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Abstract:

Purpose: Cloud manufacturing (CM) represents a new manufacturing paradigm that integrates distributed
resources to provide on-demand services. The high consumer demand from various locations, coupled
with the customizability and complexity of  manufacturing, complicates task scheduling. In this context, 3D
printers  are  crucial  as  innovative  manufacturing  technologies  with  significant  potential  in  producing
complex and custom products. Scheduling in CM falls under the non-deterministic polynomial time-hard
category, where tasks must be scheduled and distributed rapidly. Considerations of  distance, minimization
of  delays, and makespan become critical variables that must be considered. This research aims to schedule
and distribute tasks in CM using the non-dominated sorting genetic algorithm II (NSGA-II) to minimize
delays, reduce makespan, and decrease costs.

Design/methodology/approach: NSGA-II is employed to tackle the complexities of  scheduling in CM.
The strength of  NSGA-II lies in its ability to determine optimal and efficient solutions for multiobjective
problems. Tasks originating from requests at various locations are adjusted based on material parameters
and dimensions and then distributed to providers while considering aspects such as delay minimization,
makespan, and cost.

Findings: The optimization results using NSGA-II demonstrate effective and efficient task distribution to
providers. Across the four tested task distribution scenarios, the average computational time required was
5.59 seconds. Pareto analysis indicates a trade-off  between various objective functions. Solutions with short
distances tend to have increased maximum time and delays.

Originality/value: NSGA-II is effective for task distribution with multiobjective considerations. Not all
three  objective  functions  can  be  optimized  simultaneously,  given  the  trade-offs  between  distance,
maximum time, and lateness. The priority of  the objective functions should be determined to achieve
optimal results. If  minimizing lateness is most important, the focus should be on points with low lateness
values. Further development can be done by modifying the Pareto front to make data-driven decisions that
consider these trade-offs.

Keywords: cloud manufacturing, additive manufacturing, 3D printer, scheduling, non-dominated sorting genetic
algorithm II
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1. Introduction
Cloud manufacturing (CM) represents a collaborative concept involving geographically distributed resource owners,
operators, and demanders connected through information technology (Baumann & Roller, 2017). CM is a new
manufacturing  paradigm  driven  by  consumer  needs,  integrating  distributed  resources  to  provide  on-demand
services (Li, Zhang, Liao & Liu, 2019). The concept and framework introduced in 2009 by Li, Zhang, Wang, Tao,
Cao Jiang et al. (2010) are anticipated to transform the future landscape of  the manufacturing industry (Adamson,
Wang, Holm & Moore, 2017). This concept has garnered substantial attention, resulting in numerous publications
covering discussions on the concept, architecture, and implementation of  CM (Ghomi, Rahmani & Qader, 2019;
Lim, Xiong & Wang, 2021).

In  practical terms, CM enhances a company’s flexibility through information technology, fostering collaboration
among network elements (Schumacher, Erol & Sihn, 2016). CM responds to rapidly changing market needs and
creates broader opportunities for cooperation (Ren, Zhang, Wang, Tao & Chai, 2017). Geographically distributed
elements connect through a cloud network, becoming shared resources tailored to demand throughout the product
lifecycle (Ren, Zhang, Tao, Zhao, Chai & Zhao, 2015).

Manufacturing resources have become a vital element in CM. Additive manufacturing (AM), commonly known as
3D  printing  (3DP),  is  a  promising  manufacturing  technology  that  aligns  with  CM’s  operational  mode  as  a
manufacturing resource (Ren et al., 2015). 3DP can produce highly complex and personalized products (Pereira,
Kennedy & Potgieter, 2019). Its potential extends to creating products unattainable through conventional processes
and expanding 3DP technology applications from manufacturing and aerospace to social, cultural, biomedical, and
construction  industries  (Calignano,  Manfredi,  Ambrosio,  Biamino,  Lombardi,  Atzeni  et  al.,  2017;  Ismianti  &
Herianto, 2018). These advantages position 3DP as a key player in CM (Dilberoglu, Gharehpapagh, Yaman &
Dolen, 2017).

While technology has supported CM’s development, challenges persist in advancing virtualization, servitization, and
scheduling technologies (Lim, Xiong & Lei, 2020). Scheduling in the CM system is a crucial issue (Liu, Zhang,
Wang, Xiao, Xu & Wang, 2019), directly affecting production efficiency and manufacturing system costs (Zhang,
Ding, Zou, Qin & Fu, 2019). The scheduling process involves allocating resources/services for tasks, dispatching
tasks to resources/services, monitoring, controlling, optimizing resource/service status, and executing tasks to meet
individual demanders’ needs.

