risk management. 

Table 1 summarizes our findings. The first column (Title) corresponds to the title of  the paper, the second column
(Distribution) classifies whether distribution is  considered continuous or discrete, the third column (Stochastic

-724-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7771

variable) relates the variables where uncertainty is considered, and the last column (Type of  problem) identifies the
type of  problem that is addressed. 

For a more detailed description of  the mathematical application of  CC, refer to Liddle et al. (1993) and Bertsimas
and Sim (2004).

3. Problem Description and Formulations
This section presents an optimization model to assign the available relief  assets among a set of  storage centers
(food banks) that will further distribute them to municipalities in such a way that the limited budget is respected.
More precisely, the model is employed to identify the nodes that ought to serve as storage centers and the capacity
of  each storage center’s flow for handling donations (food). Notice that storage centers are used to consolidate and
prepare aid before distribution rather than as long-term storage facilities. Nonetheless, they must have enough
logistic capacity to receive the incoming flow of  aid, as well as handle, consolidate, and prepare aid to be delivered.
For the sake of  simplicity, we will refer to this ability to handle logistic flow as capacity. The model’s objective is to
minimize the maximum proportion of  missing units among the affected nodes by transporting donations from
storage  centers  to  them.  However,  this  model  will  be  further  extended and modified  to  1)  guarantee  a  fair
distribution of  the relief  (equity), and 2) deal with uncertainty under different approaches.

Reference Dist Stochastic variable Type of  problem

Gibson, Ohlmann and Fry (2010) D Availability of  items in the future Knapsack 

Boyko, Turko, Boginski, Jeffcoat, 
Uryasev, Zrazhevsky et al. (2011) D Number of  sites and number of  

sensors Multi-sensor scheduling 

Ağralı et al. (2012) C Demand Facility location (Serving customers)

Fogarasi and Levendovszky (2013) C Uncertainty around the mean value Portfolio Optimization

Roman, Mitra and Zverovich (2013) C Stochastic dominance Portfolio Optimization

Scozzari, Tardella, Paterlini and 
Krink (2013)

C Stochastic search heuristics Index Tracking 

Carello and Lanzarone (2014) C Demand Home care provider

Addis et al. (2015) C 1. Duration of  surgery
2. Demand

1. Operating room planning 
2. Nurse-to-patient assignment 

Abdi and Fukasawa (2016) D Stochastic right-hand-sides Knapsack 

Zhang (2019) D Expected value and Absolute deviation Portfolio Optimization

Table 1. Applications of  CC in optimization models

When addressing humanitarian logistics problems, it is essential to consider some parameters and variables that
influence the efficiency and effectiveness of  relief  operations. Rivera,  Smith, Ogazon and Ruiz (2023) synthetize
the  parameters,  decisions,  and  objective  functions  commonly  considered  in  literature  regarding  humanitarian
logistics. 

For instance, the transportation cost per weight, the cost of  handling donations, and the cost of  enabling storage
centers are crucial for determining the overall logistics cost. Additionally,  the total donations available and the
capacity in of  storage centers dictate the resource limits and distribution potential. The demand in the affected
nodes represents the need that must be met, while the limit on the number of  storage centers that can be opened
ensures that the logistics plan remains manageable and realistic.

Decision variables are critical for the strategic planning of  humanitarian logistics. One such variable is whether a
node is used as a storage center, usually represented as a binary variable that takes the value 1 if  the node is enabled
and 0 otherwise. Another decision variable is the number of  units stored in each storage center, which directly
impacts how resources are allocated and managed across the network. The shortage in demand nodes is a critical
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variable indicating the unmet demand, which humanitarian efforts aim to minimize. Additionally, the units sent
from storage  centers  to demand nodes represent  the flow of  resources through the  network,  reflecting how
supplies are distributed. Optimizing these intermediate variables is essential for creating a responsive and efficient
logistics system that can adapt to changing conditions and maximize the impact of  the available resources. 

By  carefully  considering  these  parameters  and  variables,  humanitarian  logistics  can  be  significantly  improved,
ensuring timely and effective aid delivery to those in need. These decisions need to be optimized to ensure that the
logistics operations are both cost-effective and capable of  meeting the demands at various nodes while adhering to
the given constraints.

Before proceeding, the following assumptions are established:

• The budget, reaction activities, and readiness strategy are all under the authority of  a single decision-maker.

• A node is contemplated as a geographical territory (e.g., a municipality or a town) in which a demand for
resources can occur. 

• Transportation routes will be selected to satisfy cost constraints.

• It is assumed that all the food to distribute is already available before distribution, limited by donations and
capacity constraints.

The  distribution within the  network is  carried out  considering  point-to-point  routes,  starting at  origin  nodes
(storage centers) and ending at the affected demand zones (municipalities).

Different objectives are considered in the literature related to relief  distribution and food bank operations. Gralla,
Goentzel  and Fine (2014) states that food banks are concerned in endorsing two main goals: (1) effectiveness,
which means providing as much assistance as possible to those in need incurring the lowest costs or resource usage,
and (2) equity, that is, seeking an allocation of  relief  that is fair (equitable) with respect to the needs of  each
municipality (Eisenhandler & Tzur, 2019). When effectiveness is pursued, the main goal is to distribute as much
food as possible to individuals in need by minimizing costs, response time, or unmet demand. This objective aims
to maximize the overall impact of  the aid, for example by targeting the most critical needs or by maximizing the
reach  of  the  aid.  In  this  case,  distribution  is  done  optimally  but  without  taking  into  account  humanitarian
considerations such as equity, suffering, etc.

On the other hand, equity is about distributing or using resources in a way that ensures victims have equal access to
relief  assistance. (Gutjahr & Nolz, 2016). Different methods have been proposed to consider equity, such as the
measures of  the mean absolute deviation, min-max, coverage, and the Gini coefficient (Zhu,  Gong, Xu & Gu,
2019). Rivera,  Smith and Ruiz (2023) addressed equity by minimizing the maximum amount of  unfulfilled relief
needs, while Ransikarbum and Mason (2016) suggested a max-min strategy, which aims to maximize the lowest
proportion of  satisfied demand in the distribution of  relief. Velasquez, Mayorga and Cruz (2019) considered equity
similarly  but  defines  acceptable  inequality  as  the  bounds  between  the  maximum  and  minimum  fraction  of
prepositioned demand among all locations. Liu, Zhang and Zhang (2021) addressed equity with coverage distance
constraints  while  Erbeyoğlu  and  Bilge  (2020)  used  coverage  time  constraints.  Mostajabdaveh,  Gutjahr  and
Sibel-Salman (2019) included in the objective the Gini mean absolute difference of  distances and Zhang, Liu, Yu
and Shen (2021) minimize the absolute difference in shortage in the objective. 

