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Abstract:

Purpose: This paper investigates the impact of  special replenishing modes within a 2-echelon inventory
system under seasonal demand. Within this system, a periodic-review base-stock policy is employed. Two
special replenishing modes are considered: emergency and transshipment in addition to a regular mode.
The  regular  mode serves  as  the  primary  replenishment  method,  while  emergency and transshipment
modes,  characterized  by  shorter  lead  times  and  higher  costs,  are  reserved  to  prevent  stockouts.  It
specifically examines the differences in outcomes between static and dynamic ordering policies for these
special modes.

Design/methodology/approach: Methodologies  to  determine  static  and  dynamic  policies  of  two
special replenishments: emergency and transshipment are proposed. Both emergency and transshipment
replenishments are based on (R, s, S). A simulation method was used to evaluate the proposed policies.

Findings: Special modes can be used to maintain service level while utilizing a lower safety stock, thereby
reducing  overall  holding  cost.  The  60% higher  frequency  of  emergency  orders  under  static  policies
compared to dynamic policies leads to a lower number of  transshipment orders. For short cycles with high
per-period demand variability, the gap between static and dynamic policies shrinks, making static policies a
viable, less-complex alternative. Levels of  demand fluctuations between periods impact a policy choice.
While  dynamic  policies  may  not  provide  a  distinct  advantage  over  static  policies  in  low-fluctuation
scenarios, they can yield cost savings in high-fluctuation environments, albeit with increased effort.

Practical implications: The result from this paper can be adopted to a 2-echelon inventory system with
multiple  replenishing  modes  under  seasonal  demand.  It  can  help  inventory  managers  choose  the
appropriate policy for their situation.

Originality/value: This paper provides managerial insights regarding the circumstances in which static
policy or dynamic policy should be applied and explores the relationship between regular and special
replenishing modes in various circumstances.
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1. Introduction

Nowadays, Companies around the world not only compete on price and product but also on the reliability of
deliveries  due  to  globalization  (Mirabelli  & Solina,  2022).  One  way  to  higher  reliability  is  better  inventory
management. There is a considerable number of  studies dealing with multi-echelon inventory models in the past
decades (Kouki, Arts & Babai, 2024). The system involves a lot of  decisions such as how many items should be
stored at each location and at what time they should be transported from the warehouse to retailers. Multi-echelon
inventory optimization plays an important role in a supply chain minimizing total cost while maintaining specified
customer service levels but making decisions in these inventory systems is a challenging task (Achkar,  Brunaud,
Pérez, Musa, Méndez & Grossmann, 2024). Even though a proper inventory policy is applied. Under stochastic
demand, a retailer could run out of  stock and the demand is considered lost. In this situation, a retailer could use a
special replenishing mode with shorter lead time to prevent stockouts. These special modes can be an emergency
replenishment which is a replenishing mode with shorter lead time supplied by the warehouse (Minner, 2003) or a
transshipment  which is  a  mode where items are requested from other  retailers  with excessive  on-hand stock
(Paterson, Kiesmuller, Teunter & Glazebrook, 2011).

This paper focuses on a 2-echelon inventory system with a single warehouse and  N  non-identical retailers. In
normal circumstances, retailers are supplied by a warehouse which is supplied by external suppliers via a regular
replenishment. Items can be stored at the warehouse and retailers. This regular replenishment has a fixed lead time.
However, when a retailer faces the risk of  stockout, items could be supplied via one of  the special modes with fixed
shorter lead times i.e., emergency replenishment from warehouse and transshipment from another retailer. Unfilled
demand is considered as demand loss. This demand loss makes a problem more complicated because it is difficult
to estimate the on-hand stock level (Guijarro, Babiloni, Canós-Darós, Canós-Darós & Estellés-Miguel, 2020). The
replenishing modes applied in this paper are shown in Figure 1.

Figure 1. Replenishing modes in the system

Customer demand follows a repeating weekly pattern without any long-term trend. It fluctuates predictably through
these cycles, with each day’s demand typically distributed normally with unique parameters. We used the algorithm
proposed by Sakulsom and Tharmmaphornphilas (2019) to find the ordering policy for a regular replenishment as
they work on the same seasonal demand pattern. Although the policies from the algorithm give low total demand
loss over the considered time horizon, there are some periods with high lost sales. Therefore, to reduce the number
of  these periods, special replenishing modes are applied.

This  paper  proposes  methodologies  for  crafting  periodic  review-based  order  policies  for  special  replenishing
modes: emergency and transshipment.  Both static  (invariant across periods)  and dynamic (demand-responsive)
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policies are explored. While static policies provide ease of  implementation, dynamic approaches, utilizing periodic
demand data, offer potential for cost reduction and minimized special orders, particularly for seasonal products.
Nonetheless, a comprehensive investigation of  their suitability for each replenishment mode is crucial for optimal
performance.

The remainder of  this paper is organized as follows. Section 2 reviews the literature related to the system with
multiple replenishing modes.  Section 3 presents a problem description.  Section 4 describes a methodology to
determine  ordering  policies  for  special  modes.  Section  5  presents  results  and  discussions.  Finally,  Section  6
concludes and suggests future research extensions.

2. Literature Review
To mitigate stockout issues, a company can utilize multiple replenishment channels. In addition to its regular mode,
it can incorporate other replenishment options with shorter lead times. For instance, a company reliant on sea
freight could also employ airfreight as an emergency option, offering faster delivery but at a higher cost.

Emergency replenishing mode is a special replenishment with shorter lead time, but higher cost, used in case of
imminent shortage from the higher-echelon location (Tagaras & Vlachos, 2001). Generally, a system with more than
one source is considered a dual-supply system, where items are replenished by two distinct sources or from a single
source with two different modes (Minner, 2003; Yao & Minner, 2017). The dual-supply problem has been studied
in various aspects and applied under two main policies: continuous review and periodic review.

