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Abstract:

Purpose: The aims of  this article are to develop an integrated production-inventory-marketing

model for a two-stage supply chain, and to study the effect of  coordination on the

performance of  the system. The demand rate of  the end customer is assumed to be sensitive

to the selling price. The inventory models are developed, and then optimal values of  the selling

price, order quantity and number of  shipments for the independent and also joint supply chain

are determined. In addition, the effects of  coordination and the parameters of  the model on

the optimal solution and the performance of  the supply chain are investigated.

Design/methodology: Mathematical modeling is used to obtain the profit functions of  the

vendor, the buyer and the whole supply chain. Then, the iterative solution algorithm is

presented to solve the models and to determine the optimal solution in the coordinated/non-

coordinated supply chain.

Findings: It is observed that under joint optimization, the demand rate and the supply chain’s

profit are higher than their values under independent optimization, especially for the more

price sensitive demand. Therefore, coordination between the buyer and the vendor is

advantageous for the supply chain. On the other hand, joint optimization will be less beneficial

when there isn’t a significant difference between the buyer’s and the vendor’s holding costs.
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Originality/value: The main contribution of  the article is to incorporate the pricing into

ordering and shipping decisions of  the supply chain with one vendor and one buyer, and also

to investigate the effect of  coordination on the optimal solution and performance. IsoIso.

Keywords: Integrated inventory, pricing, vendor, buyer

1. Introduction

In recent years, integrating traditional inventory management with other types of decisions

made by the firm (e.g., pricing, quality level, guaranty period, etc) has attracted the attention

of many researchers because these decisions must be compatible to each other in order to

obtain maximal profit. In fact, setting prices and planning for how much inventory to hold are

the two most strategic ones among the many decisions made by a manager. Keeping these

facts in mind, practitioners and academics have focused on determining pricing strategy, which

influences demands, and production-inventory decisions, which define the cost of satisfying

those demands, simultaneously. The seminal work in this line of research is by Whitin (1955).

He considered the economic order quantity (EOQ) model with pricing for a buyer that has a

price dependent demand with a linear function. His work encouraged many researchers to

investigate joint pricing and ordering problems. The focus of these models has been on

demand functions (e.g., Rosenberg (1991), Lau and Lau (2003), on quantity discount (e.g.,

Burwell, Dave, Fitzpatrick and Roy (1997), Lin and Ho (2011), or on perishable inventories

(e.g., Roy (2008), Khanra, Sana and Chaudhuri (2010)), among others. Chung and Wee

(2008) developed joint pricing and ordering problems in another line of research in which

multiple companies in a supply chain cooperate with each other. Actually, he inspired the idea

of his work from Goyal (1976), which was the first study in the integrated vendor-buyer

inventory models. The integrated inventory models, where the total cost of the supply chain is

minimised, were developed to overcome the weakness of the traditional inventory

management systems in which the members of the supply chain make their own optimal

decisions independently, which may not be optimal for the whole system. Many researchers,

such as Banerjee (1986), Hill (1997), Ouyang, Wu and Ho (2004), Rad, Khoshalhan and Tarokh

(2011), Rad and Khoshalhan (2011) have then extended the work of Goyal (1976). Sajadieh

and Jokar (2009) provided an integrated production-inventory-marketing model in which the

optimal ordering, pricing and shipment policy are simultaneously determined to maximize the

joint total profit of both the vendor and the buyer. Recently, Kim, Hong and Kim (2011)

discussed joint pricing and ordering policies for price-dependent demand in a supply chain

consisting of a single retailer and a single manufacturer. Some other researchers such as Ho,

Ouyang and Su (2008), Chen and Kang (2010) and Chung and Liao (2011) also developed

integrated inventory models that involve price-sensitive demands. The main focus of these

works were on trade credit policies and they considered flexible production rates by assuming
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that the production rate can be varied in the fixed ratios of the demand rate. We refer the

readers to comprehensive reviews of joint operations-marketing models were done by

Eliashberg and Steinberg (1993), Chan, Shen, Simchi-Levi and Swann (2004), Yano and

Gilbert (2005) and Soon (2011) for more studies. 