The choice between an equity and a non-equity objective in humanitarian logistics can also have important ethical
and practical  implications.  An equity objective may lead to suboptimal outcomes such as inefficiencies in the
allocation of  resources or a failure to address the most critical needs. A non-equity objective may result in more
efficient outcomes, but it may also lead to an unfair distribution of  aid and to unequal outcomes for different
beneficiaries. The diversity of  perspectives and preferences of  humanitarian organizations motivated us to consider
both objectives. In the following, we will propose an optimization model considering effectiveness by minimizing
unmet demand (MUD), which will later be modified into an equity objective based on minimizing the maximum
proportion of  relief  needs. Both objectives will  be approached considering uncertainty in demand with a CC
approach and SB approach.

-726-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7771

3.1. Deterministic Formulations Minimizing the Unmet Demand Without and with Equity

Several sets need to be defined. The set of  nodes B reflects the available storage facilities. The set of  demand nodes
D symbolizes the municipalities impacted by the disaster. The set of  arcs A represent the arcs connecting storage

centers B with demand nodes D. As per the model parameters, cbd  is the transportation cost per weight (in tons)
sent from node b to node d and covers the cost from fuel, road fees, etc. Parameter eb is the cost of  handling a unit
in in node b and includes the cost of  inventory management. Parameter Q is the total amount of  donations that are
available for distribution. Parameter Kb is the capacity at node b. Parameter Fd represents the demand at node d, or
in other words, the total amount of  aid that is required at that node. Parameter BCb is the cost of  enabling node b as
a storage center and includes the cost of  rent, storage, etc. at that place. Parameter P sets the available budget (all
monetary units are in Mexican pesos). Finally, parameter ρ limits the number of  storage centers that can be enabled.
Finally, let us now introduce the following variables. Variable  xb takes the value 1 if  node b  is used as a storage
center, and zero otherwise. Variable  qb represent the total units that will be stored  (tons) in node  b. Variable  rbd

represent the units sent from node b to node d, and variable yd (MUD) represents the shortage in node d.

Notation

Sets

B nodes with storage capacity
D demand nodes
A set of  arcs within B and D

Parameters

cbd transportation cost per weight (tons) sent from node b to node d 
eb cost of  handling a unit in node b 
Q total donations available
Kb capacity in node b 
Fd demand in node d 
BCb cost of  enabling node b as a storage center
P total budget
ρ limit of  storage centers that can be opened

Decision variables

xb takes value 1 if  node b is used as a storage center and 0 otherwise
qb units stored in node b (tons) 

Intermediate variables

yd shortage in node d (tons) 
rbd units sent from node b to node d (tons) 

The formulation is structured as follows:

(1)

Subject to:

(2)

          (3)
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(4)

(5)

(6)

(7)

          (8)

          (9)

          (10)

The objective function (1) seeks to MUD among all areas. Constraints (2) ensure that the products sent from a
storage center to demand nodes cannot be greater than the units stored in storage centers  B. Constraints (3)
guarantee that the units stored in node b are less or equal to the maximum capacity of  storage center B as long as
it is available, otherwise it is 0. Constraints (4) safeguards that the total units assigned to every storage center B
are less or equal to the total donations available. Constraints (5) determine the missing units throughout all
locations as a result of  the discrepancy between the quantity of  units received in that node and the demand.
Constraint (6) calculates the cost of  transportation and storage centers establishment and restricts it to a budget
P.  Constraints  (7)  limits  the  number of  available  banks to  ρ. Finally,  the  declaration of  binary and integer
variables is presented (8-10).

To adapt this model to seek the minimization of  unmet demand with equity, we must change objective function (1)
and constraints (5) of  the deterministic model so that we will minimize the largest proportion of  missing resources.
To this end, a new variable z representing the largest proportion of  missing resources among all areas is defined, so
that objective function (1) becomes:

minimize z (11)

and constraints (5) and (9) will be modified as:

          (12)

(13)

Now  we  have  our  deterministic  model  under  two  different  objectives,  which  will  be  modified  to  consider
uncertainty in demand under a CC approach.
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3.2. Approaches to Deal with Uncertainty

In many humanitarian logistics problems, the focus is not just on the allocation of  resources but also on the
number of  resources that must be assigned. Due to the uncertainty surrounding these types of  problems, it is
difficult to decide the amount that must be assigned to demand nodes, since demand can vary significantly. The CC
approach allows for the modeling of  this type of  constraint, making it an ideal tool for addressing these types of
problems. 

For our problem, we will introduce parameter Γ, which will limit the number of  nodes affected by the disaster. The
cardinality approach assumes that Γ nodes can be affected by the disaster. Our model tries to identify the worst
combination of  Γ demand nodes and finds an optimal solution for such a case. Parameter Γ allows us to approach
uncertainty over the number of  affected areas without necessarily knowing which, but guaranteeing that for Γ
affected nodes, there will not be a worse scenario than the one solved. 

The next subsections explain how the CC approach founded on the work of  Bertsimas and Sim (2004) is applied to
the two previous formulations to handle uncertainty in demand.

3.2.1. CC Robust Formulations

We first present a robust counterpart of  the deterministic model under the objective of  MUD, together with the
additional  parameters  and  decision  variables.  We  consider  demands  Fd as  uncertain,  according  to  the  CC

formulation. Indeed, all uncertain demands   in the demand matrix  are

assumed to be independent random variables, each one characterized by a nominal value   and a maximum

variation , i.e.,   ∈ . Moreover, the probability distribution of

each Fd is assumed to be symmetric around the nominal value .