Moinzadeh and Nahmias  (1988) developed a  heuristic  algorithm for  a  system with two supply  modes under
continuous review, applying a (Q1, Q2, R1, R2) policy. Under this policy, an order of  Q1 was placed when on-hand
inventory reached the R1 reorder point, and an order of  Q2, with a shorter lead time, was placed when on-hand
inventory reached the R2 reorder point. They used a simulation to validate the algorithm and studied the difference
in operating costs between systems with and without a special supply mode. Zhou and Yang (2016) proposed a
heuristic to find a policy for two replenishing modes under continuous review, where both modes used batch
orders. Chiu,  Chiu, Lin and Chang (2019) studied a system with multiple products and two replenishing modes:
in-house and outsourcing. They developed a model to minimize the total cost based on the portion of  outsourcing,
cycle length, and defect rate.

For products with selling seasons where the retailer had a limited time frame to order an emergency shipment,
Poormoaied and Hosseini (2021) studied how to apply emergency shipments to the system using a newsvendor
model  to  maximize  expected  profit.  Poormoaied  and  Demirci  (2021)  studied  a  continuous-review stochastic
inventory problem with emergency orders where the supplier had uncertain available and unavailable periods. They
suggested approaches by analyzing the model for different lead time scenarios. Zhao, Wang and Wu (2022) studied
the effect of  emergency shipments as a combination of  the effect from customers’  predicted price based on
historical price data. Gao,  Qu, Jiang and Hou (2024) studied emergency order strategies in a closed-loop supply
chain where new products and remanufactured products were considered by customers. Backlogged demands can
be served via emergency orders within certain proportion based on the cost of  emergency order and the cost of
out-of-stock loss.

For periodic review systems, various aspects of  constraints, such as time to place emergency orders or order size,
have been studied. Chiang and Gutierrez (1996) proposed a model with two replenishing modes under periodic
review. At each review period, either a regular order or an emergency order was placed to bring the inventory level
up to an expected level. Chiang (2003) extended the model with different variable costs between a regular mode
and an emergency mode. Chand, Li and Xu (2016) proposed a similar model, but allowed the buyer to choose
between two delivery modes at the beginning of  the period. They assumed unmet demand was backordered, and a
backlogging cost varied with the length of  backlogging time. Therefore, the buyer had to trade off  delivery cost
and backlogging cost. Chiang and Gutierrez (1998) allowed multiple emergency orders within a review period.
Regular orders and emergency orders were placed periodically, but emergency orders had a smaller review interval.
Chiang (2001) analyzed a special case of  the same problem with a one-period difference between lead times of  a
regular mode and an emergency mode. Bylka (2005) proposed a model similar to Chiang and Gutierrez (1998) but
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included  an  inventory  capacity  constraint  and  a  limited  backlogging  constraint. Tagaras  and  Vlachos  (2001)
proposed a model for an emergency mode where an emergency order would be placed as late as possible to make
the items arrive right before the end of  the period. The emergency order was placed to raise on-hand level up to
the threshold level. When the on-hand level was less than the threshold level, an emergency order was placed to
raise on-hand up to the threshold level.

When the on-hand level was less than the threshold level, an emergency order was placed to raise on-hand up to the
threshold level. Huang, Zeng and Xu (2018) proposed a system where regular and emergency orders were supplied
by the capacitated suppliers. Regular orders were triggered before the demand was realized but emergency orders
were triggered after demand realization. The quantity of  an emergency order depended on remaining capacity of
suppliers. Johansen and Thorstenson (2014) proposed a Markov decision model for a system where regular orders
were controlled with a reorder point and a fixed order quantity and emergency orders were controlled with reorder
and order-up-to points. Both regular and emergency orders had constant lead time. Then Johansen (2019) extended
the model by assuming stochastic lead time for regular orders. Johansen (2019) also explored the impact of  using
emergency order in a periodic-review inventory system by studying many combinations of  using normal order with
emergency order and proposed a control policy that had slightly higher cost but was more practical. Akbalik and
Papine (2018) studied a single item incapacitated lot sizing problem with multi-mode replenishment and batch
deliveries. They prove that this type of  problem is NP-hard and the multi-mode replenishment is only a special case
of  the single mode problem. An algorithm was also proposed for the problem. Avci and Selim (2018) solved an
inventory problem where any stockout or delay were prevented with faster last-minute emergency order called
premium freights.  A multi-objective  simulation-based optimization  approach was developed to minimize  total
holding cost and premium freight ratios simultaneously. Chen, Zhao, Fransoo and Li (2019) studied a dual mode
system under a chance credit constraint where customers were allowed to occasionally exceed the credit limit. They
developed a simulation-optimization algorithm to determine the inventory policy and they also studied the impact
of  the chance credit constraint on the performance of  the system. Rosales, Magazine and Rao (2020) explored the
replenishing policies for a hospital inventory problem where item could be replenished via an urgent option with
higher cost. They also applied joint replenishment when items were ordered for this urgent option to provide cost
benefits. A simulation-based algorithm was used to test proposed policies. Poormoaied, Atan and van Woensel
(2022) studied a periodic-review retailer  who used a quantity-based policy  for emergency order  where it  was
triggered when the inventory level was below a certain level. An algorithm was proposed to determine policies for
both regular and emergency replenishment to minimize total expected cost.