To the best of knowledge, none of the above-mentioned integrated production-inventory-

marketing models focused on investing the effects of coordination on the performance of the

supply chain, especially when the demand rate has an iso-elastic function of the selling price.

Therefore, the aims of this article are to study an integrated inventory model that considers

operations and pricing decisions, and to investigate the effect of coordination on the system.

End customer demand is assumed to be an iso-elastic function of the selling price to account

for the impact of price changes on customer demand. Furthermore, the production rate is finite

and proportional to the demand rate (see for example Ho, 2011; Chang et al., 2009). IsoIsoTo

optimize the joint total profit, the selling price, order quantity and number of shipments will be

determined in this study. The study is organized as follows: In Section 2, assumptions and

notations are provided. Section 3 develops the model for IsoIso-elastic demand function.

Section 4 presents numerical example and sensitivity analysis. Conclusions are summarized in

Section 5.

2. Assumptions and notation

The mathematical models in this article are developed based on the following assumptions and

notations:

• Single manufacturer-single buyer supply chain, which is the simplest and basical form

of the supply chains and could be a start to present and to extend more complicated

and real inventory models, is considered. This type of supply chain has been also

considered by other researchers such as Banerjee (1986), Sajadieh and Jokar (2009),

Rad et al.(2011), Xiao and Xu (2013) and were reviewed in Glock (2012).  

• Shortage is not allowed. 

• For each unit of product, the vendor spends $c in production and receives $w from the

buyer. After that, the buyer sells it by $p to its customers. The relationship between

them is p>w>c.

• The demand rate is a decreasing function of the selling price, D (p) = a p-b, where a  0

is a scaling factor and b  1 is the index of price elasticity. This type of demand function,

which has been used by researchers such as Hamasi, Ghfari, Hamdi and Biranvand

(2006), Hays and DeLurgio (2009) and Lin and Ho (2011), for example, is commonly
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referred to as iso-elastic demand function. For notational simplicity, D (p) and D will be

used interchangeably in this article.

• The inventory is continuously reviewed.

• The buyer orders Q quantity from the vendor. The vendor manufactures a production lot

Qv = nQ at one setup, and dispatches it to the buyer in n shipments with size Q, where

n is a positive integer. 

• The ratio of the market demand rate, D, to the production rate, R, is shown by r i.e.,

r = D/R', where r ≤ 1 and is fixed (see for example Ho et al. (2008), Chen and Kang

(2010) and Chung and Liao (2011)). 

• The buyer’s inventory holding cost per item per unit time is hb; the vendor’s inventory

holding cost per item per unit time is hv, and hb>hv.

• The time horizon is infinite. 

The other parameters are:

S vendor’s set up cost

A buyer’s fixed ordering and transportation cost

v unit variable cost for handling or receiving an item

p buyer’s unit selling Price (decision variable)  

Q buyer’s order quantity (decision variable)  

n number of shipments (decision variable)  

3. Mathematical Model 

In this section, at first, the buyer’s and the vendor’s inventory models are derived whereas

each of them optimizes its own profit independently. Finally, an integrated inventory model and

its optimization algorithm are developed.
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3.1 Buyer’s total profit

We assume that the buyer’s demand is an iso-elastic function, D (p) = a p-b. The buyer intends

to maximize its average profit function, TPB, 

maxTPB(p,Q) = (p-w-v)ap-b - 
αp−β

Q
A−

hb Q

2
S.T.
p > w + v
Q > 0

(1)

For fixed p, TPB is a concave function in Q. Hence, the optimal order quantity will be obtained

by solving
∂TPB

dQ
=0 . Therefore, the optimal order quantity of the buyer can be determined as

follows:

Q* = √ 2a p−β A
hb

(2)

Substituting the obtained optimal order quantity into Eq.(1) and simplifying, we get