We apply the CC approach in all parts of  the model where parameters  Fd appear, i.e., constraints (5). First, we
rewrite constraints (5) in an equivalent way. For this purpose, we define a new non-negative continuous variable τ,
and we replace (5) with:

(14)

and

          (15)

Then we apply the CC approach to constraints (14).  In our formulation, we uniquely define the standardized

deviation of  each demand  from its nominal value  as:

          
(16)

With ad  [-1,1],∈  were ad = 0 means that demand  takes its nominal value , while ad = 1 and ad = -1 mean

that  takes its maximum and minimum value, respectively. Accordingly, (14) is rewritten as:

          (17)
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where, in the most conservative case, ad = 1d. However, it is improbable that every demand coefficient will take
on its worst value at the same time. Thus, exploiting the CC idea, we limit the number of  demands that assume the

worst value  , while at the same time the others remain at their nominal value  . In other
words, we limit the number of  demands that simultaneously go to their maximum value for each node d  ∈ D by a
cardinality parameter Γ which controls the level of  robustness of  the solution against the cost of  the solution. Low
values of  Γ do not to penalize the objective function but generate solutions that can easily become infeasible. On
the contrary,  as  Γ  is  increased towards  |D|, more  conservative  solutions  are  produced.  We now obtain the
maximum value of  the following problem to obtain our worst case considering the values of  the variations in the
demand:

(18)

Subject to:

(19)

          (20)

Due to the structure of  the equations of  our deterministic model, and the sub-problem obtained with the CC
approach, we can apply the duality theorem (Bertsimas & Sim, 2004) to solve both problems simultaneously. By
strong duality the (18)-(20) problem can be rewritten as a minimization problem to align with the objective of
problem (1)-(10). To this end, the following parameters must be introduced:

• maximum variation in demand Fd

• Γ cardinality, or number of  demand nodes for which demand reaches their highest (worst) demand

And the following variables:

• u dual variable
• πd dual variable to determine the affected nodes
• τd substitute variable for yd to use the cardinality approach
• ad if  takes value 1 if  demand node d is affected, and 0 otherwise

So that problem (18)-(20) becomes:

(21)

Subject to:

          (22)

(23)

          (24)

Now, we must substitute the equations obtained using the duality theorem into the main problem. First, constraints
(5) will be modified as:
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(25)

And the following constraints will be added:

          (26)

          (27)

          
(28)

          (29)

(30)

          (31)

(32)

          (33)

          (34)

The complete formulation for the CC model MUD is given in Appendix B. 

Now we consider the adaptation of  the deterministic model that minimizes the equity objective given by Equations
(11)-(13), (2)-(4), (6)-(8), and (10). As in the previous case, we consider demands Fd as uncertain, and we apply the CC
approach in all parts of  the model where parameters Fd appear, i.e., constraints (12). First, we rewrite constraints (12)
in an equivalent way. For this purpose, we define a new non-negative continuous variable τ, and we replace (12) with:

          (35)

          (36)

Then we apply the CC approach to constraints (35) to obtain:

          (37)

We now obtain the maximum value of  the following problem to obtain our worst case, considering the values of
the variation in the demand:
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(38)

Subject to:

(39)

          (40)

Due to the structure of  the sub-problem, since there is not a strong duality between both problems (Bertsimas &
Sim, 2004) we cannot apply a duality theorem to solve both problems simultaneously. We will proceed by solving
two problems iteratively, as illustrated in Figure 1. The main problem, which includes Equations (11)-(13), (2)-(4),
(6)-(8), and (10) will be solved to obtain values for rbd. We will then use these values to solve the sub-problem (38) to
(40) and obtain values for ad. After this, Equation (12) will have to be modified in order to consider the values of  ad

obtained in the sub-problem:

and iterations will continue until the solution converges (until the sub-problem repeats the same values for ad in any
iteration). Appendix B includes the whole formulation for the main problem and the sub-problem. 

Figure 1. Flowchart to solve the CC model with equity.

In chapter 5 we compare the results obtained with this model against the other approaches applied to a case study. 

4. Case Study
In order to demonstrate how different considerations of  uncertainty raise distinct challenges for managers and lead
to possible different outcomes, the proposed models will be used to solve a real case. For our case study, we will
consider Hurricane Odile in state of  Baja California Sur (BCS), Mexico, a tropical cyclone that made landfall on the
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Baja California Peninsula in 2014 with the highest intensity was Hurricane Odile (Dirección de Logística Nacional,
2015). 

We were able to gather sufficient information from the logistics planning manager of  BAMX, which stands for
“Bancos de Alimentos de Mexico,” in order to model this scenario. A map of  Baja California Sur and the bordering
states was utilized to assess distance-safe food banks and potential demand nodes impacted by the disaster to
construct the node network. The nodes that ought to serve as storage centers and the volume of  donations that
each storage center should be able to manage were identified using the suggested models.

Figure 2 illustrates the node network considered. Available food banks to be used are represented by yellow nodes
and the possible demand nodes are represented by gray nodes. It is important to mention that storage centers can
also be affected by the disaster, in which case they will be considered as a demand node with donations available (in
case it is enabled as a storage center).

Table A.1 in the Appendix lists the municipalities in the network and their total population. This parameter is used
to estimate the values of  daily demand in tons of  product and final demand in a node when a disaster strikes as
shown in Table A.2, which is also reported in the Appendix.

Normally, food banks operate on a daily basis, receiving donations of  food from individuals, enterprises, and other
sources, which they then distribute to those in need. The amount of  food they deliver to each municipality is
proportional to the population in need at the corresponding location. However, when a disaster strikes, the demand
for food in certain areas can increase dramatically. In these situations, food banks may need to quickly mobilize
additional resources to meet the increased demand.

Figure 2. Node network considered.

4.1. Potential Scenarios for the Hurricane Strike

Before the Hurricane strike, managers analyzed meteorological maps to try to anticipate its trajectory and build
possible scenarios of  damages and population needs. Figure 3 depicts Hurricane Odile two days before it struck
land. 
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Figure 3. Hurricane Odile’s before land impact.

According to the most likely trajectories of  Odile, managers envisaged five possible scenarios:

• Scenario 1: The Hurricane affects all the peninsula of  BCS, so 10 of  the nodes should need relief.

• Scenario 2: Only the six municipalities that are closest to the ocean should require aid as the Hurricane
mostly affects the tip of  the BCS peninsula.