All previous papers studying inventory systems only considered arborescent distribution systems. (An arborescent
system resembles a tree, where each location receives items only from one higher location.) However, this paper
also considers lateral  transshipment,  which relaxes the system for more flexibility  but leads to more complex
decisions. To allow lateral transshipments, locations at the same level must pool their inventories (Paterson et al.,
2011). There are two types of  pool policies: complete pooling and partial pooling. With complete pooling, items
can be freely transshipped without conditions. Conversely, with partial pooling, items are reserved for local future
demand and transshipped only when excess stock exists. Another classification of  transshipment orders concerns
their  timing. Predetermined  events  used  to  redistribute  inventories  before  demand  observation  are  proactive
transshipments.  Reactive  transshipments  occur  in  response  to  stockouts  or  potential  stockouts.  Studies  of
transshipment orders involve both single-echelon and multi-echelon structures.

Robinson (1990) developed a heuristic for multi-location, multi-period problems with transshipments. Optimal
ordering policies were determined for two special cases: two non-identical locations and any number of  identical
locations. Olsson (2015) studied a single-echelon system with two identical locations and positive transshipment
lead  times.  An  ordering  policy  was  developed  with  a  heuristic  algorithm,  separating  the  system  into  two
sub-systems, each with one retailer. The positive lead time was managed by tracking residual lead times to decide
whether to wait for an upcoming regular order or request a transshipment. Tlili, Moalla and Campagne (2012)
studied a 2-echelon system with two identical retailers and transshipments.  Demand followed an independent,
identical normal distribution. They developed an initial solution with heuristics based on simulation optimization
and used simulation for fine-tuning to the optimal solution. Tai and Ching (2014) also studied a 2-echelon system
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with  several  identical  retailers.  An  ordering  policy,  including  a  transshipment  policy,  was  developed  using  a
Markovian model.

Bhatnagar and Lin (2019) studied a multi-location system using a joint transshipment and production policy that
determines  when  a  location  should  produce  or  perform  transshipments.  Two  heuristics  were  proposed  to
determine these policies. Abbasi, Babaei, Hosseinifard, Smith-Miles and Dehghani (2020) proposed an approach to
solve a large-scale problem using machine learning models. Their approach was applied to decide on transshipment
of  blood units in a hospital network, where the model reduced costs by about 29% compared to the current policy.
Dehghani, Abbasi and Oliveira (2021) also proposed a model for blood inventory among hospitals using preventive
transshipments to avoid shortages. For a manufacturing system, Dhahri, Gharbi and Ouhimmou (2022) proposed a
transshipment policy for a system with two unreliable locations to minimize total costs (holding, backlog, and
transshipment). The policy parameters were determined by a simulation-based optimization approach. Wang and
Minner (2024) developed a deep reinforcement learning algorithm to solve a problem of  online retail with multiple
sources where customers were served by one of  many distribution centers. They also investigate that in which
situation transshipment between sources would lead to the lower cost. Zhou, Guo, Yu & Zhang (2024) developed a
multi-agent deep reinforcement learning algorithm for a two-echelon inventory system. The system serves spare
parts  to  wind farms scattering  different  areas.  Local  warehouses  are  replenished by a  central  warehouse  and
emergency transshipment is also considered.

In this paper, we study two special replenishing modes in addition to the regular replenishment. The emergency
mode places orders similar to Chiang and Gutierrez (1998) and Chiang (2001). In this mode, the inventory position
is reviewed periodically,  and both regular and emergency orders can be placed within each period. Emergency
orders have a smaller review interval. If  the warehouse cannot fulfill an emergency order, the retailer will request a
transshipment from another retailer. This transshipment utilizes a partial pooling concept, where items are only
transshipped when they are in excess. Under seasonal demand, we studied the difference between using dynamic
and static policies for these two special replenishing modes.

3. Problem Statement 
This paper investigates a two-echelon inventory system with a central warehouse supplying non-identical retailers
facing seasonal demand. It is assumed that the demand is seasonal without trend. Additionally, each period within a
fixed  cycle  experiences  demand  following  a  normal  distribution  with  unique  mean  and  standard  deviation,
consistent across cycles. All locations utilize a periodic-review base-stock policy, ordering inventory with a fixed lead
time. Retailers receive stock from the warehouse, which itself  can store items and orders from external suppliers.
Unfulfilled demand during any period is considered lost. We consider the service level as a fill rate - the proportion
of  demand served from on-hand inventory (Nahmias, 2009). Therefore, in each period, the ratio of  demand served
from on-hand inventory to period’s demand must not be lower than expected service level.

While safety stock mitigates demand uncertainties, occasional spikes can still lead to stockouts and service level
deficiencies. To address this, the system employs two additional replenishment modes:

1. Emergency Replenishment: Retailers can use this mode to expedite orders from the central warehouse.
Despite  the  shorter  lead  time,  emergency  orders  incur  higher  costs.  However,  warehouse  inventory
limitations may occasionally prevent fulfillment of  these requests.

2. Transshipment Replenishment: When emergency replenishment fails due to warehouse depletion, retailers
can activate transshipment. This mechanism facilitates peer-to-peer inventory transfers amongst retailers
on the  same echelon,  utilizing  surplus  stock  in  one location  to alleviate  shortages  in  another.  While
transshipment boasts improved lead times over emergency replenishment, the cost structure reflects the
potential  stockout  risk  incurred  by  the  supplying  retailer.  Therefore,  emergency  mode  remains  the
preferred option unless warehouse constraints dictate otherwise.

All replenishing modes operate on periodic review basis using reorder point and order-up-to point or  (R, s, S)
where review intervals for all modes are given.
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An example of  the inventory movement in the system having 3 replenishing modes can be shown in Figure 2. The
system contains a central warehouse and 2 retailers. To keep it simple, every location has 1-period lead time and
1-period review interval for a regular replenishing mode and zero lead time and continuous review for special
modes. With a 1-period review interval, a regular mode reviews inventory position at the end of  every period. If  an
inventory position reaches a reorder point during any period, an order will be placed at the end of  that period. On
the other hand, with continuous review for special replenishing modes, whenever an inventory position reaches a
reorder point, an order is immediately placed. A reorder point and an order-up-to point for a regular mode of  each
location are shown in Figure 2.

