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Abstract:

Purpose: This study aims to enhance production quality by applying Quality Control (QC) principles
through acceptance sampling, specifically analyzing the efficacy of  attribute acceptance sampling plans in
final lot receptions. 

Design/methodology/approach: Through comprehensive review and critical evaluation of  various sampling
methods found in literature, this paper assesses their efficiency under distinct administrative and operational
conditions.  It  emphasizes  the comparison of  different  attribute acceptance sampling plans by  examining
variations in parameters and key performance indicators,  such as Average Outgoing Quality  (AOQ) and
inspection time allocation percentage. Furthermore, it proposes a model for Continuous Sampling Plans (CSP)
to evaluate these plans’ performance in response to operational characteristic variations. 

Findings: The analysis reveals that the selected methods significantly aid in decision-making processes for
lot acceptance, utilizing non-conforming rates depicted by the Average Quality Level (AQL). This provides
a  robust  framework  for  improving  Quality  Control  strategies,  demonstrating  the  potential  of  these
methods to optimize production quality through strategic lot acceptance. 

Practical implications: This paper outlines a practical approach for industry practitioners to enhance
decision-making in  lot  acceptance,  offering a framework to balance Quality  Control  with operational
efficiency effectively.

Originality/value: By comparing a wide range of  attribute acceptance sampling plans and introducing a
novel  CSP model,  this  research contributes  valuable  insights  into the  optimization of  QC strategies.
Specifically, this work includes the design of  a second model to represent the CSP-1 serial sampling plans,
allowing for  the assessment  of  various  plans to analyze  variations  in  the aforementioned operational
characteristics.  It  offers  a  unique  perspective  on  enhancing  production  quality,  marking  a  significant
advancement in the field of  QC and management.
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1. Introduction
One of  the most expansive areas within statistical Quality Control (QC) is acceptance sampling, which aims to
determine the acceptability of  a lot without necessitating a complete inspection (Aziz, Hasim & Zain, 2021).
This method primarily focuses on the incoming and outgoing control of  batches, as well as on the audit control
of  final products. Acceptance sampling indirectly enhances production quality by fostering higher acceptance
levels  and discouraging substandard quality  through frequent  rejections  (Bouslah,  Gharbi  & Pellerin,  2016).
Given  the  diversity  of  sampling  procedures  available,  selecting  a  specific  method  hinge  on  administrative
conditions as well as on sampling efficiency. Therefore, analyzing the performance of  various sampling plans to
understand their operational characteristics is essential (Netto, Pelissari, Cysneiros, Bonazza & Sanquetta, 2017).
For example, the primary objective proposed by Mirabi and Fallahnezhad (2012) is to identify the optimal values
for the upper and lower thresholds by employing a Markov process, with the goal of  minimizing the total cost
associated with a batch acceptance policy. This strategy underscores the role of  sampling plans as fundamental
components of  statistical process control, a suite of  quality management tools aimed at improving processes and
products (Ortiz-Barrios & Felizzola-Jimenez, 2014).
Current research has significantly advanced sampling plans, reinforcing quality management systems in various
industries. Studies from Caicedo and Mahecha to Garcia and Martinez between 2015 and 2022, have integrated
Markov  models  and  economic  sampling  techniques  under  total  quality  cost  considerations.  Models  for
manufacturing  and process  control  systems have been proposed,  highlighting  the  effectiveness  of  different
strategies to improve product quality and process efficiency. Findings include the optimization of  product quality
verification and regulatory compliance, providing detailed insight into the application of  sampling techniques in
defect detection and product consistency.

Thus, in the realm of  attribute sampling plans, the focus has progressively shifted toward developing and refining
methodologies that enhance the efficiency and accuracy of  acceptance decisions. Modern research has built on
the  foundational  work  in  this  field,  integrating  advanced  statistical  techniques  and  computational  tools  to
improve  the  design  and  application  of  sampling  plans.  Contemporary  studies  emphasize  the  practical
implementation of  these methods in various industrial contexts, ensuring that they are adaptable to different
operational  environments  and quality  control  requirements.  This  evolution has led to the creation of  more
sophisticated models that can dynamically adjust to changes in production quality and operational conditions,
thereby providing a more robust framework for lot acceptance decisions. Such advancements underscore the
importance of  continuous innovation in sampling plans, ensuring that they remain effective tools for maintaining
high standards of  quality control in manufacturing processes.