• Scenario 3: The Hurricane passes over the Gulf  of  Baja California, between the states, impacting Puerto
Vallarta and Mazatlán (nodes 6 and 7).

• Scenario 4: The Hurricane follows its path through the Gulf  of  Baja California but affects a total of  four
municipalities (the inner states of  the state of  BCS).

• Scenario 5: The Hurricane only affects the towns where the gulf  ends as it moves through the entire Gulf
of  Baja California. 

In each of  the five scenarios, a total of  15 different nodes are affected by the disaster (five storage centers and 10
demand nodes). Our models consider the daily demand for every demand node, and a possible increase in demand
if  such node is affected by the Hurricane, as shown in Table A.2. 

4.2. SB Formulations

The deterministic optimization models can be easily modified to handle a SB approach (i.e. Rivera, Smith, Ogazon
& Ruiz, 2023). To this end, each scenario corresponds to the different combinations in which demand nodes can be
affected. We introduce a set of  scenarios  S, and a parameter  θs that gives the probability that scenario  s  occurs.
Parameters Fds refer to the demand at node d in scenario s. Finally, variables yds give the commodity shortage in node
d in scenario s. The objective function (1) becomes:

(41)

and constraints (5) become:

          (42)

The SB formulation for the unmet demand minimization problem consists therefore in Equations (40)-(41), (2)-(4),
and (6)-(10). Appendix B reports the complete formulation.
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Similarly, to elaborate the SB counterpart of  the missing resources minimization problem with equity, we redefine
variable z into zs, so that it will now depend on the scenario. Objective function (11) becomes: 

(43)

and constraints (12) and (13) are rewritten as:

          (44)

          (45)

The SB formulation for the unmet demand minimization problem with equity consists therefore in Equations
(43)-(45), (2)-(4), (6)-(8), and (10). Appendix B reports the complete formulation.

5. Numerical Results
The goal of  the following numerical experiments is to analyze how different objective functions under different
approaches lead to diverse solutions. Furthermore, since it is not possible to compare the results produced by the
considered models in a straightforward manner due to the different ways they handle uncertainty and therefore
managerial risk, a qualitative discussion from a managerial perspective will follow the numerical results.

5.1. Solutions Produced by the Proposed Models

As stated previously, the models will be solved with uncertainty in demand, considering daily and post-disaster
demand, as outlined in Table A.2. The results obtained in this section will then be evaluated in a real case and five
additional scenarios for further comparisons. 

For both CC formulations, we will deal with uncertainty by considering a level of  cardinality ranging from 0 to 15,
where the level of  cardinality represents the number of  nodes affected by the disaster. For each value of  cardinality,
the models will  identify the nodes that would lead to the worst possible outcome (depending on the level of
cardinality) and solve the model considering them. As was explained before, increasing the value of  Γ assumes that
more nodes will be affected by the hurricane, so the total demand will also increase although the supply will remain
constant. 

For both SB formulations, five possible scenarios (explained in section 4) will be considered to solve the model.
This will give us a total of  34 solutions, for which variables xb and qb represent the different decisions that could be
made depending on the approach. These solutions will be evaluated in the real case. 

5.1.1. Results Produced by the CC Formulations

Tables 2a and 2b show the results obtained for each value of  the cardinality parameter Γ by the unmet demand
minimization formulation (MUD), and the EF. Columns under header  xb list the food banks selected by each
formulation. Columns under header %min report the minimum percentage of  unmet demand among all zones,
while header %max report the largest percentage of  unmet demand among all zones. Finally, the objective function
produced by each formulation and the associated total cost are reported by columns OF and TC, respectively.
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Γ xb qb %min %max OF TC

0 2-3-5-6-7 8-44-8-12-10 0 0 0 96 075

1 3-4-5-6-7 51-55-8-44-42 0 9.09 1 119 965

2 3-4-5-6-7 51-55-8-44-42 0 100 107 111 865

3 4-5-6-7-10 55-8-44-54-39 0 100 203 74 206

4 2-4-5-6-7 50-44-8-44-54 0 100 275 60 037

5 2-5-6-7-9 50-41-44-54-1 0 100 346 51 119

6 2-5-6-7-9 50-51-44-54-1 0 100 407 51 119

7 2-3-5-7-9 50-54-51-45-0 0 100 462 49 721

8 2-3-5-7-9 50-54-51-45-0 0 100 489 49 721

9 2-3-5-7-9 50-54-51-45-0 0 100 516 49 721

10 2-3-5-7-9 50-54-51-45-0 0 100 543 49 721

11 2-3-5-7-9 50-54-51-45-0 0 100 565 49 721

12 2-3-5-7-9 50-54-51-45-0 0 100 579 49 721

13 2-3-5-7-9 50-54-51-45-0 0 100 592 49 721

14 2-3-5-7-9 50-54-51-45-0 0 100 604 49 721

15 2-3-5-7-9 50-54-51-45-0 0 100 612 49 721

Table 2a. Results produced for the considered values of  cardinality by MUD

Let us focus first on the unmet demand. Notice first that the total missing resources increase with the level of
cardinality, since increasing  Γ  by one implies that an additional node is affected and therefore the total demand
increases although the supply remains unchanged. Both formulations reached identical values of  unmet demand
(OF), but they distribute the available supply in very different manners, as showed by columns %max. Indeed, for
values of  Γ ≥ 2, the MUD formulation assigns no unit to at least one demand zone. 