Figure 2. Inventory movement in a system with 3 replenishing modes

An order is placed as the inventory level reaches a reorder point. At the beginning of  period 1, retailer 1 reaches a
reorder point and places an order of  200 units. The inventory position immediately rises to 300 units and the
inventory level at the warehouse drops from 600 to 400 units. Afterwards, the order arrives at the beginning of
period 2.

In period 4, retailer 2 receives an order that is placed in period 3 at the beginning of  the period and demand spike
consumes items. The retailer is at risk of  stockouts, so it requests an emergency order from the warehouse. The
order depletes the inventory at the warehouse. Therefore, in the same period, when retailer 1 requests an emergency
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order afterward, the warehouse cannot satisfy an order. Consequently, retailer 1 must request a transshipment order
from retailer 2 near the end of  period 4. Details of  the policies will be discussed in the methodology section.

Besides applying special replenishing modes as shown in Figure 2, there are alternatives for these special modes.
Due to seasonal demand pattern, applying different policies for each demand period can minimize cost; however,
its complexity grows with demand volatility  (Tunc, Kilic, Tarim & Eksioglu, 2011).  This necessitates a trade-off
between  operational  simplicity  and  cost  optimization.  Addressing  this,  two  approaches  emerge  for  special
replenishment modes: static and dynamic. 

• Static policies: Employing the same ordering rule across all periods, these offer ease of  implementation
and predictable routines. However, they might underestimate the peak demand of  each seasonal demand
period.

• Dynamic policies: Tailoring order rules to each period within a cycle, these potentially achieve lower costs
by  adapting  to  demand  fluctuations.  However,  they  require  a  more  complex  design  and  ongoing
adjustments.

Both approaches rely on the fundamental reorder point and order-up-to-level mechanism for inventory control. 

We investigate how these emergency and transshipment replenishing modes can reduce stockouts and how they
affect the system. Moreover, static policy and dynamic policy are explored that which policy is preferred in different
situations.

4. Methodology 
The  policy  of  the  regular  mode  is  determined  with  the  methodology  proposed  by  Sakulsom  and
Tharmmaphornphilas (2019). Initial reorder point and order-up-to point for each location are determined with
heuristic algorithm and safety stock levels are determined with simulation to find the final policy which satisfies the
expected service level on training instances. However, under stochastic demand, a retailer could run out of  stock
which leads to demand loss. Special replenishing modes would be used to prevent shortage. In this paper, it is
assumed that reorder point and order-up-to point for the regular mode are given. The methodologies to specify
inventory policies for emergency and transshipment modes are developed.

Special replenishing modes operate on a faster timescale than regular ones, utilizing shorter lead times and review
intervals. To facilitate this, each period is subdivided into smaller sub-periods. We assume demand within each
sub-period to be a proportional fraction of  the entire period’s demand. Inventory positions are reviewed at the end
of  every sub-period for potential special orders. If  placed at the end of  sub-period j, such orders arrive at the end
of  j + leadtime and are immediately available. However, a key constraint exists: special orders can only prevent
stockouts within the period they are placed. Orders arriving in the next period are deemed ineffective and therefore
unplaced. This means, for example,  with a lead time of  one sub-period,  special  orders placed during the last
sub-period of  any period would arrive in the next period’s first sub-period. Since they would not prevent stockouts
in the original period, these orders are excluded. The details of  the special modes are as follows.

4.1. Emergency Mode

Under the emergency replenishment mode,  equation (1)  defines  the reorder point by  factoring in  anticipated
demand until the period’s end, thereby guaranteeing the desired service level. Since an emergency mode is triggered
when a location faces risk of  stockout, a dynamic policy adapts to seasonal fluctuations by having a unique reorder
point for each period in the demand’s cycle. In contrast to a dynamic policy, a static policy employs a single, fixed
reorder point throughout the cycle. To ensure adequate inventory levels and avert stockouts in every period, this
reorder point is set to match the highest value calculated for any individual period within the cycle.

(1)

where,

R1 = review interval of  an emergency mode (sub-period)
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L1 = lead time of  an emergency mode (sub-period)
x̂t = expected demand in the duration t (unit)
σt = standard deviation of  demand over the duration t
z = the z-value corresponding to the expected service level

While  emergency  replenishment  aims  to  prevent  stockouts,  it  should  not  disrupt  the  optimal  order  timing
established for the regular replenishment mode. This is because, as Sakulsom and Tharmmaphornphilas (2018)
observed, ordering the same quantity in different periods under seasonal demand can lead to varying holding costs.
Therefore, the regular order is strategically placed within the demand cycle to minimize such costs. The order-up-to
point for emergency orders is also designed with this in mind. Placing an excessively large emergency order can
potentially  delay  the  regular  order,  potentially  incurring  higher  holding  costs  due  to the  mismatch  in  timing.
Consequently,  emergency  mode  policies  carefully  balance  the  goal  of  eliminating  unsatisfied  demand  with
maintaining the smooth operation of  the regular replenishment cycle.

From a regular replenishing mode, we can calculate expected on-hand levels of  each period. For example, in Table
1, for a 4-period demand cycle, a regular order is expected in period 1 of  each cycle. The on-hand levels shown in
the table are the levels at the end of  periods. These numbers repeat cycle after cycle. Therefore, expected on-hand
levels at the end of  periods 1, 2, 3 and 4 are 1,480, 5,000, 3,800 and 2,360 respectively. Please note that the expected
on-hand levels in Table 1 are calculated based on the expected demand without considering demand’s deviation.
For a dynamic policy, if  retailer’s on-hand level reaches emergency reorder point in any sub-period, an emergency
order is placed to raise on-hand level to the expected on-hand level of  that period. Then, a regular mode can
continue with the same ordering pattern.