CM  scheduling  exhibits  the  characteristics  of  complexity  and  non-deterministic  polynomial  time  (NP)-hard
categories (Lin & Chong, 2017). In computational complexity theory, decision problems fall into the NP class,
indicating non-deterministic polynomial time. CM, supporting dynamic system growth through a pay-as-you-go
approach, introduces scheduling complexity (Liu, Wang, Wang, Xu & Zhang, 2019). Complexity arises from specific
individual needs and complex task structures in cloud-based manufacturing. In this context, the coordination and
synchronization  of  complex  activities  becomes  crucial,  especially  in  grouping  resources  with  high  flexibility
(Akbaripour, Houshmand, van Woensel & Mutlu, 2018).

Providers in CM, serving as resource service providers,  receive tasks from both internal  and external sources
(cloud) (Wang, Lin, Zhong & Xu, 2019). Internal tasks are typically ongoing and predictable, unlike external orders
from the cloud, which are often unpredictable. This condition poses a challenge in managing efficient scheduling, in
which all tasks must be completed on time per deadlines set by demanders. Given these conditions, investigating
and understanding scheduling issues in the CM environment is crucial.

This study aims to identify a scheduling system solution capable of  effectively and efficiently managing multiple
tasks, minimizing makespan delays, and considering nearest distance selection as a cost minimization solution. The
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multiobjective minimization of  makespan, delay, and distance has yet to be explored. The anticipated results will
enhance the efficiency and effectiveness of  CM for academic publication purposes.

2. Related Work
Cloud AM (CAM) is a concept in which manufacturing resources, primarily AM machines, are integrated into a
cloud-based manufacturing system. CAM frameworks typically involve interactions between requesters, operators,
and providers. Scheduling in a CAM system is an essential issue so that the system can run effectively and efficiently
(Halty, Sánchez, Vázquez, Viana, Piñeyro & Rossit, 2020). In the scheduling process, task resource allocation is
carried out, followed by monitoring, controlling, and optimizing the status of  resources and task execution to meet
demand requirements. Figure 1 provides a comprehensive overview of  the scheduling process in a CAM system.

Various scheduling optimization efforts have been developed, as described by Rashidifar, Bouzary and Chen (2022),
and Rad and Behnamian, (2022) use diverse approaches, including metaheuristics (53%), artificial intelligence and
machine learning (14%), game theory (13%), exact methods (10%), and other approaches (10%). Furthermore,
Rashidifar  et al.  (2022) mentioned the utilization of  metaheuristic algorithms as follows: genetic algorithm (GA)
(44%), particle swarm optimization (PSO) (11%), ant colony optimization (ACO) (11%), bat algorithm (6%), and
others (28%). 

Figure 1. Procedure for scheduling cloud manufacturing reproducing (Liu, Wang, et al., 2019) 

In  general,  the  primary  objectives  of  scheduling  are  minimizing  makespan,  minimizing  costs,  and  increasing
utilization and total flow time (Rad & Behnamian, 2022). Rad and Behnamian, (2022) classified their studies, with
approximately 75% opting for single  objectives,  whereas the remaining discussed multiple objective functions.
Research with multi-objective functions is carried out to optimize solutions for the main scheduling objectives.
Table 1 provides a comprehensive overview of  job scheduling optimization models in CAM, documented from
various scientific sources. Various optimization designs have been developed to schedule machines and distribute
tasks according to predetermined cost  objectives,  load balancing between printers,  total delay,  and number of
components required. unprinted, using multiple identical fused deposition modeling, including computational time
and modifying tabu search for scheduling optimization to minimize turnaround time and order costs.

A comprehensive review of  NSGA-II for multi-objective combinatorial optimization problems was conducted by
Verma,  Pant  and Snasel  (2021),  highlighting  its  suitability  for  finding  efficient  or  near-optimal  solutions.  Its
robustness and effectiveness have made NSGA-II a widely applied multi-objective evolutionary algorithm across
various  scheduling  problems.  Multi-objective  evolutionary  algorithms  face  challenges  such  as  computational
complexity, non-elitist approaches, and the need to define sharing parameters; however, NSGA-II can effectively
overcome these issues (Deb, Pratap, Agarwal & Meyarivan, 2002). NSGA-II has been effectively applied to solve
scheduling problems in flexible multi-objective job-shop models. The NSGA-II algorithm with an adaptive design
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optimizes scheduling settings for aerial materials. This adaptive design enhances the resolution of  optimal solutions
and ensures more  accurate scheduling (Shang,  2022).  An independent  population elitism retention strategy  is
adopted  to prevent  the  loss  of  optimal  solutions  (Zhang,  2022),  distinguishing  NSGA-II  from other  similar
algorithms. NSGA-II emphasizes its effectiveness in solving bi-objective and tri-objective problems relevant to
multi-task scheduling (Rahimi, Gandomi, Deb, Chen & Nikoo, 2022) and is even suitable for complex scheduling
scenarios (Zhang, 2022).