TPB (p) = (p -w-v) a p-b - √ 2a p−β Ahb (3)

Taking the first-order and second-order partial derivatives of Eq.(3) with respect to p, we have

∂TPB (p)

∂p
=a p−β−a β p−β−1(p−w−v )+

a β p−β −1 Ahb

√ 2a p−β Ahb

(4)

∂TPB (p)

∂ p2
=−2a p−β −1+a β (β +1) p−β −2(p−w−v )−

β (β +2)√ a p−β Ahb

2 √ 2 p2
(5)

TPB is a concave function in p because
∂2

TPB (p)

∂p2
<0 (see appendix). Thus, p can be obtained by

setting the Eq.(4) equal to zero and solving it for p.

3.2 Vendor’s total profit 

After determining the optimal order quantity and the selling price by the buyer, the vendor

receives the orders. At first, the vendor produces the first Q units and delivers it to the buyer

as soon as possible. Then, it makes delivery on a known interval Q/D until the inventory level

falls to zero (Fig.1). Hence, the vendor’s average inventory can be calculated as Eq.(6).

AIv=
D
nQ

{[nQ(Q
R

+(n−1) Q
D

)−n2Q2

2R
]−[Q

2

D
(1+2+...+(n−1))]}=Q

2
[(2−n) D

R
+n−1] (6)
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Figure 1. The vendor’s inventory system

By considering fixed and given r, the vendor’s average profit function can be presented by the

following equation. 

maxTPV (n)=(w−C )a p−β− S a p−β

nQ
−

hv Q

2
[(2−n)ρ +n−1]

S.T.
w > c
n ∈N

(7)

It can be shown that TPV (n)  is a concave function in n while n is assumed as a real number.

Thus, the following equation for n can be obtained by setting the first derivate of Eq. (7) equal

to zero and solving it for 

n= √ 2S a p−β

hvQ
2(1−ρ)

(8)

If n in Eq.(8) is not an integer number, we choose n* which is the optimum integer value of n.

n* is determined such that yields TPV (n*) = Max {TPV (n-), TPV (n+)} in Eq.(7) with regarding

this fact that TPV (n) is a concave function, where n+ and n-represent the nearest integers ‏

larger and smaller than the optimal n.

3.3 The joint total profit 

If the buyer chooses its selling price and ordering quantity (p, Q), and the vendor determines

its number of shipment n, then the total system profit under independent optimization, TPI(p,

Q, n), is equal to the sum of the buyer’s and the vendor’s profits, i.e., TPI(p, Q, n) = TPB(p, Q)

+ TPV(n). Consider the situation where the vendor and the buyer decide to coordinate and

share information with each other to determine the best policy for the integrated supply chain

system. Therefore, the average joint total profit function is given by
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max JTP (p,Q ,n)=(p−c−v)a p−β−(S/n+A)a p−β

Q
−

hbQ

2
−

hv Q

2
[(2−n)ρ +n−1]

S.T.
p > c + v
Q > 0
n ∈N

(9)

To investigate the effect of the number of shipments on the joint total profit, the second-order

derivative of JTP (p, Q, n) with respect to n is calculated as follow:

∂2
JTP (p,Q ,n)

∂n2
=−2Sa p−β

Qn3
<0 (10)

It is noticeable that although the number of shipments, n, is an integer, it is considered as a

real number in order to solve Eq(9) and obtain Eq. (10). In addition, as the result shows that

JTP (p, Q, n) is a concave function in n for fixed p and Q, the search for the optimal number of

shipments, n*, is reduced to find a nearest-integer to the local optimal solution (see for

example Kim & Ha, 2003; Chen & Kang, 2010). Next, by taking the first-order and second-

order partial derivatives of JTP (p, Q, n) with respect to Q for fixed n and p, we have:

∂ JTP (p ,Q,n)
∂Q

=(S+nA)a p−β

nQ2
−

hb

2
−

hv

2
[(2−n)ρ +n−1 ] (11)

∂2
JTP (p,Q ,n)

∂Q2
=−2(S+nA)a p−β

nQ3
(12)

JTP (p, Q, n) is a concave function in Q for fixed n and p because ∂2
JTP (p,Q ,n)

∂Q2
<0 . Thus,

there exists a unique value of Q (denoted by Q*) which maximizes JTP (p, Q, n). Q* can be

obtained by solving the equation ∂ JTP (p ,Q ,n)
∂Q

=0 in (11), and is given by Eq. (13).