Among these considerations, the behavior of  the acceptance probability in response to variations in the quality
of  the material under inspection stands out as a critical aspect of  attribute batch acceptance sampling plans
(Hlioui, Gharbi & Hajji, 2015; Wang & Lo, 2015; Thomas, 2023). This study performs a comparative analysis of
innovative attribute acceptance sampling plans. The study illustrates a model will  enable adjustments in plan
parameters,  facilitating  the  generation  of  comparative  analyses  on  the  behavior  of  acceptance  probabilities
within each plan. Moreover, for attribute sampling plans, understanding the average outgoing quality values, the
percentage of  time under 100% inspection, and fraction inspection, among other operational characteristics, is
crucial. Accordingly, this work includes the design of  a second model to represent the CSP-1 serial sampling
plans,  allowing for the assessment  of  various  plans to analyze variations  in the aforementioned operational
characteristics.

2. Sampling Plans
In the field of  attribute sampling plans, the development of  methodologies has been pivotal in advancing quality
control practices. Guenther (1969) pioneered a systematic search procedure using published tables of  binomial,
hypergeometric,  and  Poisson  distributions.  This  approach  was  foundational  in  refining  the  Probability  of
Acceptance (Pa), which quantifies the likelihood that a lot meets the quality standards based on the sampling
results  and is  a critical  measure in assessing the efficiency of  a  sampling plan.  Stephens (1978) provided a
closed-form solution for single-sample acceptance plans by applying a normal approximation to the binomial
distribution.  His  contribution  helped  elucidate  the  Operating  Characteristic  (OC)  Curve,  which  plots  the
probability of  lot acceptance against defect levels, thereby offering quality managers a powerful tool to visualize
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and assess the impact of  quality variations on acceptance rates. Hailey (1980) introduced a computer program to
generate  simple  sampling  plans,  facilitating  the  application  of  statistical  theories  in  practical  settings.  This
software  could dynamically  adjust  to  varying  Acceptable  Quality  Levels  (AQL),  setting benchmarks  for  the
maximum  allowable  percentage  of  defective  units,  and  thus  directly  influencing  the  strictness  of  quality
assurance  processes.  Hald  (1981)  provided  a  comprehensive  overview  of  statistical  theories  that  support
sampling inspection, including crucial metrics like the Lot Tolerance Percent Defective (LTPD), which defines
the poorest quality tolerable within a specified confidence interval, essentially setting a threshold beyond which
lots are rejected to prevent poor quality goods from reaching the market. The comparative analyses by Kao
(1971) and Hamaker (1979) emphasized the practical differences in sample sizes required between variable and
attribute sampling plans. Their findings underscore the importance of  understanding the Fraction Defective (p'),
or the proportion of  defective items in a lot, which is vital for calibrating sampling strategies to ensure quality
while maintaining operational efficiency.

Sampling plans serve as a vital QC mechanism for the acceptance and/or rejection of  production lots (Geetha &
Mathew, 2023). These plans specify the number of  product units for inspection in each lot and establish criteria
for determining lot acceptability (acceptance and rejection thresholds) (Lamers-Kok,  Panella, Georgoudaki, Li,
Özkazanç,  Kučerová  et  al.,  2022).  Acceptance  sampling  inspection  is  a  critical  quality  control  mechanism
designed to ensure that producers deliver quality products that meet or exceed predetermined standards, thereby
guaranteeing  that  consumers  receive  products  of  acceptable  quality.  Key  constructs  in  this  study  include
deterministic seasonal patterns and stochastic trends within data series. Deterministic seasonal patterns refer to
predictable and repeating fluctuations that occur at regular intervals due to seasonal factors, while stochastic
trends  indicate  random and unpredictable  changes  over  time.  These  constructs  are  important  because  they
highlight the variability (the extent to which data points differ from each other) and predictability (the ability to
foresee future data points based on past patterns) in production processes. Understanding these patterns and
trends  is  crucial  for  developing robust  sampling  methods that  can effectively  monitor  and control  product
quality.  Research, such as  Franco  Cardona, Velasquez-Heneo  and Olaya-Morales (2008), reveals deterministic
seasonal patterns and stochastic trends within data series, underscoring the need for quality control mechanisms
that  account  for  both  predictable  and  random  variations  in  production  processes. Additionally,  nonlinear
regression models, as demonstrated by Warren (1994), have the capacity to approximate any continuous function
within a defined compact domain, further emphasizing the importance of  robust sampling methods to account
for such variations. The core objective of  acceptance sampling inspection is to ensure the producer delivers
quality  at  or  above  the  predetermined  standard,  thereby  guaranteeing  the  consumer  receives  products  of
acceptable quality. Producers may adopt these sampling procedures to affirm their quality levels meet consumer
expectations,  as  evidenced in  the  approaches  of  Carlsson (1989),  Boucher  and Jafari  (1991),  and Al-Sultan
(1994). Moreover, challenges associated with linear drift in production processes have been explored by Rahim
and Banerjee (1988) and Al-Sultan and Pulak (1997). Lauer (1978) has delved into the acceptance probabilities
for sampling inspections using attributes with a Beta prior distribution for single sampling plans, while Rajagopal,
Loganathan and Vijayaraghavan (2009) investigated the selection of  Bayesian Single sampling plans with Beta
distribution as the prior.