References Objective Function Machine Algorithm

Ransikarbum, Ha, Ma & Kim, 2017 Min. latency and cost Multiple identical CPLEX

Kim, Park & Kim, 2017 Min. makespan Multiple identical GA

Li, Kucukkoc & Zhang, 2017 Min. Production cost Multiple identical CPLEX

Fera, Fruggiero, Lambiase, Macchiaroli
& Todisco, 2018 Min. adv./late. & cost Multiple identical GA

Chergui, Hadj-Hamou & Vignat, 2018 Min. total tardiness Multiple identical Heuristic

Zhou, Zhang, Laili, Zhao & Xiao, 2018 Opt. supply-demand and delivery
times

Multiple non-identical Simulation

Dvorak, Micali & Mathieu, 2018 Min. Tardiness, min makespan Multiple non-identical Local search

Wang, Zheng, Xu, Yang & Zou, 2019 Max. utilization rate Multiple identical Computer vision

Li, Zhang, Wang & Kucukkoc, 2019 Max. profit Multiple identical Heuristic

Kapadia, Starly, Thomas, Uzsoy & 
Warsing, 2019 Mini. makespan Multiple identical GA

Zhou, Zhang, Ren & Wang, 2019 Min. Delivery time Multiple identical GA

Altekin & Bukchin, 2022 Min. makesspan and cost Multiple non-identical MILP

Kucukkoc, 2019 Min-max lateness Multiple non-identical GA

Oh, Zhou & Behdad, 2020 Min. cycle time Multiple non-identical Heuristic 

Fera, Macchiaroli, Fruggiero & 
Lambiase, 2020 

Min. cost, earliness & tardiness Single Tabu search

Ransikarbum, Pitakaso & Kim, 2020 Min. cost, Max load balance, min
total tardiness Multiple non-identical MILP & AHP

Aloui & Hadj-Hamou, 2021 Min. makespan Multiple non-identical MILP

Ying, Fruggiero, Pourhejazy & Lee, 
2022

Min. time/cost Multiple identical AIG

Hu, Che & Zhang, 2022 Min. makespan Multiple non-identical MILP

Rohaninejad, Tavakkoli-Moghaddam, 
Vahedi-Nouri, Hanzálek & Shirazian, 
2022

Min. makespan and the total
tardiness penalty Multiple non-identical NSGA II – K-

Means – ANN

This research Min. delays, makespan, and cost. Multiple identical NSGA-II

Table 1. Summary of  3D printing scheduling research based on the algorithm and objective function

NSGA-II has been employed in various scheduling contexts, including distributed computing systems (Ambekai,
2022), just-in-time single-machine scheduling (Kurniawan,  Irman, Febianti, Kulsum, Herlina, Ilhami  et al., 2021),
and  low-carbon,  flexible  job-shop  scheduling  (Seng,  Li,  Fang,  Zhang  &  Chen,  2018).  These  applications
demonstrate the versatility and effectiveness of  the algorithm in various scheduling domains. Wang, Zhang, Liu and
Gao (2022) applied NSGA-II to schedule  machines with varying numbers of  jobs  using non-3DP machines.
However, one limitation of  the method proposed in this research is that it does not account for varying user
preferences, such as matching quality in multi-user-oriented SPM models, potentially restricting its ability to meet
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the needs of  diverse users. Rohaninejad et al. (2022) investigation of  scheduling problems in parallel but not-
identical clustered 3DP systems and the overall delay penalties. NSGA-II combined with a novel learning-based
local search methodology that integrates a K-means clustering algorithm and artificial neural networks. NSGA-II
hybrid effectively solving the scheduling optimization problem with two objective functions.