Γ It xb qb %min %max OF TC

0 0 2-3-5-6-7 8-44-8-12-10 0 0 0 96 075

1 3 3-4-5-6-7 51.74-55-7.96-44-41.30 0.4975 0.4975 1 120 575

2 3 3-4-5-6-7 54-55-5.21-44-41.79 34.85 34.85 107 173 676

3 3 3-4-5-6-7 54-45.42-3.97-44-52.61 50.37 50.37 203 136 364

4 3 2-3-4-6-7 33.68-54-23.68-44-44.64 57.89 57.89 275 121 204

5 3 2-3-5-6-7 30.25-54-28.94-44-42.81 63.37 63.37 346 106 477

6 3 2-3-5-6-7 41.04-54-26.03-44-34.93 67.05 67.05 407 133 661

7 3 2-3-4-5-7 24.17-54-55-23.87-42.96 69.78 69.78 462 134 340

8 4 2-3-4-5-7 23.22-54-55-22.93-44.84 70.97 70.97 489 141 984

9 4 2-3-4-5-7 22.35-54-55-22.07-46.58 72.07 72.07 516 150 335

10 5 2-3-4-5-7 21.53-54-55-21.27-48.20 73.08 73.08 543 158 078

11 6 2-3-4-5-7 20.92-54-55-20.65-49.43 73.86 73.86 565 163 840

12 5 2-3-4-5-7 20.54-54-55-20.28-50.18 74.32 74.32 579 167 157

13 3 2-3-4-5-7 20.20-54-55-19.95-50.85 74.75 74.75 592 169 476

14 3 2-3-4-5-7 19.90-54-55-19.65-51.45 75.12 75.12 604 172 221

15 1 2-3-4-5-7 19.70-54-55-19.46-51.84 75.37 75.37 612 173 760

Table 2b. Results produced for the considered values of  cardinality with equity
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In contrasts, the largest percentages of  unmet demand rise up to 75.37% in the case of  the formulation with equity,
so all the demand zones receive at least some relief. This difference is clearly illustrated for  Γ  = 1, where the
difference between demand and supply is equal to 1 ton. In this case, MUD decides that the node having the highest
distribution cost will receive 1 ton less than its demand, while the model with equity fulfills 99.5025% of  need at
every demand node. 

For the rest of  the considered values of  cardinality parameter Γ, MUD shows the same behavior: it first fulfills the
whole demand of  nodes with low distribution costs before starting to send relief  to nodes with higher distribution
cost. In fact, foodbanks can be affected by the disaster, hence the MUD model selects these foodbanks as storage
centers when they are affected to achieve a lower cost in distribution. Foodbanks can relieve their own demand with
distribution cost 0 since donations does not have to be moved. 

As we can see in Table 2a, the total cost increases in the first 2 levels of  Γ, and then starts decreasing until Γ = 7,
where our model found its optimal solution. At this point, the last warehouse that results affected by the disaster is
considered, so all donations available are already assigned to satisfy demand with distribution cost 0. Since supply is
less than demand, in the solution some nodes receive 100% of  their needs while others receive nothing, while the
model with equity distributes donations as fairly as possible among demand nodes.

If  we look now at the networks decisions made by the formulations, their choices are quite different although we
can observe that the storage centers selected by MUD vary as the demand increases (i.e., as  Γ  increases). The
formulation with equity produced more consistent solutions, and in particular, selected the same subset of  storage
centers (2, 3, 4, 5, and 7) for  Γ ≥ 7.

Therefore, and as one might expect, MUD distributes the available relief  in a more efficient manner (lower cost),
while the model with equity achieves a fairer distribution, but incurs systematically higher distribution costs. One
might nonetheless be surprised by the behavior of  the total cost incurred by the solutions produced by the models.
For the model of  MUD, the total cost increases from Γ = 0 to Γ = 1, because the total transported relief  increases,
and then the cost decreases until Γ = 7, although the delivered relief  remains the same. The reason is that as more
and more nodes are affected, their demand increases. Since some of  these nodes have low distribution costs, MUD
increases the relief  sent to them, thus decreasing the quantities sent to the nodes having higher distribution costs.
By doing so, it distributes the same amount of  relief, but incurs a lower cost. For Γ = 7 and higher, each new node
considered affected has higher distribution cost than the ones already considered, so the solution does not change.
The formulation with equity, on the other hand, must readjust the distributed quantities from one case to the other
according to the considered set of  affected nodes. For this reason, the total cost it produces shows a more complex
pattern. 

5.1.2. Results Produced by SB Formulations

The SB models assume that each of  the 5 proposed scenarios will happen with equal probability 1/5. Therefore,
the formulation seeks a solution that, on average, minimizes its objective value over the 5 scenarios. Each scenario
includes a different subset of  nodes affected, their demand, which is referred to as post-disaster demand, is higher
than the regular one. 

Table 3 reports the results produced by the SB counterparts of  the MUD and EF. Columns 2 and 3 show the
selected storage centers and the amounts of  relief  sent to them, whilst columns 4 and 5 indicate the minimum and
maximum percentages of  unmet demand among the demand zones. Finally, columns 6 and 7 give the objective
function (in total unmet demand) and the total cost of  the solution, respectively. 

Model xb qb OF TC

MUD 2-3-4-5-6 39-54-55-8-44 161.8 255 595

Equity 2-3-4-5-6 42.98-54-55-4.02-44 67.93% (176.2) 312 820

Table 3. Results produced by MUD and EF to the 5 demand scenarios
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5.2. Evaluation of  the Results Applied on the Real Case

Now we will evaluate the solutions produced by the previous models in the case of  the real scenario. Recall that all
the presented models work under uncertainty,  suggesting values of  decision variables xb and  qb that  must  be
implemented  before  the  disaster  strikes.  However,  the  decisions  concerning  the  distribution  of  donations
(represented by variables rbd) are taken after the strike once the affected nodes are known. Therefore, in our analysis,
we will use the values produced by the models for variables xb and qb, and we will perform a post-optimization to
elect the best values of  variables rbd according to the real after-strike demand and optimizing the total cost. Table
A.2 in appendix A illustrates the daily demand and the post-disaster demand for the real case scenario. To have a
point of  comparison of  the effectiveness of  our models,  we will  begin our analysis  by solving the real  case
considering perfect information (i.e., the outcome of  the strike is known a priori). 

It is assumed that managers operating with perfect knowledge are aware of  the disaster’s location and the nodes
that will be impacted in advance, so they can make optimal decisions. Although it is not possible to know the
disaster’s outcome in advance, this unrealistic approach allows us to estimate the price of  information, or in other
words,  how  uncertainty  deteriorates  the  quality  of  our  decisions.  The  results  obtained  considering  perfect
information are reported in Table 4.

Model xb qb %min %max OF TC

MUD 2-3-4-5-6 39-54-55-8-44 0 100 110 296 020

Equity 2-3-4-5-6 41.84-54-55-5.16-44 35.48 35.48 110 325 458

Table 4. Results produced with “perfect information”

For both models under perfect information, we have the same selection of  storage centers, but donations are
distributed slightly differently in order to achieve equity, incurring a notably higher cost for this model due to
distribution costs. 