For a static policy, the order-up-to point is set to the lowest expected on-hand level that surpasses the emergency
reorder point, which is 1,480 in this example. The lowest level is chosen to ensure that stock replenishment without
disrupting the well-defined rhythm of  regular orders.

Table 1. An example of  regular-mode ordering policy

4.2. Transshipment Mode

When emergency replenishment from the central warehouse falls short, retailers share surplus inventory to avert
stockouts. This peer-to-peer network is activated and called transshipment. While transshipment offers a flexible
solution,  it  respects  the  delicate  balance  of  inventory  levels  across  the  network.  To avoid  creating  stockouts
elsewhere, transshipment requests are carefully calibrated to secure only the minimum necessary quantity to prevent
immediate shortfalls at the requesting retailer.  Therefore, an order-up-to point for a transshipment mode,  ST, is
calculated with equation (2). Equation (2) is like equation (1) which is used to calculate a reorder point for an
emergency mode. However, they differ in how they address review interval and lead time. To prevent stockouts, a
location  should  hold  items  at  least  equal  to  ST.  Therefore,  a  reorder  point  is  ST –  1 which  means  that  the
transshipment mode operates as (R, ST).

(2)

-569-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.7207

where,

R2 = review interval of  a transshipment mode (sub-period) 
L2 = lead time of  a transshipment mode (sub-period) 

Using the transshipment mode, we also need to decide which retailer should supply the order. We apply a partial
pooling concept that items are reserved for the local future demand (Paterson et al., 2011) to prevent stockout. The
items will be transshipped from a retailer when they are excessive. Based on a partial pooling concept, the potential
retailers are the locations where on-hand items are more than their reorder points after sending a transshipment
order. We use the following ratio in equation (3) to find the potential retailers. The potential retailers are the ones
with a ratio higher than 1. Then, the transshipping retailer is the potential retailer with the highest ratio.

(3)

where,

T = a considered transshipment order quantity (unit)

ri = ratio of  retailer i
Ii = on-hand items of  retailer i (unit)
si = a reorder point of  retailer i (unit)

4.3. An example of  Special Modes

An example of  emergency and transshipment modes is shown in Table 2. In the example, standard deviation of
demand is assumed to be 5% of  the period’s demand. Each period is divided into 4 sub-periods. The lead time for
an emergency mode is 2 sub-period and the lead time for a transshipment is 1 sub-period. A review interval for
special modes is 1 sub-period. The ordering policy for a regular mode, demand pattern and expected on-hand are
the same as in Table 1. For each period, average sub-period demand is the same. As demand of  period 1 is 880
units and standard deviation is 880 × 5% so sub-period’s demand in period 1 is  and its standard deviation

is .

Ordering policies for special replenishing modes are shown in Table 3. For an emergency mode, order-up-to points
for the dynamic policy are set to the expected on-hand level from a regular replenishment shown in Table 1. Under
the dynamic policy, reorder points are calculated every sub-period (review interval) and consider a two-sub-period
lead time. For example, in period 1, average demand during lead time and review period is x̂R1+L1 = x̂1+2 = 660 and
standard deviation is  σR1+L1 = (22) = 38.11 and a reorder point satisfying 95% service level is s = x̂R1+L1 +
zσR1+L1 = 660 + 1.64 × 38.11 = 722.54. Then, a reorder point is rounded up to 723. A static policy applies a single,
fixed reorder point and order-up-to point across all periods, selecting these values strategically: the highest reorder
point and lowest order-up-to point derived from the dynamic policy’s calculations. For a transshipment mode,
order-up-to points for the dynamic policy are determined based on equation (2) using 1 sub-period lead time and 1
sub-period review interval. Therefore, its order-up-to points are lower than the reorder points of  an emergency
mode.  Reorder points are order-up-to minus 1. A static  policy for transshipment mode applies a single fixed
order-up-to point, which is the highest order-up-to point from the dynamic policy. 

To ensure alignment with actual inventory levels, special replenishment modes initiate orders only after previously
placed orders have been received within a sub-period.  These modes base their decisions on a comprehensive
assessment of  the “inventory position,” which encompasses both the on-hand inventory physically present at the
retailer and any outstanding orders already in transit through special modes. If  the inventory position dips below or
aligns with the emergency reorder point, but remains above the transshipment reorder point, an emergency order is
triggered to replenish stock up to the emergency order-up-to point. However, if  the warehouse lacks sufficient
stock to fulfill the entire emergency order, no items are shipped at all. If  the inventory position declines further,
reaching a level at or below both the emergency and transshipment reorder points, emergency replenishment takes
precedence. Only if  an emergency order is not placed within that sub-period does transshipment become a viable
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option. Once an emergency order is successfully placed, it  elevates the inventory position above both reorder
points, effectively negating the need for transshipment within that sub-period.

Number of  Sub-periods 4 SD/Average Demand 5%

Lead Time (Emergency) 2 Expected Service Level 95%

Lead Time (Transshipment) 1 z (Expected Service Level) 1.64

Review Interval 1

Periods 1 2 3 4

Period Demand (units) 880 480 1,200 1,440

On-Hand (units) 1,480 5,000 3,800 2,360

Sub-period Demand (units) 220 120 300 360

SD (sub-period) 22 12 30 36

SD (Emergency) 38.11 20.78 51.96 62.35

SD (Transshipment) 31.11 16.97 42.43 50.91

Table 2. An example of  parameters for special replenishing modes

Periods

Dynamic Policy

Static Policy1 2 3 4

Order-up-to (Emergency) 1,480 5,000 3,800 2,360 1,480

Reorder (Emergency) 723 395 986 1,183 1,183

Order-up-to (Transshipment) 492 268 670 804 804

Reorder (Transshipment) 491 267 669 803 803

Table 3. An example of  ordering policies for special replenishing modes

4.4. Result Verification Process

To evaluate the impact of  special replenishing modes and types of  policies on inventory systems, a simulation
method is used. Test instances were generated based on assumptions of  demand such as normal distribution and
seasonal fluctuation without trend. These in stances were different in terms of  parameters including number of
periods per cycle, demand standard deviation and number of  retailers.