Recent research has significantly advanced sampling plans, enhancing quality management systems across various
industries. Caicedo and Mahecha demonstrated Markov states considering decision-making changes based on
Military Standard tables (Caicedo & Mahecha, 2015). Brown and White (2015) proposed an integrated model for
manufacturing systems combining quantity and quality, introducing a Markov model with continuous-time and
discrete part flow for a single-stage system.  Yun-Cheng, Cheng and Yi-An (2019)  compared the economical
design of  quality with traditional single sampling plans under total quality cost considerations. Anderson and
Garcia conducted a comprehensive comparison of  various sampling plans for quality improvement, offering
insights into the effectiveness and suitability of  different sampling strategies for enhancing product quality and
process  efficiency (Anderson & García,  2018).  Taylor  and Martinez (2019)  provided a detailed overview of
sampling plans for process control, outlining various sampling techniques and their applications in monitoring
and maintaining process stability and quality. Clark and Lewis (2020) explored sampling plans tailored for quality
management, examining their implementation in optimizing QC processes and ensuring compliance with quality

-683-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7491

standards. Miller and Rodriguez (2021) surveyed sampling plans in quality assurance, evaluating the effectiveness
of  different  sampling  methodologies  in  product  quality  verification  and  regulatory  compliance.  Garcia  and
Martinez (2022) performed a comparative analysis of  sampling plans focusing on quality control applications,
assessing the performance of  various sampling techniques in defect detection, product consistency, and overall
QC process improvement.

Ang, Han and Jiang (2021) proposed an optimized sampling plan for mechanical product quality inspection using
the Taguchi method, enhancing mechanical engineering QC processes’ efficiency and effectiveness. Marques,
Maciel, Costa and Santos (2024) and Aslam (2020) explored the optimal design of  a sequential sampling plan
with  random sampling,  contributing  to  statistical  methods  for  designing  efficient  sampling  plans,  especially
beneficial in scenarios favoring sequential sampling. Chen,  Li, Zhang and Chen (2016) and Noughabi (2022)
optimized sampling plans for quality inspection in power transformers, offering insights into developing tailored
sampling strategies to improve power distribution systems’ reliability and performance. Marques  et al. (2024)
introduced an economic design of  a single sampling plan for electronic components’ reliability testing under
exponential  distribution,  providing cost-effective  reliability  testing strategies  and ensuring  electronic  devices’
quality and performance in various applications. These studies collectively underscore the progress in sampling
plan optimization and their application in quality inspection and reliability testing, contributing to robust quality
management systems that enhance product quality, reliability, and customer satisfaction.

2.1. Acceptance Sampling by Attributes

Acceptance  sampling  inspection  attributes  quality  responsibility  to  the  producer,  who must  ensure  product
quality as specified to avoid issues and additional costs with unacceptable lots. Sampling plans are categorized
into single, double, multiple, and sequential types. Their suitability is determined by comparing administrative
challenges and the average sample size required by the available plans. Typically,  the average sample size for
multiple sampling is less than that for double plans, which, in turn, are smaller than those required for single
sampling. However, the complexity of  administering these plans varies inversely with their straightforwardness.

Acceptance sampling is an inspection methodology used to decide whether to accept or reject a product or
service  (Curram  &  Schilling,  1983;  Saranya,  Vijayaraghavan  &  Sharma,  2022;  Polman,  Haan,  Veldhuijzen,
Heideman, Vet, Meijer et al., 2019). It involves procedures that base these decisions on the inspection outcomes
of  sampled items. This type of  sampling is applicable to a variety of  contexts,  including finished products,
components, raw materials,  operations,  materials in process, and stored materials,  among others. Acceptance
sampling  procedures  are  utilized  when  testing  reveals  non-conformance  or  deviation  from  the  functional
attributes of  products. They can also be applied to various characterizing variables, assessing the degree to which
product quality levels align with specifications. The primary objective of  these procedures is to classify a lot as
accepted or rejected, contingent upon the requisite quality levels (Duarte & Saravia, 2008).

Sampling presents a more advantageous option compared to 100% inspection in several scenarios: when product
quality information is unavailable; when the lot comprises a large number of  items, necessitating inspection with a
considerable probability of  inspection error; when automated inspection is not feasible; when ensuring product
reliability is essential; even if  the manufacturing process capacity of  the lot is satisfactory; and in instances where
the seller has historically provided excellent quality levels, prompting a desire to reduce inspection frequency, despite
the process capacity being insufficient to forego inspection. The benefits of  this sampling approach include cost-
efficiency, as it requires fewer inspections, and minimizes damage from handling during inspection. It enhances the
inspection task by shifting from part-by-part decisions to a lot-by-lot basis, proving useful for destructive testing,
and focusing more on rejecting lots rather than returning nonconforming units. However, the disadvantages include
the risk of  rejecting conforming lots or accepting nonconforming lots,  increased time spent on planning and
documentation, reduced product information, and limited assurance that the entire lot meets specifications.