Now we proceed to evaluate the solutions given by our models (Table 2a, Table 2b, and Table 3) in the real case.
Table 5 illustrates the objective and total cost obtained by evaluating each of  the solutions of  our models in the real
case. The first row shows the results obtained with perfect information MUD (PID), rows 2-8 show the results with
CC approach MUD (CD), where the number in parentheses represents the level of  cardinality, and row 9 shows the
results of  the SB model MUD (SD). In row 10 are the results obtained with perfect information with equity (PIE),
rows 11-24 contain the results with the CC approach with equity (CE), and finally row 25 shows the results of  the
SB approach with equity (SE). 

Regarding the level of  Γ considered, the total costs have significant fluctuations from Γ = 0 to Γ = 7. After this
point, the solutions for the objective of  MUD are the same, and for the objective of  EF, fluctuations in the total
costs are minimal. Since this case considers a total of  Γ = 15 demand nodes, it is notable that although more than
half  of  the demand nodes are affected by the disaster, this does not change the solutions considerably.

For any real case, it is unlikely that more than half  of  the demand nodes will be affected by the disaster, so we can
conclude that, for this particular case, considering Γ = 7 would be the best option. 

As expected, solutions obtained with MUD for every case incurred a lower cost than the solutions obtained with
EF. Both formulations distribute the available supplies, obtaining the same missing amount in tons of  product, but
with different total costs. The columns of  %min and %max help us understand the main difference between both
objectives.

The MUD formulation seeks efficiency so it will minimize distribution costs but may leave some demand nodes
with 0 relief. On the other hand, an equitable solution ensures that every demand node receives help proportionally
to its demand but may incur higher distribution costs. When budget is limited, MUD will allow maximizing the
distributed supplies. But if  the budget is not an issue, or the main issue, an equitable solution is a better option since
donations are distributed fairly. 
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Model %min %max OF TC

PID 0 100 110 296 020

CD (1) 0 100 110 306 290

CD (2) 0 100 110 306 290

CD (3) 0 100 110 312 410

CD (4) 0 100 110 314 220

CD (5) 0 100 110 328 650

CD (6) 0 100 110 326 720

CD (7-15) 0 100 110 311 840

SD 0 100 110 296 020

PIE 35.48 35.48 110 326 345

CE (1) 35.48 35.48 110 334 525

CE (2) 35.48 35.48 110 332 940

CE (3) 35.48 35.48 110 338 120

CE (4) 35.48 35.48 110 342 554

CE (5) 35.48 35.48 110 363 050

CE (6) 35.48 35.48 110 360 420

CE (7) 35.48 35.48 110 347 635

CE (8) 35.48 35.48 110 346 985

CE (9) 35.48 35.48 110 346 130

CE (10) 35.48 35.48 110 345 875

CE (11) 35.48 35.48 110 344 760

CE (12) 35.48 35.48 110 344 890

CE (13) 35.48 35.48 110 343 950

CE (14-15) 35.48 35.48 110 344 020

SE 35.48 35.48 110 326 679

Table 5. Evaluation of  the results in the real case

Besides  the  objective,  the  choice  to  apply  the  CC or  SB approaches  to consider  uncertainty  in  demand has
significant differences. CC formulations can distribute all donations, achieving the same missing resources in tons
of  product considering perfect information, but incur a higher cost. On the other hand, for this particular case, the
SB formulations display exceptional performance. For the objective of  MUD, the SB formulation had the same
performance as with perfect information, and for the objective of  EF, the cost was just $334 higher, achieving
almost the same solution as with perfect  information.  This  can happen when the estimation of  scenarios to
consider is outstanding, but sometimes it is not possible to adequately predict possible outcomes that can occur due
to the uncertainty surrounding natural disasters. The effectiveness of  this approach depends on the accuracy of  the
selected scenarios. When there is too much uncertainty to decide the possible outcomes, the CC approach can work
correctly with no dependance on the precision of  the scenarios considered.

To have a better point of  comparison between both approaches, next section evaluates each model under different
possible outcomes that could have occurred.
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5.3. Evaluation of  the Results in Each of  the 5 Scenarios

For a better understanding of  the behavior of  our formulations, different scenarios must be solved for further
conclusions. For this reason, we will now consider that the strike led to other outcomes. In particular, we will
assume each of  the 5 proposed scenarios as real outcomes of  the strike. 

We will  begin our analysis  by solving each of  the five scenarios considering perfect  information.  The results
obtained under this analysis are shown in table 6 (table A.3 in appendix A illustrates the daily demand and post-
disaster demand for every scenario). We then solved each of  the 5 scenarios with our four models to compare the
results. The columns of  %min and %max as well as the column of  OF are not included since all the solutions are
equivalent in distribution to the one obtained with perfect information in Table 6. 

Table 7 illustrates the total cost obtained by evaluating the solutions of  our models in each of  the 5 scenarios.
Regarding the total cost, we obtained the same expected behavior, where for all scenarios, the total costs incurred
with MUD result significantly lower than the costs obtained with the objective of  EF. For scenarios 1, 2, and 4 (S1,
S2, and S4) we have a behavior like what happened in the real case. The SB formulations had a very similar
performance than the evaluations done with perfect  information (the same for the objective of  MUD). This
happens since the outcome predicted for these scenarios  was like what happened in  the real  case,  where no
foodbanks were affected by the disaster.

On the other hand, for scenarios 3 and 5 (S3 and S5), where foodbanks were affected by the disaster, neither
formulation was close to the cost achieved with perfect information, but CC approaches had a notably better
performance than the evaluations obtained with SB approaches. In particular, for scenario 3, all the solutions with
CC incurred a lower cost than with SB, and for scenario 5, we have the same behavior after Γ = 5, once the model
considers the affected food banks in the CC formulation. 