4.4.1. Test Instances

It is assumed that the demand is seasonal without trend within a fixed cycle of  periods and each period experiences
demand following a normal distribution with unique mean and standard deviation. In the experiment, four settings
were used: two with four-period cycles and two with seven-period cycles. Examples of  parameter settings are
displayed in Table 4. Each retailer has a unique demand pattern, as shown by the average demand per period.
Ordering costs for regular replenishment modes vary across settings. Retailers with higher ordering costs tend to
place orders less frequently than those with lower costs. For instance, settings 1 and 2 share the same demand
pattern but differ in ordering costs. Setting 2, with its lower ordering cost, results in a higher expected number of
orders per cycle. A similar pattern is observed in settings 3 and 4, where the lower ordering cost in setting 4 leads to
a higher expected order frequency.

These four settings were tested across four levels of  demand standard deviation: 5%, 10%, 15%, and 20% of  the
average demand, resulting in a total of  16 instances. While different demand deviations necessitate varying safety
stock levels and, consequently, different policies for regular modes, the ordering frequencies remain similar under
the same average period demand pattern.
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Setting

Number
of

Retailers
Periods/

Cycle

Average Demand/Period
Expected Number of

Orders/Cycle

Retailer 1 Retailer 2 Retailer 3 Warehouse R1 R2 R3

1
2 4

880, 480, 1200,
1440

880, 1840, 2400,
2880

1 1 1

2 880, 480, 1200,
1440

880, 1840, 2400,
2880 2 3 2

3
3 7

107, 101, 111,
109, 76, 142, 54

242, 269, 263,
281, 184, 106, 55

458, 344, 396,
452, 295, 611,244

2 1 1 7

4 107, 101, 111,
109, 76, 142, 54

242, 269, 263,
281, 184, 106, 55

458, 344, 396,
452, 295, 611,244 7 7 1 7

Table 4. Parameters of  each setting

4.4.2. Simulation Process

With test instances, a simulation method is used to evaluate impact of  emergency and transshipment modes on the
system under the conditions of  applying static and dynamic policies. Demand lost sale is collected from these
conditions. Total cost of  inventory system and other variables such as number of  special and regular orders and
service level are collected as well.

All instances were tested under a 95% service level. The regular replenishment mode has a lead time of  one period,
and its inventory levels are reviewed at the end of  each period. For the special replenishment modes, each period is
divided into four sub-periods, with inventory levels reviewed at the end of  every sub-period. The emergency mode
has a lead time of  two sub-periods, while the transshipment mode has a lead time of  one sub-period. Each policy
for special  modes was tested on a  10,000-period-horizon instance,  corresponding to 40,000 sub-periods. The
system makes decisions to place an order based on the algorithm shown in Figure 3.

1. procedure Simulation
2. I: On-hand inventory
3. Om: oncoming order via replenishing mode m
4. Sm: reorder point of  replenishing mode m
5. R: regular mode, E: Emergency mode, T: Transshipment mode
6. for each period in horizon do
7. warehouse receives and decides to place order
8. for each retailer do
9. receive regular order
10. if  I + OR ≤ SR do
11. place regular order 
12. for each sub-period in period do
13. realize demand
14. if  I + OE ≤ SE do
15. if lead time <= remaining sub-period do
16. Emergency order placed
17. if  I + OE + OT ≤ ST do
18. if lead time <= remaining sub-period do
19. if potential retailer exists
20. Transshipment order placed
21. if  I ≥ demand do
22. I ← I – demand, lost ← 0
23. else 
24. I ← 0, lost ← demand – I
25. TotalLost ← TotalLost + lost
26. calculate TotalCost
27. return TotalLost, TotalCost

Figure 3. Algorithm for Simulation
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5. Result and Discussion

While increasing safety stock can mitigate unsatisfied demand, it often comes at the expense of  higher holding
costs. Special replenishing modes offer a promising alternative to achieve this balance. These methods strategically
transfer  items within a  system to meet  demand,  effectively  reducing  unsatisfied periods  without  necessitating
additional inventory storage. We investigate that how the special modes can reduce lost sale and how they affect the
inventory  system.  As  mentioned,  the  algorithm  used  for  a  regular  mode  was  adopted  from  Sakulsom  and
Tharmmaphornphilas  (2019).  Therefore,  the  result  for  a  system with  no special  mode is  obtained from this
algorithm.

5.1. Reducing Lost Sale and Safety Stock with Special Modes

Initially, the regular replenishment policy was applied to all problems. Although a 95% service level was attained on
average, maximum lost sales remained concerning, reaching 14% of  demand per period (Figure 4). However, the
introduction of  special replenishment modes, specifically emergency and transshipment, effectively mitigated lost
sales, with the maximum dropping to 0%, regardless of  whether static or dynamic policies were used for the special
modes. This improvement came with a minor increase in holding costs of  around 0.5% to 0.6%. 
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Figure 4. Maximum period’s lost sale of  the system without special modes

We investigated how different safety stock levels affect the number of  special orders. However, as there are two
types of  policies for special modes (static and dynamic), we observed the number of  special orders under each
policy. When comparing static and dynamic policies, factors to consider are the ratio of  special orders to regular
orders, as depicted in Figure 5. The ratio of  the number of  special orders from a dynamic policy to regular orders is

calculated as , and the ratio of  the number of  special orders from a static policy

to regular orders is calculated as .