2.2. Simple Sampling Plans

Single sampling plans determine the acceptance or rejection of  a lot based on the inspection results of  a single
sample  comprising  n items from the lot.  The advantages  of  simple  sampling plans  include straightforward
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administration. However, due to the static sample size, they do not exploit the cost-saving potential associated
with reduced inspection when the incoming quality is significantly high or low. This approach maintains accuracy
when the sample size constitutes at most one-tenth of  the lot size, but its reliability diminishes if  n is too small
or if  the defective fraction, p', is too large (Vaughn, 1974). According to the Poisson distribution, the probability
of  acceptance, Pa, when implementing single sampling plans for a lot of  size n and a specified defective fraction,
p', is given by: 

(1)

If  the random variable p' can be modeled using a continuous statistical distribution, then Equation (1) can be
transformed into Equation (2), incorporating the integration over p':

(2)

2.3. Double Sampling Plans

In double sampling plans, an initial, smaller sample is extracted from the submitted lot, leading to one of  three
possible decisions: accept the lot, reject the lot, or take another sample. Should a second sample be necessitated,
the acceptance or rejection of  the lot will be determined based on the outcomes of  this subsequent analysis. One
of  the advantages of  double sampling plans is their ability to reduce the overall sample size required when the
incoming quality is either exceptionally high or low. This efficiency is due to the potential for the lot to be either
accepted or rejected based on the assessment of  the first sample alone (Montgomery, 1996).

To calculate the  Pa for a given lot of  size  n with a fraction  p' of  defective items, an approximation method
utilizing the Poisson distribution can be applied. This method involves the following Equation (3):

(3)

In this equation, n1 and n2 represent the sizes of  the first and second samples, respectively, while c1 and c2 denote
the acceptance numbers for these respective samples.  The  equation integrates the cumulative probability  of
acceptance across two scenarios: firstly, direct acceptance based on the first sample, and secondly, conditional
acceptance  predicated  on  the  outcomes  of  both  the  first  and  second  samples.  This  probabilistic  model,
grounded in the Poisson distribution, offers a nuanced approach for determining the likelihood of  lot acceptance
within the framework of  double sampling plans. 

2.4. Multiple Sampling Plans

In multiple sampling inspections, the approach aligns closely with that of  double sampling, with the primary
distinction being the requirement for more than two successive samples to arrive at a decision.

1) Sequential  Sampling  Plans:  These  plans  are  particularly  advantageous  when  tests  are  destructive  or
expensive.  Sequential  sampling plans  can significantly  reduce sample  sizes  while  maintaining robust
protection levels.

2) Variable Sampling Plans:  Unlike  attribute sampling plans,  which classify  products  as  conforming or
non-conforming,  variable  sampling  plans  utilize  the  actual  measurements  of  sampled  products  to
inform decision-making. These plans are inherently more complex to manage than attribute sampling
plans  and  demand  a  higher  level  of  administrative  expertise.  Variable  sampling  plans  can  offer
protection comparable to that of  an attribute sampling plan but with a reduced sample size. There are
several types of  variable sampling plans in practice, including those where the standard deviation (α) is
known, unknown, and unknown but estimated using the range. When compared to an attribute sampling
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plan, the required sample size for the aforementioned variable plans can be quantified as a percentage.
Variable  sampling  plans  enable  the  assessment  of  a  process’s  performance  relative  to  nominal  or
specified  limits.  While  attribute  plans  make  binary  accept/reject  decisions  for  a  lot,  variable  plans
provide  nuanced  insights  into  process  performance.  However,  a  limitation  of  variable  plans  is  the
assumption  of  a  normally  distributed  population.  Contrary  to  attribute  sampling  plans,  separate
characteristics within the same items will exhibit different means and variances, necessitating distinct
sampling plans for each characteristic. Consequently, variable plans are more intricate to manage and
incur higher measurement costs than attribute plans.

3) MIL-STD-414: The most prevalent variable sampling plan, MIL-STD-414, encompasses strategies for
known variability,  unknown variability  (standard  deviation  method),  and  unknown variability  (range
method).  Utilizing  these  methodologies,  MIL-STD-414  facilitates  testing  against  single  or  dual
specification  limits,  estimation  of  process  averages,  and  assessment  of  the  source  population’s
dispersion.