This  research  aims  to  develop  a  scheduling  system  using  NSGA-II,  focusing  on  three  objective  functions:
minimizing makespan, costs, and delivery delays by selecting the shortest path between requester and provider. The
prevailing rule is  that  printing costs are calculated based on the weight  or  length of  the  resin used,  thereby
employing cost minimization in this research to achieve the shortest shipping costs.

In enhancing the functionality  of  a CAM system, it  is  crucial  to consider technical  design support to ensure
effective and efficient machine scheduling and distribution. The connectivity between the cloud platform and the
device  is  significant.  Static  information  provides  data  regarding  the  3DP machine’s  status,  including  printing
accuracy, available print space, supported document types, material types, and colors of  the printer type. Dynamic
information includes data about the printer’s operational status (online/offline), error rates, and error types (Luo,
Zhang, Ren & Lali, 2020). Moreover, collaboration between edge cloud and the Industrial Internet of  Things
enhances system effectiveness by reducing data transmission latency and leveraging artificial intelligence  for the
further development of  CAM systems (Zhang, 2022).

3. Problem Definition
The system under study involves two main actors: the demander (D i) and the provider (Pri). The demander, as an
entity requiring 3DP services, is responsible for uploading G-code files into the system. The uploaded information
encompasses the product’s material, dimensions, the demander’s location, and the desired deadline. In contrast, the
provider is a service provider offering 3DP manufacturing resources. The necessary data from the provider include
the location of  the manufacturing resource, the type of  3DP machine used, available materials, dimensions of  the
3DP bed, and the machine’s precision level.  In this study, we assume the following: All operational parameters,
including setup time, processing time, and demand, are deterministic. During the printing process, no interruptions,
including maintenance and/or  downtime,  are  considered.  The processing  time and completion  time of  parts
depend on their specifications, but the choice of  machine does not affect the completion time. The settings of  the
3D printing machine parameters are assumed to be identical

The selected data will  undergo processing using the NSGA-II, after which the system will  distribute tasks to
providers (Figure 2). It illustrates the stages of  task distribution from the demander to the provider. Incoming tasks
are matched with the materials provided by the provider and adjusted according to the product dimensions and the
dimensions of  the 3D printer.  Then, the system schedules the tasks by considering three objective functions:
distance minimization, lateness, and makespan. Afterwards, the tasks are distributed to the providers based on the
optimization results.

Figure 2. Matching rules, scheduling, and task distribution
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Di uploads several tasks, which will be matched with the 3DP type offered by Pr i depending on the material type
(M) and product parameters. The scheduling of  a set of  activities that have been matched will be done on a 3DP
system by considering the  minimizing of  distance,  latency,  and makespan.  Di can upload multiple  tasks (Ti,j)
simultaneously. Meanwhile, a Pri may have more than one 3D printer (Si,j) to offer its services. In situations with
multiple simultaneous tasks (Ztij), the system will schedule and distribute these tasks to printers (Pr i,j) that are not
currently  used.  Each actor  in  this  system has  a  specific  location  point  determined  by  latitude  and longitude
coordinates. The demander’s location is marked as (la, lo), whereas the provider’s location is also denoted by (La, Lo).
The  distance  estimation  depends  on  the  proximity  of  the  given  coordinates.  Table  2  shows  more  detailed
information regarding this system.

Symbols Keterangan Symbols Keterangan

C Makespan β Cost factor shipping costs

Si Selected service Di Demander (consumer)

Pri Providers lo Longitude demander

Lo Longitude provider la Latitude demander

La Latitude provider xij Maximum product length

Xi Maximum length of  the printer table yij Maximum product width

Yi Maximum width of  the printer table zij Maximum product height

Zi Maximum height of  the Printer m Selected materials Di

M Materials provided Pri Ti,j Tasks

St Warming up time Ztij Number of  tasks

Sc Cooling time Pc Printing costs

Pt Printing time wi Product weight of  the slicer

pp Post-processing time ci Completion time

Ni Number of  3D Prints di Due date

Q The demander bears the costs bij Delivery time

α The cost factor of  printing costs gi Delivery time

u Handling fees Gi,j Distance between Di dan Pri

Table 2. Notations and description

3.1. Model Size

The product size to be printed is a critical attribute in cloud-based 3DP services. The maximum size permissible for
the selected service, denoted as Si, must not be smaller than the model size of  the task’s 3DP, represented by Ti,j.
This concept is articulated in Equations (1), (2), and (3). Additionally, before scheduling, material matching must be
performed between providers (Mi) and demanders (mi).