This gives us valuable insight into the differences obtained with different approaches to deal with uncertainty. For
SB formulations, we have a high dependency on the prediction of  scenarios, where a bad selection of  scenarios will
lead to worst solutions. The CC formulations protect against the worst scenarios that can happen, giving good
solutions independently of  what happens. In CC formulations,  the objective function is not heavily  penalized
independently of  the outcome, which is known as the price of  robustness (Bertsimas & Sim, 2004).
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Model Sc xb qb %min %max OF TC

MUD

1 2-3-4-5-6 39-54-55-8-44 0 100 161 257 720

2 2-3-4-5-6 39-54-55-8-44 0 100 36 293 895

3 4-5-6-7-9 55-8-44-54-39 0 100 74 74 205

4 2-3-4-5-6 39-54-55-8-44 0 100 6 258 145

5 2-3-4-5-7 50-54-35-51-10 0 100 57 72 521

Equity

1 2-3-4-5-6 42.57-54-55-4.43-44 44.60 44.60 161 309 252

2 2-3-4-5-6 40.22-54-55-6.78-44 15.25 15.25 36 306 874

3 3-4-5-6-7 41.16-55-5.84-44-54 27.01 27.01 74 105 412

4 2-3-4-5-6 39.23-54-55-7.77-44 2.91 2.91 6 261 664

5 2-3-4-5-7 50-54-32.97-51-12.03 22.18 22.18 57 101 437

Table 6. Results for each scenario under perfect information

Model TC (S1) TC(S2) TC (S3) TC (S4) TC (S5)

PID 257 720 293 895 74 205 258 145 72 521

CD (1) 266 740 302 915 100 750 267 165 162 950

CD (2) 266 740 302 915 100 750 267 165 162 950

CD (3) 273 920 310 095 99 110 274 345 172 230

CD (4) 275 010 311 185 132 030 275 435 142 000

CD (5) 287 620 323 795 148 250 288 045 124 980

CD (6) 285 070 321 245 157 750 285 495 115 480

CD (7-15) 272 380 308 555 139 150 272 805 121 330

SD 257 720 293 895 160 720 258 145 126 890

PIE 309 252 306 874 105 412 261 664 101 437

CE (1) 317 330 316 430 124 350 273 500 202 910

CE (2) 316 620 316 350 124 180 274 630 203 840

CE (3) 322 190 324 680 120 260 280 840 209 990

CE (4) 325 210 324 970 156 670 281 950 181 050

CE (5) 347 640 339 150 176 440 294 490 161 120

CE (6) 345 380 336 610 183 760 291 990 151 530

CE (7) 332 050 323 530 165 160 279 210 163 660

CE (8) 331 450 323 340 162 270 278 780 165 780

CE (9) 330 570 323 030 159 430 278 340 167 830

CE (10) 329 960 323 250 156 680 277 810 170 140

CE (11) 329 320 321 830 155 430 277 120 171 250

CE (12) 329 150 321 910 153 860 277 320 172 490

CE (13) 328 430 321 160 152 550 276 860 173 510

CE (14) 328 730 321 320 150 610 276 970 175 090

CE (15) 328 730 321 320 150 610 276 970 175 090

SE 309 693 307 034 182 574 261 922 178 427

Table 7. Evaluation of  the results in the 5 scenarios
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5.4. Comparison of  the Results Produced by CC and SB Formulations

Each of  the proposed approaches handles uncertainty in a different manner, so the outcomes they produced are
also quite different. The CC approach prepares for the worst possible outcome, a perspective that inherently makes
it  more conservative.  This approach limits  the number of  non-zero variables in the solution,  thereby directly
managing the exposure to uncertainty according to the user beliefs  or  experience.  By focusing on worst-case
scenarios,  this  method  ensures  a  robust  solution  that  can  withstand  significant  adverse  conditions.  The
characteristics  that  ensure  that  the  CC  approach  can  handle  uncertainty  properly,  particularly  in  risk-averse
environments, are the following:

• Risk Mitigation: By preparing for the worst, the CC approach effectively mitigates risk. This is particularly
valuable in volatile environments where the consequences of  adverse outcomes can be severe.

• Robustness: Solutions are typically more robust, ensuring that performance remains acceptable even under
unfavorable conditions.

• Conservatism: The conservative nature of  this approach often leads to solutions that may not be optimal
under average conditions but offer protection against extreme scenarios. 

The disadvantage of  this approach is when the actual situation does not correspond to a worst-case scenario, since
the conservative solutions produced by the CC can result in poor performance (i.e., potentially higher costs or
lower distribution of  donations).

In contrast,  the  SB approach seeks  optimal  solutions  based on a set  of  predefined scenarios.  This  method’s
effectiveness largely depends on the quality and representativeness of  the chosen scenarios. It aims to provide
solutions that perform well across these scenarios, balancing performance and risk. The features that make this
approach suitable for uncertain humanitarian logistics problems are:

• Optimality:  When the  scenarios  are  well-chosen,  this  approach  can  yield  optimal  or  close  to  optimal
solutions that maximize returns or minimize costs effectively across the expected range of  conditions.

• Flexibility: The SB method is flexible and can adapt to different sets of  scenarios, allowing for dynamic
adjustment as new information becomes available.

The primary limitation of  this approach is its dependence on the accuracy and representativeness of  the scenarios.
If  the scenarios fail to capture critical uncertainties, the solutions may be less effective or even risky.

5.5. Insights

The  CC  strategy,  which  emphasizes  risk  mitigation  by  bracing  for  the  worst-case  scenario,  is  fundamentally
conservative when analyzing the robustness of  the solutions. In other words, solutions that come from this method
are made to be resilient and stable even in the face of  adversity. But frequently, prospective benefits are sacrificed for
this conservative viewpoint. Restricting the amount of  non-zero variables could lead to missing out on opportunities
that could happen in less severe situations. On the other hand, the scenario-based method is better at taking advantage
of  fortunate circumstances. This method can optimize resource allocation to produce the best results if  the scenarios
are well-crafted and properly represent probable future states. However, its success is conditional on the quality of  the
scenarios. Poorly constructed scenarios can lead to suboptimal or even risky decisions.

Regarding the adaptability, this is one of  the significant advantages of  the scenario-based approach. This method
can be continuously updated and refined as new information becomes available, allowing it to reflect changing
conditions and emerging trends. This flexibility is crucial in dynamic environments where uncertainties and risks
evolve over time. The scenario-based approach can pivot and adjust strategies to align with the latest insights,
maintaining  optimal  performance  across  a  range  of  potential  futures.  On  the  other  hand,  the
cardinality-constrained approach is more rigid. Its conservative nature means it is designed to be robust against
worst-case scenarios but may not adapt quickly to new information or changing conditions. This static characteristic
can be a limitation in environments where rapid adaptation is necessary for success.