3. Serial or Continuous Sampling Plans, CSP

These plans are specifically designed for continuous production processes to address the challenges associated
with applying lot-by-lot sampling plans in such environments. Continuous sampling plans feature alternating
sequences of  sampling and 100% inspection. Typically, these plans commence with a 100% inspection phase.
Once a  predetermined number  of  consecutive  units  are  identified as  defect-free,  the  process  transitions  to
sampling inspection. This sampling inspection persists until a specified number of  defective units are discovered,
prompting  a  return  to  100%  inspection.  Serial  sampling  plans  are  rectification-based  inspection  strategies,
wherein each  identified defective  unit  is  either  reworked  or  replaced with  satisfactory  units.  This  approach
enhances product quality, achieving an average outgoing quality that is lower than or equivalent to the original
process’s defect fraction. Selecting a serial sampling plan necessitates the determination of  an Average Outgoing
Quality Limit (AOQL) that the plan aims to achieve. Various types of  serial sampling plans exist, explained as
follows.

3.1. CSP-1 Plan

This plan initiates with a 100% inspection of  all units. Once i consecutive units are found to be defect-free, the
100% inspection phase is concluded, and only a fraction f of  the units undergo inspection. These sample units
are selected randomly, one at a time, from the ongoing production. Should any sampled unit be found defective,
the process reverts to 100% inspection.

Figure 1. CSP-1 plan network

The parameters are defined as follows:

P' Probability of  process non-conformity

E1: State of  100% inspection

E2: State of  fractional inspection

Based on this model, it is possible to construct a transition matrix as observed in Table 1.
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Markov States E1 E2

E1 1 – (1 – p')i (1 – p')i

E2 p' (1 – p')

Table 1. Transition matrix for CSP-1 plan network

The CSP-1 encompasses two states: one representing a 100% inspection of  units and the other a fractional
inspection.  A  Markovian  analysis  of  these  states  is  performed  to  ascertain  the  long-term  probabilities  of
maintaining one type of  inspection over the other. With the transition matrix, the long-term inspection type
probabilities can be determined. The steady-state equations are:

(4)

x1
*: Probability of  being in State 1(E1)

x2
*: Probability of  being in State 2 (E2)

From  these  equations,  the  stationary  probabilities  of  remaining  in  100%  inspection  (x1
*) or  in  fractional

inspection (x2
*) can be determined, as observed in Equation (5):

(5)

Thus, the AOQL for the CSP-1 plan can be calculated according to the Equation (6), where Q represents the Lot
size:

(6)

The numerator of  the expression represents the nonconforming units overlooked by the plan, summarizing the
total nonconforming units allowed by the plan (QP') minus the nonconforming units detected during both 100%
and fractional inspections (QP' x1

* + QP' fx1
*).

3.2. CSP-2 Plan

Under this type of  plan (Figure 2), 100% inspection is reestablished when two nonconforming units are detected
within a sequence of  k sample units. 

Figure 2. CSP-2 plan network

From Figure 2, the transition matrix is derived as observed in Table 2.

-687-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7491

Markov States E1 E2

E1 1 – (1 – p')i (1 – p')i 

E2 p' [1 – (1 – p')k] 1 – p' [1 – (1 – p')k]

x1
*(1 – (1 – p')i  + x2

*{p' [1 – (1 – p')k]} x1
*(1 – p')i  + x2

*{1 – p' [1 – (1 – p')k]}

Table 2. Transition matrix for CSP-2 plan network

The probabilities of  remaining in 100% inspection and transitioning to or remaining in fractional inspection are
given by:

(7)

From this system, it can be deduced that:

(8)

Substituting Equation (8) in the Equation (7) yields:

(9)

Furthermore, the inspected units, IU, are defined as:

(10)

Replacing  Equation  (8)  and  (9)  in  Equation  (10),  and  expressing  it  as  a  function  of  P',  the  number  of
non-conforming units (#NCU) detected by the inspection can be calculated as:

(11)
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If  k = i we have: 

(12)

This Equation (12) provides a method to calculate the AOQL, factoring in the detected non-conforming units
and the efficiencies of  switching between 100. 

3.3. CSP-3 Plan

The CSP-3 Plan, while closely resembling the CSP-2 Plan, is engineered to afford additional protection against
irregular production patterns (Figure 3). It stipulates that upon the discovery of  a defective unit during sample
inspection, the subsequent four units must undergo immediate inspection. Should any of  these four units be
found defective, 100% inspection is promptly reinstated. In the absence of  any defective units among these four,
the plan reverts to the CSP-2 protocol.  This adjustment to the CSP-2 Plan is aimed at safeguarding against
abrupt declines in quality.

Figure 3. CSP-3 plan network.

where,

E3: State of  100% inspection of  four consecutive units, initiated upon detecting a non-conforming product in 2,
E2.