Figure 5 reveals that both RDynamic and RStatic decline as safety stock increases. This trend holds true for both static and
dynamic policies. However, a crucial difference emerges - the dynamic policy consistently triggers fewer special
orders compared to the static policy. Therefore, when the system’s holding cost outweighs the ordering cost of
special modes,  strategically reducing safety stock and relying on special orders to address stockouts becomes a
compelling option, particularly with a dynamic policy.
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Figure 5 also depicts the outcome of  decreased safety stock for retailers in the 4-period instances outlined in Table
4. We represent safety stock as a ratio to cycle demand. For instance, a safety stock of  40% for a cycle demand of
1,200 units translates to 480 units. This study employed various expected service levels below 95% (namely, 90%,
85%, and 80%). These lower levels facilitated reduced safety stock, while special mode policies still aimed for a 95%
service level. As expected, lower service levels lead to decreased safety stock but increased RDynamic and RStatic.

Furthermore, settings 1 and 2 in Figure 5 represent anticipated order frequencies per cycle. Setting 1 expects only
one order per cycle, whereas setting 2 anticipates two or three. This divergence results in differing safety stock levels
across the settings. Notably, instances in setting 1 have safety stock ranging from 50% to 60% of  cycle demand,
while those in setting 2 exhibit a lower range of  30% to 40%.
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Figure 5. Safety stock levels vs ratio of  number of  orders

Figure 6 shows average actual service level and holding cost reduction when lowering target service levels from
95% to 90%, 85%, and 80%. Figure 6a presents results from setting 1, which anticipates only one order per cycle,
while Figure 6b displays results from setting 2, which expects two or three orders. In Figure 6a, utilizing lower safety
stock also contributes to a holding cost reduction of  up to 2.0% for setting1-instances (refer to the bar chart on the
left vertical axis). In Figure 6b, the holding cost reduction can reach up to 5% for setting2-instances.

However, when safety stock is lowered without special modes, actual service levels can decline to as low as 76% (see
the line chart on the right vertical axis). Conversely, with special modes in place, the actual service level can reside
within the range of  96% to 100% for setting1-instances and achieve 100% for setting2-instances. Therefore, special
modes offer the potential to reduce holding costs while concurrently upholding high actual service levels.

5.2. Comparison Between Emergency and Transshipment Modes

The  presence  of  two  distinct  special  modes,  emergency  and  transshipment,  motivates  our  focus  on  their
relationship with demand deviation. Figure 7 reveals a declining trend in the number of  both emergency and
transshipment orders as demand deviation increases. This decrease can be attributed to two key factors:  higher
safety stock levels and the expected number of  orders per cycle.

Under conditions of  higher demand deviations, retailers naturally maintain larger safety stocks at each location.
This larger buffer reduces the risk of  stockouts and, consequently, the need for emergency orders.  Additionally,
instances with a higher expected number of  orders per cycle, as defined in Table 4, tend to generate more special
orders overall. This relationship is clearly visible in settings 1 and 2, where instances 1 to 4 with a lower expected
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order frequency exhibit fewer special orders compared to instances 5 to 8 in setting 2 with a higher frequency.
Furthermore, we observed that special orders often occur just before a new order arrives, particularly when a
retailer’s on-hand inventory is low and the risk of  stockouts is high. Since instances in setting 2 have more frequent
regular orders compared to setting 1, they naturally experience a higher incidence of  special orders. This trend also
holds true for instances 9 to 16.

Figure 6. Average actual service level and holding cost reduction at different expected service levels.

Figure 7. Number of  orders from special modes

When comparing static and dynamic policies, the number of  emergency orders under static policies is 60% greater
than  under  dynamic  policies. The  number  of  transshipment  orders  is  typically  lower  than  the  number  of
emergency  orders  because  the  system  prioritizes  the  emergency  mode  over  the  transshipment  mode. A
transshipment order is only triggered under two conditions: either when an emergency order cannot be placed due
to the warehouse being unable to fulfill it, or when the emergency order cannot be delivered on time during the last
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sub-period.  To analyze this  relationship, we calculate the ratio of  the number of  transshipment orders to the
number of  emergency orders as .

Figure 8 displays the ratio for each instance. Notably, the average ratio under dynamic policies is 18%, which
contrasts significantly with the 5% observed under static policies. This difference arises from a higher prevalence of
emergency orders in static policies, leading to a lower ratio compared to dynamic policies. Interestingly, the ratio
tends to increase as demand deviation increases in dynamic policies. This can be explained by the fact that, while
both emergency and transshipment orders decrease under high demand deviation,  the  number of  emergency
orders decreases at a faster rate.
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Figure 8. Ratio of  number of  transshipment orders to emergency orders

5.3. Choosing between Static and Dynamic Policies
5.3.1 Based on Demand Deviation and Length of  Cycle

When choosing between a static and dynamic policy, a crucial factor to consider is the ratio of  special orders to
regular orders, as depicted in Figure 9. The ratios of  the number of  special orders from both dynamic and static
policies to regular orders are calculated using the same methodology described in section 5.1.  The differences
between static and dynamic policies are more pronounced in 7-period instances compared to 4-period instances.
This is because static policies utilize only a single policy for each special mode, regardless of  the period within the
cycle, whereas dynamic policies employ distinct policies for each period and each special mode. Consequently, the
longer the cycle, the greater the divergence between the outcomes of  static and dynamic policies.

Therefore, based on the findings presented in Figure 9, under conditions of  high demand deviation and short
demand cycles, a static policy can potentially serve as a viable substitute for a dynamic policy.