Q* = √ 2a p−β (S /n+A)
{hv [(2−n)ρ +n−1 ]+hb}

(13)

Substituting (13) into (9), we can get the following joint total profit which is the function of the

two variables p and n. 

JTP (p ,n)=(p−c−v)a p−β−√ 2a p−β (S /n+A){hv [(2−n) ρ+n−1 ]+hb} (14)
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For the fixed n, taking the first-order partial derivative of JTP(p, n) in (14) with respect to p

and setting it equal to zero (i.e., necessary condition for optimality), and solving for p, we

obtain the following formula:

∂ JTP (p ,n )
∂ p

=a p−β−a β p−β−1(p−c−v )+
a β p−β −1(S /n+A) {hv [(2−n)ρ+n−1]+hb}

√ 2a p−β (S /n+A) {hv [(2−n)ρ+n−1]+hb}
=0 (15)

As the second order derivative of Eq. (14) is negative, the sufficient condition for optimality is

met, and the joint total cost function JTP(p, n) is concave at p. 

∂2
EJTP(p ,n)

∂p2
=−2a p−β−1+a β (β +1)p−β−2(p−c−v)−

β (β +2) √ a p−β (S /n+A) {hv [(2−n)ρ +n−1 ]+hb}

2√ 2 p2
<0 (16)

3.4 Solution Algorithm

We apply the following iterative algorithm which is used in some articles such as Ray, Gerchak

and Jewkes (2005), Sajadieh and Jokar (2009) and Chen and Kang (2010) to find the optimal

solution (p*, Q*, n*).

Step0. Let n = 0 and set JTP(p(n), Q(n), n) = 0.  

Step1.  Set n= 1.

Step 2. Determine p(n) by solving Eq. (15).

Step 3. Compute the value of Q(n) using Eq. (13).

Step 4. Calculate JTP(p(n), Q(n), n) using Eq. (9).

Step 5. If JTP(p(n), Q(n), n) ≥ JTP(p(n-1), Q(n-1), n-1), then go to step 6. Otherwise, the

optimal solution is (p*, Q*, n*) = (p(n-1), Q(n-1), n-1). 

Step 6. Let n = n + 1, then go to step 2.

4. Numerical Example and Sensitivity Analysis

Referring to the existing literature such as Sajadieh and Jokar (2009) and Chen and Kang

(2010), we discuss an example with the following data: A=$200/order, S=$1200/setup,

C=2.5$/unit, v=$1/unit, w=$5/unit, r=0.8, hb=$0.5/unit/year, hv=0.25/unit/year, a=300,000

and b=1.245. Therefore, D(p)=300,000p-1.25. 
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The percentage improvement i.e., PI=
JTP−TP I

TPI

x100 is calculated to shed light on the benefits

of joint optimization. It’s noticeable that JTP and TPI represent the total system profit under

joint and independent optimization, respectively. The optimal values of p, Q, n and the total

system profit under independent optimization are: 31, 1825.3, 8 and 112,976, respectively.

The equivalent values for joint optimization are: 18.6, 2188.4, 9 and 116,600. Therefore,

Coordination provides 3.21% improvement for the total system profit. The vendor’s profit

improvement resulting from the joint approach amounts to about 93.68%. The buyer, however,

is at an inconvenience and his/her profit shows a 5.18% decrease. The total improvement

should then be shared in some equitable manner and some kind of profit-sharing mechanism

such as a side payment from the vendor to the buyer, or a price discount scheme needs to be

employed in order to encourage cooperation and entice the buyer to change his/her lot size

(see for example Ouyang, Wu & Ho, 2004; Goyal, 1976; Sajadieh and Jokar, 2009). 