From this model, a transition matrix can be derived as showed in Table 3:

Markov States E1 E2 E3

E1 1 – (1 – p')i (1 – p')i 0

E2 1 – (1 – p')k (1 – p')k – p' p'

E3 1 – (1 – p')4 (1 – p')4 0

Table 3. Transition matrix for CSP-3 plan network

Thus:

(13)

(14)

(15)
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with,

X3
*: Probability that an item is in state 3 (E3), in steady state

It follows that:

(16)

(17)

(18)

4. Simple Sampling Plans for Acceptance by Attributes
This component of  the study explores the variation in the probability of  lot acceptance using different Simple
Attribute Sampling Plans, defined by the parameters  n (sample size) and  c (maximum allowable defects). The
analysis focuses on:

i. Parameter Definition  (n, c) :  Establishment of  the parameters characterizing each sampling plan. These
parameters are adjustable, allowing exploration of  different configurations of  the sampling plan. For n
(samples) and c  (number for acceptation or no-acceptation of  lots).

ii. Evaluation  of  Acceptance  Probability:  The  probability  that  a  lot  will  be  accepted  under  various
nonconformity fractions p', ranging from 0 to 1, is calculated. This probability is visualized through an
approximation to the Operating Characteristic Curve.

iii. Inspection Cycle and Counting: 

• Lot Counters: The variables Accept  (accepted lots) and NoAccept (rejected lots) are reset to zero after
inspecting 100 lots, to begin a new count in each evaluation cycle.

• Internal Inspection Cycle: An internal cycle is developed for the inspection of  each lot, where a  rep
counter  (representing  the  number  of  lots  inspected  for  each  nonconformity  fraction  p' is
incremented with each new lot. A sample of  size  n is taken from the lot, and the original entity
pauses while the sample is inspected.

iv. Sample Inspection and Decision:

• Defect Recording: A variable  CantNoConforms records the number of  defective products identified in
the sample.

• Evaluation and Decision: Once the sample inspection is complete, it is evaluated whether the number
of  defects exceeds the maximum allowed c. Based on this result, it is determined whether the lot is
accepted or rejected.

v. Visualization and Analysis: 

• Operation  Curve: Figure  4  shows  the  Operation  Curve  of  the  Plan,  which  illustrates  how  the
Acceptance Probability evolves as the lot’s nonconformity fraction increases, allowing evaluation of
the plan’s performance in various applicable scenarios.
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Figure 4. Operation characteristic curve for sampling plans

5. Analysis of  Results for Simple Acceptance Sampling by Attributes

The Simple  Sampling  Plans  for  Acceptance  by  Attributes,  as  previously  discussed,  underwent  experimental
manipulation to elucidate the variability in the Probability of  Acceptance and/or Rejection within these plans.
Consequently,  adjustments were made to the values of  n and  c within the model to facilitate a comparative
analysis  of  the  plans’ behavior.  Simulations  were  conducted  for  fixed  values  of  n with  varying  c,  and  for
increasing values of  n with proportional adjustments in c. The Operation Curves generated from each simulated
plan served as the primary analytical tool. It is pertinent to note the existence of  two types of  Operating Curves
(OC).

Type B OCs arise from sampling randomly selected lots from a process operating randomly with an average
nonconformity  fraction  p'.  Consequently,  the  lots  may  exhibit  varying  defective  fractions,  aligning  with  a
binomial  probability  distribution.  This  sampling  method  effectively  mirrors  direct  process  sampling.  The
Probability of  Acceptance,  as dictated by the binomial  distribution,  can be theoretically calculated using the
binomial formula or one of  its approximations, such as the Poisson distribution. In this context, Pr(Accept) is
interpreted  as  the  proportion  of  processed  lots  anticipated  to  be  accepted  by  the  process.  The  Poisson
distribution assumes that nonconformities occur independently at a constant rate, which holds true in numerous
instances.

Conversely, Type A OCs presuppose that all inspected lots contain an identical fraction of  defectives, rendering
the Probability of  Acceptance as the average proportion of  lots accepted from an infinite series of  identical lots.
Under these circumstances, Pr(Accept) is determined by a hypergeometric distribution, reflective of  sampling
from a finite universe—the lot itself. It may also be approximated using a binomial summation. However, the
inherent characteristics of  these curve types suggest that, for lots of  infinite size, Type A OC is mathematically
equivalent to Type B. Therefore, for large batch sizes, no distinction between the two types of  Operating Curves
is presumed. This research adopts this latter assumption. In practice, the precise quality level of  a lot under
inspection remains unknown. Were it otherwise, direct judgment of  lots without the necessity for inspection
would be feasible. The Operating Curve delineates the anticipated performance of  the sampling plan under
specific conditions, emphasizing the importance of  understanding the implications of  Operating Curves when
selecting  n and  c values. Comparing Operating Curves facilitates the evaluation of  different simple sampling
plans. Ideally, a Sampling Plan would accept lots with a probability of  1 for those whose nonconformity fraction
falls below the AQL and reject with equal certainty those lots exceeding this threshold. With these considerations
in mind, the analysis focuses on the outcomes obtained with the model.