Finally,  from an implementation standpoint, the cardinality-constrained approach tends to be simpler. Defining
constraints that limit the number of  non-zero variables is straightforward, and ensuring compliance with these
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constraints is relatively easy. This simplicity can be advantageous in terms of  ease of  use and lower computational
requirements. However, the scenario-based approach demands a more complex setup. It requires the careful design
and  validation  of  multiple  scenarios,  each  representing  different  possible  future  states.  This  process  is
resource-intensive and necessitates a deep understanding of  the factors influencing the scenarios. Additionally,
ongoing scenario management is required to keep the model relevant and effective. Despite this complexity, the
potential for achieving highly optimal solutions makes the scenario-based approach attractive in contexts where the
investment in scenario planning can be justified by the benefits of  more precise and adaptive decision-making.

The choice between these approaches depends on the particular requirements and limitations of  the given situation.
A strong defense is offered by the CC approach in situations where risk aversion is critical and there is a substantial
chance of  extreme negative outcomes. By contrast, the SB method presents an optimal solution when reliable
scenarios generation is possible.

6. Conclusions and Future Research
The uncertainty in demand is one of  the biggest challenges when dealing with humanitarian logistics. Uncertainty
can  arise  from a  number  of  sources,  including  changes  in  demand,  fluctuations  in  donations  available  and
disruptions to transportation roads. In this work, we adopt the CC approach to deal with this uncertainty under two
different objective functions, one seeking MUD and a second one incorporating equity in the manner demand is
satisfied. Whether to consider an equity or a non-equity objective will depend on the expected results and ethical
implications, some of  which are mentioned in this work. One difficulty of  the CC approach is to decide the level of
cardinality,  but  our experiments  showed an interesting behavior,  since the  same solution was observed to be
produced beyond a given cardinality.

We used the proposed approaches and objectives to tackle the case study of  hurricane Odile that struck Mexico in
2014, and we compared the solutions they produced to the ones obtained by a SB approach. For this realistic case,
the CC models showed good performance, but not as good as the SB models. Indeed, the scenarios proposed by
the experts were very accurate (very close to the real strike’s outcome) which allowed this approach to produce
near-optimal solutions.  This  confirms the idea that,  whenever it’s  possible to gather good predictions on the
possible outcomes, the best course of  action is to use them. But in the absence of  accurate information, the use of
the CC models can be more suitable. 

The generalizability  of  these results  is  subject  to certain limitations.  For  instance,  the two formulations  were
compared only on a humanitarian operation in Mexico. Additional experiments should be required to confirm the
extent to which these results might be generalized to other cases. Furthermore, the scenarios and the values of  the
post-disaster demand for each scenario were suggested by experts of  BAMX. The numerical results and the further
analysis in this paper are linked to the quality and the accuracy of  these suggestions. Finally, we limited our analysis
to only two approaches while, as explained in the theoretical framework, other approaches have been proposed to
deal with uncertainty. 

To continue with our work, some directions for future research are pointed out. The first recommendation is to
consider uncertainty in supply. In our work we focused completely on uncertainty in demand, but in humanitarian
logistics the amount of  supply available is difficult to predict since it depends on donations. The ability of  donators
to provide the expected quantity of  supplies, the variety of  goods offered, and the reception of  spontaneous and
occasionally even unwanted donations are some of  the aspects associated to supply uncertainty. 

The second recommendation is to evaluate our models under different situations to have a more solid base to
support our findings. In our work, the selected scenarios were too good, giving advantage to this approach over the
CC approach. There will be cases where the scenarios can be difficult to predict, hence the solutions of  these
models will have a bad performance. 
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Appendix A

Number Municipality State Population

1 Tijuana Baja California 1,301,000

2 Hermosillo Sonora 812,229

3 Los Mochis Sinaloa 231,977

4 Culiacan Sinaloa 675,773

5 Chihuahua Chihuahua 809,232

6 Mazatlan Sinaloa 502,547

7 Puerto Vallarta Jalisco 203,342

8 Torreon Coahuila 608,836

9 Zacatecas Zacatecas 1,579,000

10 Guadalajara Jalisco 1,495,000

11 Topolobampo Sinaloa 6,361

12 Todos los Santos Baja California Sur 6,485

13 La Paz Baja California Sur 244,219

14 San Juan Baja California Sur 5,300

15 Cabo Pulmo Baja California Sur 5,800

16 Los Barriles Baja California Sur 1,056

17 Cabo San Lucas Baja California Sur 81,111

18 San Jose del Cabo Baja California Sur 93,069

19 El Vado Baja California Sur 11,600

20 El Caribe Baja California Sur 49,600

21 Ballenas Baja California Sur 11,600

22 Vistahermosa Baja California Sur 11,600

Table A.1. Basic municipality information
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Node Daily Demand Post-disaster demand

1 0 0

2 8 0

3 6 0

4 0 0

5 8 0

6 12 0

7 10 0

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 11 0

14 2 0

15 2 0

16 2 0

17 7 0

18 3 0

19 3 60

20 2 60

21 3 60

22 3 60

Table A.2. Daily and post-disaster demand for the real case
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Node Daily Demand

Post-Disaster Demand

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1 0 0 0 0 0 0

2 8 0 0 0 0 72

3 6 0 0 0 0 55

4 0 0 0 0 0 0

5 8 0 0 0 0 71

6 12 0 0 119 0 0

7 10 0 0 96 0 0

8 0 0 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

11 0 0 0 0 0 0

12 0 0 0 0 0 0

13 11 106 0 0 106 0

14 2 13 0 0 13 0

15 2 14 0 0 14 0

16 1 8 0 0 8 0

17 7 61 61 0 0 0

18 3 22 22 0 0 0

19 3 27 27 0 0 0

20 2 12 12 0 0 0

21 3 27 27 0 0 0

22 3 27 27 0 0 0

Table A.3. Daily demand and post-disaster demand for each of  the 5 scenarios

Appendix B
Formulations

B.1 CC model MUD

Subject to:
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B.2 CC formulation with equity
Main Problem

minimize z

Subject to:
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Sub-problem

Subject to:

B.3 SB formulation MUD

Subject to:
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B.4 SB formulation with equity

Subject to:
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