(1)

(2)

(3)
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3.2. Total Cost

Each service provider has the autonomy to set their own printing costs. To assist customers, operators may provide
a general cost reference in line with industry standards. Typically, the cost of  printing is determined based on the
selected material type and the material’s cost per unit weight, as outlined in Equation (4). The printing cost (Pc) is
derived from the material weight, which is determined by slicer software. The calculation considers the specific
material being used, followed by the associated cost factor. In addition, shipping costs are calculated based on the
geographical distance between the customer and the provider. This distance is determined using the latitude (la) and
longitude (lo) coordinates of  both the customer and the provider, as detailed in Equation (6).

(4)

(5)

(6)

3.3. Optimization

The objective of  this study is to minimize the makespan and reduce lateness by calculating the distance between the
demanders and the providers. Minimizing makespan (minC) is achieved by minimizing the maximum makespan
(Cmax). Completion time (ci) is the accumulation of  the entire printing process time. The function for minimizing
the makespan is presented in Equation 7. Equation 9 provides a mathematical formula for calculating the delay,
considering the distance factor. Concurrently, the distance considered is the shortest between the claimant and the
provider, as outlined in Equation 10.

(7)

(8)

(9)

(10)

4. Methods 
NSGA-II, which is widely recognized as a prominent GA for multiobjective optimization,  excels in identifying
numerous potential trade-off  solutions, collectively referred to as the Pareto front, within a single run of  the
simulation. The core characteristics of  NSGA-II encompass dominance-based sorting, crowd density assessment,
selection, crossover, mutation, and a distinctive emphasis on elitism. A notable aspect of  NSGA-II is its explicit
preservation of  the population’s superior members across generations, ensuring the retention and continuity of
high-quality solutions.  This approach is instrumental in maintaining a robust parameter setting, as illustrated in
Figure 3.
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Figure 3 provides a comprehensive depiction of  the NSGA-II algorithm’s flow. The process begins by initializing a
population  randomly,  which  is  subsequently  assessed  according  to  the  objective  function.  Subsequently,  the
estimated population  is  organized  according  to  non-sequential  dominance,  wherein  Pareto  ideal  solutions  are
discerned from the rest. Subsequently, a calculation of  crowd distance is executed in order to preserve genetic
diversity. First, individual selection is carried out, and then crossover and mutation processes are applied to produce
a new generation.  The present  population and its  progeny are  merged,  and the  procedure of  non-sequential
selection and crowd distance is iterated to choose the succeeding generation. This process continues until specific
termination requirements are satisfied, such as achieving a predetermined number of  generations or converging
solutions. Ultimately, the algorithm produces a Pareto optimal solution, which is then designated as the output. The
iteration continues until  the specified stopping criterion is met, and the resulting output is the Pareto optimal
solution.

Figure 3. Flowchart of  non-dominated sorting genetic algorithm II

5. Experiment 
5.1. Scheduling

Scheduling involves planning and managing the time to complete a designated set of  tasks or activities. In addition,
management is responsible for allocating tasks to  providers based on their objective functions. To facilitate this
scheme, we presented a comprehensive CAM architecture in Figure 4. Efficient scheduling and the distribution of
tasks are achievable with adequate technological support. As depicted in Figure 4, an adapter links the 3D printer
and the cloud platform. A modified Raspberry Pi 4 was utilized as the adapter in this CAM system. This device can
extract data from 3DP activities to gather static information, such as 3DP status, as well as dynamic information.
This includes monitoring the printer’s working mode (online/offline status) and recording any system failures.
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5.2. Case Study

NSGA-II is an algorithm extensively utilized in multiobjective optimization. It introduces a highly efficient and
effective sorting mechanism and the concept of  crowding distance as a measure of  solution density in objective
space. This approach helps preserve diversity within the population. NSGA-II implements the principle of  elitism,
ensuring  that  the  optimal  solutions  from  the  previous  generation  are  automatically  applied  to  subsequent
generations, thereby enhancing the algorithm’s capability to sustain high-quality solutions. The pseudocode for the
NSGA-II algorithm is presented in Table 3.