5.1. Analysis of  Results for Constant n and Varying c

This analysis was conducted with a constant n = 40 and varying c values (0, 1, 2, and 3). A similar approach was
taken  for  n  = 50 to  amass  data  under  differing  conditions  yet  with  analogous  characteristics,  enabling  a
generalization of  the analysis. The Operating Curves plotted for each simulated plan are showed in Figure 5:

-691-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7491

Figure 5. Comparison of  sampling plans with constant n=40 and variations in c

The results illustrate that as the allowable number of  defective units within the sample, denoted by c, decreases,
the  Operation  Curve  of  the  plan  shifts  leftward.  This  shift  signifies  that  the  plans  increasingly  adopt  the
propensity to reject lots at lower levels of  nonconformity fraction p'. This tendency becomes more pronounced
as c diminishes, with the curve evolving from a concave to a convex shape at c = 0. Analyzing the Probability of
Acceptance distribution reveals the impact of  c on the rate of  change in the Probability of  Acceptance:

• For the binomial distribution:

(19)

• For the Poisson distribution:

(20)

This dynamic indicates that the Probability of  Acceptance begins to decline sharply, even at minimal values of
p', potentially disadvantaging both the supplier and the consumer by rejecting lots of  acceptable quality.

5.2. Analysis of  Results for Different Sample Sizes n and Proportional c-Values

In this analysis, simulations were performed for varying  n values while maintaining proportional changes in  c.
The scenarios assessed included n = 40, c = 1; n = 80, c = 2; and n = 160, c = 3, to facilitate generalization of
findings.  The  results,  depicted  in  Figure  6,  utilized  the  binomial  distribution  for  Type  B  operating  curves
concerning the producer’s risk.

The findings demonstrate that as the sample size increases, the Operating Curve becomes steeper, indicating a
sharper slope. This trend approaches the ideal plan curve, where a high Probability of  Acceptance is afforded to
lots with low fractions of  nonconformities, and this probability swiftly diminishes for p′ values exceeding the
Not Acceptable Condition (NAC).

This phenomenon is elucidated by the statistical distribution of  the Probability of  Acceptance, as a larger sample
size increases the likelihood of  detecting fewer than the desired number of  nonconformities at low success
probabilities. Conversely, for high success probabilities, the chance of  finding fewer successful events decreases
rapidly.  Thus,  producers  are  motivated  to  ensure  very  low  rates  of  nonconformity  to  avoid  the  risk  of
complaints, claims, or issues with customers due to high percentages of  defective products.
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Figure 6. Comparison of  sampling plans with variations in n and c

Accordingly, it is evident that the precision with which a plan discriminates between acceptable and unacceptable
lots  improves  with  sample  size.  However,  choosing  the  appropriate  sample  size  must  consider  the  optimal
cost-benefit  ratio.  The  enhanced  accuracy  of  larger  samples  must  be  weighed  against  the  increased  costs.
Although beyond the scope of  this text, it is noteworthy that Sampling Plan design methods often establish
specific  risks  for  the  producer  (α)  and  the  consumer  (β),  where  α represents  the  likelihood  of  rejecting
high-quality lots, and β indicates the chance of  accepting poor-quality lots. The definitions of  “good” or “bad”
quality are contingent upon the AQL and LTPD agreed upon by the consumer and supplier.

6. CSP-1 Continuous Sampling Plans

In this section, a model was designed for the analysis of  Continuous Sampling Plans, specifically the CSP-1 type.
This  model  facilitates  the  examination  of  the  probabilities  of  being  in  each  phase  of  the  plan  —100%
Inspection and Fraction Inspection— and also enables  the  observation  of  the  Average  Outgoing Quality’s
behavior for varying values  of  the parameters  i and  f characteristic  of  these plans.  The model begins  with
generating  entities  that  symbolize  the  products  of  a  continuous  production  process.  For  this  analysis,  a
production run of  100 000 units was selected to ease the interpretation of  results.

Subsequently, the entity determines whether to proceed with 100% Inspection or Fraction Inspection based on
the Plan’s current state. This status is denoted by a variable named “Status,” which assumes a value of  1 for
100% Inspection and 2 for Fractional Inspection. As outlined, CSP-1 Plans initiate with a 100% Inspection
phase. Depending on the outcome of  this initial  decision, the product will  follow one of  two paths: either
continuing with 100% Inspection or transitioning to Fraction Inspection.