5.3.2. Based on Levels of  Demand Fluctuations within a Cycle

Seasonal demand exhibits cyclical fluctuations, following a pattern that repeats itself  cycle after cycle. While the
average demand within a cycle can remain consistent, the degree of  fluctuation may vary. For example, consider a
demand cycle with four quarters and a total average demand of  400 units. This demand could be distributed in
various ways,  such as:  a)100 units  per quarter  (uniform demand),  b)  80,  120,  100,  and 100 units  per quarter
(moderate fluctuation), and c) 60, 140, 80, and 120 units per quarter (high fluctuation).
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Figure 9. Ratio of  number of  special orders to regular order

Each of  these patterns has the same total cycle demand but differs in the degree of  fluctuation around the cycle’s
average demand. With a total demand of  400 units and four quarters, the average quarterly demand is 100 units.
Therefore,  pattern a)  has no fluctuation,  as demand remains constant  at  100 units  per quarter,  while  pattern
c) exhibits the highest fluctuation, with significant deviations from the average in each quarter.

This study investigates the impact of  different levels of  demand fluctuation within a 4-period cycle. The higher the
fluctuation, the greater the extent to which individual periods deviate from the average cycle demand. To illustrate,
if  the average quarterly demand is 100 units, a period with demand of  70 or 130 units would represent a 30%
fluctuation. Figure 10 showcases 4-period demand patterns for two retailers, with average fluctuations ranging from
0% to 30%.
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Figure  11  illustrates  a  trend  of  increasing  special  mode  orders  as  demand  fluctuation  decreases,  observed
consistently across both setting 1 and setting 2. This phenomenon arises from a corresponding decrease in safety
stock as fluctuation diminishes, leading to a heightened risk of  stockouts. However, the dynamic policy consistently
demonstrates a lower number of  special orders compared to the static policy, with the gap between the two policies
narrowing as fluctuation decreases. This gap measures approximately 2% for setting 1 and approximately 5% for
setting 2.  Notably, when demand fluctuation is entirely absent (0%), the dynamic and static policies exhibit no
discernible difference, as the dynamic policy effectively functions as a static policy with a single set of  ordering
policies.

Therefore, under conditions of  low demand fluctuation, a static policy is generally favored due to its ease of
implementation. However, in scenarios characterized by high demand fluctuation, a dynamic policy can potentially
yield lower ordering costs, presenting a trade-off  between its complexity and potential cost savings.
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Figure 11. Number of  orders from special mode at different fluctuation

6. Conclusion
Emergency  and  transshipment  modes  are  categorized  as  special  modes  designed  to  prevent  stockouts. Our
experiment demonstrates that implementing special modes can  effectively reduce lost sales, albeit at the cost of
slightly increasing the holding cost for each instance. However, the benefit extends beyond just sales: special modes
also offer the ability to maintain service levels even when safety stock is reduced. Therefore, allowing special modes
to handle stockouts and minimizing safety stock emerges as a viable strategy for lowering holding costs.

The number of  special orders tends to be lower under conditions of  higher demand deviation due to the increased
safety stock levels. Conversely, under demand settings where the regular mode places orders frequently, retailers are
more prone to stockouts, consequently triggering more special orders. This increased risk arises because frequent
regular orders often deplete on-hand inventory down to the reorder point, making stockouts more likely.

Two primary policies are considered for special replenishing modes: 1) Static policy applies a single policy across all
periods in the demand cycle, offering ease of  implementation and 2) dynamic policy employs different policies for
each period within the cycle, potentially yielding better results but requiring more complex implementation.

Due to the system’s prioritization of  emergency mode over transshipment mode, the number of  transshipment
orders is approximately 18% of  emergency orders under dynamic policies and 5% under static policies. This ratio
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tends to increase in scenarios with higher demand deviation. While both emergency and transshipment orders
decrease under high demand deviation, the decrease in emergency orders occurs at a more rapid pace.

Deciding between a static and dynamic inventory policy is  not a singular, predetermined course of  action.  This
decision involves a trade-off  between the simplicity of  a static policy and the potential cost savings of  a dynamic
one, dependent on three key factors: cycle length and demand deviation in each period and demand fluctuation
within each cycle.

In shorter  cycles,  the benefits  of  diversification offered by  dynamic policies  diminish.  Static  policies  become
preferable due to their simplicity and reduced risk of  implementing an unsuitable policy for a limited timeframe.
Conversely, higher demand variability requests increased safety stock, which, surprisingly, can translate to fewer
special orders, especially for static policies. Interestingly, in scenarios with both high demand variability and short
cycles, the gap between the special order frequencies of  static and dynamic policies shrinks. This suggests that, in
such situations,  static  policies can emerge as practical  alternatives,  offering ease  of  implementation without  a
significant cost penalty. 

Demand seasonality also plays a crucial role in determining the optimal policy. Generally, dynamic policies generate
fewer orders than static policies. This difference widens further when seasonal demand exhibits high fluctuations.
Conversely, when seasonality is absent, both policies yield the same number of  orders. Therefore, for scenarios with
low demand fluctuation, a static policy is often preferred due to its ease of  implementation. However, in the face of
high demand fluctuation, a dynamic policy can offer lower ordering costs, albeit at the cost of  increased complexity.

While this paper focuses on a 2-echelon system under seasonal  demand, removing several  limitations offers
fruitful avenues for future research. 1) unit-size replenishment: this paper considers only replenishing policies
with a unit size of  items. However, practical systems often implement batch-size constraints, which could even
differ  between  the  warehouse  and  retailers.  Analyzing  the  system’s  performance  under  various  batch-size
scenarios would provide valuable insights. 2) stochastic lead times: further research could explore how the system
performs when each  location faces  stochastic  lead times,  introducing  an element  of  real-world  uncertainty.
Investigating  the  impact  and  potential  mitigation  strategies  for  such  variability  would  be  highly  valuable.
3) capacitated  space:  real-world  systems  often  have  capacity  constraints  at  both  the  warehouse  and  retail
locations.  Developing  ordering  policies  and  optimization  strategies  for  such  systems would be  a  significant
contribution to practical inventory management.
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