Figure 4. Cloud additive manufacturing architecture

1. : input: n/ POPULATION_SIZE
2. : class item: Name attribute, dimension, value, latitude, and longitude
3. : printer Class: Attribute name, capacity, latitude, longitude, time spent, item has, and time series
4. : printerValue(individual):

Calculating total distance, total lateness, and maximum time based on item assignments to printers 
using great_circle to measure the distance between item locations and printers

5. : custom_cx(ind1, ind2): 
Applying crossover to two individuals by exchanging parts of  their solutions

6. : custom_mutation(individual, indpb): 
Applying mutation to an individual by randomly changing printer assignments

7. : Utilizing the NSGA-II algorithm for selection, crossover, and mutation
8. : Selection is based on non-dominated sorting and crowding distance
9. : For each generation up to MAX_GENERATIONS:

Evaluate each individual in the population
Apply selection, crossover, and mutation to form the next generation
Identify the Pareto front of  the last population

10. : near optimal_solution
11. : end

Table 3. Pseudocode non-dominated sorting genetic algorithm II (NSGA-II)
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The  performances  of  meta-heuristic  algorithms  are  significantly  influenced  by  the  values  assigned  to  their
parameters (Rohaninejad, Kheirkhah, Vahedi-Nouri & Fattahi, 2015). Hence, it is imperative to accurately establish
these criteria. The parameters of  the proposed meta-heuristics are determined through experimentation and are
documented in Table 4. Based on the experimental results, the crossover probability (cxpb) was set at 0.6 and the
mutation probability (mutpb) at 0.2, as detailed in Table 4. An experiment employing cxpb = 0.6 and mutpb = 0.8
was conducted, focusing on analyzing the population size and the highest fitness achieved. As depicted in Figure 5,
a population size of  100 yielded significantly high best fitness. Utilizing the same parameter settings, additional trials
were  carried  out  to  determine  the  optimal  number  of  generations  for  NSGA-II.  Figures  7  and  8  offer  a
comparative analysis of  200 and 100 generations. Considering the optimal computing time and convergence, 100
generations, with a specified number of  datasets, should be the maximum limit for terminating the generational
loop in NSGA-II.

Item Paramater NSGA-II

Number of  demanders 6

Number of  services (tasks) 20

Number of  providers 9

Crossover probability (cxpb) 0.6

Mutation probability (mutpb) 0.2

Total population 100

Generation 100

Average computing time 5.59 s

Table 4. NSGA-II rules and parameters

Figure 5. Population size versus best fitness

Based on the specified parameter settings, a trial was carried out with five iterations. Based on the results of  this
trial, the Pareto front will be analyzed. Figure 6 presents the results of  the Pareto front three objective functions,
which can be interpreted as follows:

1. Distance:  Distance values show quite wide variations,  indicating a considerable difference in the total
distance covered by different solutions. Solutions closer to the makespan axis tend to have shorter total
distances, which is desirable in most cases.
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2. Lateness: The lateness metric reflects the delay in completion time relative to the predetermined deadline.
Notably, a pronounced escalation exists in delays toward the right side of  the plot, suggesting that these
solutions are suboptimal in adhering to deadlines.

3. Makespan: The makespan axis represents the longest duration required to complete all tasks. Preferable
solutions are those located at the lower end of  this plot, as they demonstrate a reduced makespan.

4. Trade-off  between Three Variables: The graph illustrates the interplay and compromise among distance,
maximum time, and delay. Typically,  solutions featuring shorter distances are associated with increased
maximum times and delays. However, this correlation is not universally applicable and may vary depending
on the specific distribution of  the data points.

5. Point Clusters: These clusters indicate the groupings of  efficient solutions regarding one or two variables
but fall short on other variables.

Figure 6. Pareto front analysis

Figure 7. Generation versus fitness with the 200th generation
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Figure 8. Generation versus fitness with the 100th generation

Scheduled tasks are optimized based on three objective functions. For clearer visualization, the number of  tasks was
adjusted to 20 and distributed among six demanders. Following established matching rules, the data are initially
clustered by material similarity. Subsequent scheduling and task distribution are based on  dimensional matching.
Dimensions are categorized with codes: Code 1 is assigned to small products (dimensions between 10 × 10 ×
10 mm and 50 × 50 × 100 mm), Code 2 to medium products (dimensions between 50 × 50 × 100 mm and 300 ×
30 × 400 mm), and Code 3 to large products (dimensions between 300 × 300 × 400 mm and 500 ×  500 ×
700 mm).