7. Discussion
Sampling Plans serve as a pivotal guide in the acceptance and/or rejection of  lots. While they prescribe a course
of  action,  their  aim is  not  to  ascertain  the  quality  of  the  lot  directly.  It  is  crucial  to  note  that  Attribute
Acceptance  Sampling  Plans  are  not  designed  for  Quality  Control,  which  is  the  domain  of  control  charts,
representing the essence of  quality management. Acceptance sampling’s role is primarily to accept or reject lots
based on predefined criteria. 

The  effective  implementation  of  attribute  sampling  plans  requires  careful  consideration  of  their  design  and
integration with quality control systems. The parameters of  sampling plans, such as sample size and acceptance
criteria, must be tailored to the specific context and quality requirements of  the industry. This adaptation is crucial
since different industries and processes have varying tolerances for defects and variances in production quality. 

Integrating  sampling  plans  with  quality  control  systems  enables  continuous  monitoring  of  the  production
process, facilitating early identification of  issues. This integration ensures that decisions on the acceptance or
rejection of  lots are based not only on representative samples but also on a deep understanding of  the overall
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production process performance. In summary, proper design and integration of  sampling plans are essential to
ensure that final products consistently meet the expected quality standards.

The implementation of  a sampling plan in the inspection process, using sampling systems such as CSP sampling
plans, requires careful consideration of  switching rules. These rules are essential as they determine when and
how to switch between different levels of  inspection, directly affecting the efficiency and effectiveness of  the
sampling system.

Excluding  reduced  inspection  from the  sampling  plans  available  to  the  producer  can  deprive  them of  the
benefits  of  maintaining exceptional  quality.  Reduced inspection acts  as  a  reward for  high-quality  standards,
allowing the producer to use smaller sample sizes and increase the probabilities of  lot acceptance. Therefore, it is
crucial to consider this option in the sampling plans adopted for attribute inspection.

The design of  different switching rules between classes of  inspections can be customized according to the needs
of  the involved parties. The performance of  these rules is reflected in the operating characteristic curves, but
this should not be the sole evaluation criterion. It is also important to consider other derived curves, such as the
probability  of  being  in  normal  inspection,  reduced  inspection,  and  the  probability  of  switching  between
inspections.

In the future, these sampling plans could be integrated with process capability indicators, which are crucial for
decision-making in product quality. These indicators can determine when to switch from one sampling plan to
another based on quality results. This approach offers a promising field for research in statistical quality control,
combining  acceptance  sampling  and  attribute  inspection,  thereby  enhancing  decision-making  and  quality
management in various industries. 

8. Conclusions
Through this  investigation,  we successfully  developed a  simulation model that  generically  represents  Simple
Attribute Acceptance Sampling Plans. This model simulates the lot inspection process under these plans, yielding
results for the Probability of  Acceptance across various potential defective fractions within the lots. It requires
only the specification of  the Plan’s n and c parameters for analysis. The development of  this model facilitated the
evaluation of  such Plans across different n and c values, thereby enabling the derivation of  Operating Curves as a
testament to the performance of  the evaluated plans.

The derived Operating Curves enabled a comparative analysis across various scenarios, leading to several key
conclusions:

• As A decrease in the allowable number of  defective units in the sample,  c, shifts the Operating Curve
leftward, indicating an increased propensity of  the Plans to reject lots at lower nonconformity levels, p'.
This  trend becomes markedly  pronounced with further reductions in  c, affecting the  Probability  of
Acceptance significantly and potentially disadvantaging both suppliers and consumers by rejecting high-
quality lots.

• An increase  in  sample  size  renders  the  Operating Curve steeper,  enhancing  the  Plan’s  precision  in
distinguishing between good and bad lots, thereby approximating the ideal plan that accepts lots below
the Acceptable Quality Level (AQL) and rejects those exceeding it.

Additionally, a model for CSP-1 Continuous Sampling Plans was also developed, enabling the simulation of  a
continuous sampling process and providing valuable insights into its operational characteristics.

From the CSP-1 model simulations, various insights were gleaned:

• The percentage of  100% Inspection increases with larger fractions of  nonconforming units, reflecting
the Plan’s protective mechanism against allowing significant quantities of  defective products to pass.

• The concept of  AOQL emerged, highlighting that for lower and higher  p' values, the CSP remains
minimal  due  to  frequent  100% inspections  for  large  nonconformity  fractions  and  small  p' values,
respectively.
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• Increasing the proportion of  units subjected to sampling inspection, f, leads to a rise in 100% Inspection
occurrences, enhancing defective unit detection but also improving the Average Outgoing Quality due to
more stringent inspections.
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