The Pareto front is a key concept in multi-objective optimization, serving as a confirmation that individuals in the
Pareto front indeed meet the criteria of  non-domination. The steps involved include sorting the Pareto front using
the sort non-dominated method, testing domination for each pair of  individuals in the Pareto front to check if  one
individual dominates or is equivalent to another, and finally, validation. Solutions that are evenly distributed and
encompass various trade-offs indicate that the algorithm effectively explores the solution space. The Pareto front
also helps in assessing the diversity of  solutions (Mendoza, Bernal-Agustin & Domínguez-Navarro, 2006). The
more evenly the solutions are distributed in the Pareto front, the better the diversity of  solutions generated by the
algorithm. Figure 6 shows that the solutions are evenly distributed, indicating that the algorithm built with the
specified parameters is capable of  effectively exploring the solution space.

The Pareto analysis  in Figure 6 illustrates a  trade-off  between distance,  maximum time,  and delay.  A shorter
distance tends to incur a greater delay, concurrently leading to an increase in the makespan. In this scenario, the
system prioritizes assigning tasks to printers in closer proximity, consequently escalating the lateness and makespan
values. However, opting for the shortest distance decreases logistics costs, thus offering advantages to demanders.
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Id Di,j Dim Pt la lo

1 D1.1 3 7200 −7.797957911 110.41786149494659)

2 D1.2 3 7200 −7.797957911 110.41786149494659)

3 D1.3 2 1144 −7.797957911 110.41786149494659)

4 D1.4 2 600 −7.797957911 110.41786149494659)

5 D2.1 2 3455 −7.771941787 110.30647808145225)

6 D2.2 3 1382 −7.771941787 110.30647808145225)

7 D3.1 2 4365 −7.742084599 110.43241716888542)

8 D3.2 3 1746 −7.742084599 110.43241716888542)

9 D4.1 1 770 −7.739099939 110.4001860526165)

10 D4.2 2 1525 −7.739099939 110.4001860526165)

11 D4.3 3 1438 −7.739099939 110.4001860526165)

12 D4.4 1 308 −7.739099939 110.4001860526165)

13 D4.5 2 610 −7.739099939 110.4001860526165)

14 D4.6 3 1438 −7.739099939 110.4001860526165)

15 D5.1 3 4530 −7.831553788 110.31778656611162)

16 D5.2 1 745 −7.831553788 110.31778656611162)

17 D5.3 3 1812 −7.831553788 110.31778656611162)

18 D5.4 1 298 −7.831553788 110.31778656611162)

19 D5.5 1 1855 −7.831553788 110.31778656611162)

20 D6.1 3 4955 −7.984251325 110.3054995397715)

Table 5. Demanders’ data

Id Pr1,j Dim La Lo

1 Pr1.1 1 −7.765815728 110.37382632452378

2 Pr1.2 2 −7.765815728 110.37382632452378

3 Pr1.3 3 −7.765815728 110.37382632452378

4 Pr2.1 1 −7.811021919 110.32101165077016

5 Pr2.2 2 −7.811021919 110.32101165077016

6 Pr2.3 3 −7.811021919 110.32101165077016

7 Pr3.1 1 −7.686262259 110.4105695669599

8 Pr3.2 2 −7.686262259 110.4105695669599

9 Pr3.3 3 −7.686262259 110.4105695669599

Table 6. Providers’ data

NSGA-II is specifically designed to optimize multiple objective functions. This research utilizes three functions:
minimizing makespan, lateness, and distance. The outcomes of  this research demonstrate that NSGA-II efficiently
schedules and allocates tasks to online printers. Pareto analysis reveals a trade-off  inherent in this optimization
process. The Pareto front illustrates a set of  non-dominant solutions. A solution is deemed non-dominant if  it is
not outperformed by any other solution across all evaluated objectives. In essence, no alternative solution can
concurrently  offer  shortened  distance,  reduced  lateness,  and  decreased  maximum  value.  The  overarching
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interpretation suggests that aiming for a lower makespan may necessitate compromising either latency or distance
efficiency. The optimal decision depends on the specific priority assigned to each objective.

Utilizing these matching rules, the data are processed, resulting in a task distribution, as depicted in Figure 9. Figure
9 shows that the tasks are allocated to all online printers, resulting in consecutive makespans, which are presented in
Table 7. Printers Pr1.1, Pr2.1, and Pr3.1, characterized by dimension 1, are exclusively capable of  handling the tasks of
dimension 1.  Printers  P2.1,  P2.2,  and P2.3,  with  dimension 2,  can  process  tasks  of  both  dimensions  1  and  2.
Meanwhile, printers P3.1, P3.2, and P3.3, which have dimension 3, are equipped to handle tasks of  dimensions 1, 2,
and 3. The highest recorded makespan is associated with Pr1.3, amounting to 17,276, with four tasks assigned. Pr1.3,
with a dimension of  3, can print tasks across all dimensions. This printer is strategically located in the central
position relative to the requesters who upload the tasks. In this instance, Pr3.1 receives no tasks, resulting in a
makespan value  of  0.  Pr3.1,  categorized under  printers  with  dimension 1,  is  limited  to  the  printing  tasks  of
dimension 1 only. Its location is on the periphery relative to the demanders’ uploading tasks.

Figure 9. Scheduling and task distribution results

Pri,j Ci Number of  tasks

Pr1.1 770 1

Pr1.2 1.2 5

Pr1.3 17276 4

Pr2.1 2898 3

Pr2.2 3455 1

Pr2.3 12679 4

Pr3.1 0 0

Pr3.2 4365 1

Pr3.3 1746 1

Total 43190.2 20

Table 7. Distribution task data

Figure 10 depicts the allocation of  tasks to providers. Four tasks originating from the demand source D1 are
allocated to printer Pr1. Printer Pr2 is assigned two tasks from D2, two tasks from D3, six tasks from D4, five tasks
from D5, and one task from D6. A Pareto analysis reveals a trade-off  between distance, maximum time, and delay.
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Short distances tend to be associated with significant increases in delays, as well as an escalation in the makespan. In
this scenario, the system prioritizes assigning tasks to the nearest printer, consequently resulting in heightened
lateness and makespan values. However, selecting the shortest distance strategy effectively reduces logistics costs,
thereby offering benefits to demand sources.

In determining the priority among distance, maximum time, and delay, the delay should be minimized, particularly
by  concentrating  on  points  with  low  lateness  values.  A  detailed  analysis  of  specific  clusters  is  necessary  to
understand the  characteristics of  their solutions and how they can be effectively applied in real-world contexts.
Utilizing data from the Pareto front, informed decisions can be made considering the trade-offs between these
three performance factors.

Figure 10. Distribution task

The research results indicate a significant variance in the distribution of  tasks to online printers. However, tasks
received by providers do not exclusively originate from the cloud; they can also emanate from offline systems,
which are highly predictable. Such a situation can be accommodated to maximize resource functionality. Following
this pattern, if  a new task arrives subsequent to the scheduling of  these tasks, it will be allocated to the printer with
the shortest processing time or to a currently idle one.

NSGA-II  has  proven to  be  robust  in  various  test  scenarios,  demonstrating  its  capability  to  handle  complex
multi-objective optimization problems, such as power distribution system design (Mendoza et al., 2006). NSGA-II
has been successfully applied to a wide range of  multi-objective optimization problems, showcasing its flexibility
and  effectiveness  across  various  domains.  The  algorithm  consistently  produces  high-quality  non-dominated
solutions, especially for large-scale problems. The computational efficiency of  NSGA-II makes it well-suited for
solving complex optimization problems within a reasonable time frame (Verma et al., 2021). In the case study
conducted with various data size scenarios, the computation time was in the range of  5 seconds, demonstrating the
computational efficiency of  NSGA-II. The optimization results, with the specified parameter settings, produced
optimal solutions according to the planned objective functions.

However, there is still potential for further optimization using NSGA-II. Studies have investigated hybridization
between NSGA-II and other algorithms such as Tabu Search, Simulated Annealing, PSO, and ACO (Verma et al.,
2021), as well as NSGA-II with k-means and local search (Wang et al., 2022) and NSGA-II with machine learning
(Chen, Fang & Tang, 2019). These approaches aim to enhance the algorithm’s effectiveness and efficiency. This
presents  an  opportunity  for  future  research  to  combine  NSGA-II  with  various  algorithms  to  improve  its
effectiveness and efficiency in multi-objective functions.
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6. Conclusion

The NSGA-II algorithm has been successfully employed to optimize the scheduling and distribution of  tasks,
adhering to the rules of  matching materials and dimensions. This case study effectively scheduled and distributed
40 tasks among six demanders and nine printing service providers, with an average computational time of  5.59
seconds. Pareto analysis revealed a trade-off  between objective functions. Solutions that minimized distance were
associated with maximum time, which increased delays. Further research is necessary to understand consumer
behavior and prioritize these aspects. If  minimizing delay is paramount, emphasis should be placed on solutions
with low latency values. A detailed analysis of  specific clusters is recommended to comprehend the characteristics
of  their solutions and real-world applicability.  Data from the Pareto front must be utilized to make informed
decisions, considering the trade-offs among these three performance factors.
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