In order to emphasise the role of coordination in the total profit, a selection of randomly

generated problem instances are solved and summarized in Table 1. In a second step, some of

the model parameters are varied and their impact on the optimal solution and the total profit

are studied.

 a b r A S hb hv v w c TPI JTP PI (%)
381330 1.32 0.8 2508 11247 1.78 1.32 15.3 17.8 13.2 56,567 56,686 0.2
764660 2.59 0.8 2576 2394 1.68 0.82 5.8 16.8 8.2 349 439 25.9
568210 1.62 0.85 1786 2202 6.90 1.64 10.6 69.0 16.4 15,136 20,249 33.8
833750 1.33 0.9 1640 8993 3.61 0.77 17.9 36.1 7.7 118,870 128,620 8.2
723330 1.46 0.9 1297 1375 1.04 0.54 5.6 10.4 5.4 89,635 92,705 3.4
847210 1.30 0.9 1840 3000 5.04 1.70 18.7 50.4 17.0 126,469 133,930 5.9
555060 2.08 0.85 2764 6123 1.97 0.53 4.7 19.7 5.3 4,327 6,575 52.0
723330 2.83 0.9 1297 1375 1.04 0.54 5.6 10.4 5.4 388 481 24.1
109520 1.16 0.95 2756 15136 1.32 0.53 12.7 13.2 5.3 41,425 41,689 0.6
369700 1.89 0.7 2367 2514 4.59 0.93 10.0 45.9 9.3 2,811 4,258 51.5

Table 1. A selection of randomly generated examples

4.1 Sensitivity analysis for the index of price elasticity b 

As can be seen in Table 2, the percentage improvement, PI, increases by b. It means that for

more price sensitive demands, joint optimization shows more improvements, and it is more

beneficial. This result is similar to which Sajadieh and Jokar (2009) deduced for the integrated

inventory model with the linear price sensitive demand. Therefore, regardless of type of the

demand functions, more price sensitive demands lead to more benefits through coordination.

Such a situation could occur, for example, in a high technology market where new competitors

rapidly enter the market and the technological difference between the products offered in the

market becomes smaller. Therefore, customers focus more on the price of the product. Another

outcome can be inferred from Table 1 is that when the supply chain’s members optimize their
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inventory systems independently, the optimal selling price is higher than its values under joint

optimization. In addition, as the sensitivity of demand to price increases, the difference

between the selling price in independent and joint systems increases too. Consequently,

cooperation leads to the higher demand, and so the total profit increases especially for more

price sensitive demands. 

b Independent optimization Joint optimization
PI(%)

p Q n TPB TPV TPI Qv p Q n* JTP Qv

1.05 129.5 1205.6 8 223,740 3,984 227,724 9644.8 78.6 1363.4 9 228,950 12270.6 0.54
1.1 67.4 1528.3 8 178,610 6,597 185,207 12226.4 40.6 1758.8 9 187,350 15829.2 1.16

1.25 31 1825.3 8 103,390 9,586 112,976 14602.4 18.6 2188.4 9 116,600 19695.6 3.21
1.5 18.3 1747.8 8 46,260 8,771 55,031 13982.4 10.9 2240.6 9 59,218 20165.4 7.61

1.75 14.3 1509.9 8 22,924 6,434 29,358 12079.2 8.5 2063.6 9 33,170 18572.4 12.99
2 12.3 1257.7 8 11,863 4,375 16,238 10061.6 7.4 1831.0 9 19,362 16479.0 19.24

2.25 11.2 1027.8 8 6,287 2,795 9,082 8222.4 6.7 1592.7 9 11,547 14334.3 27.14
2.5 10.4 829.3 8 3,370 1,766 5,135 6634.4 6.2 1367.3 9 6,947 12305.7 35.28

Table 2. Sensitivity analysis for the index of price elasticity b 

4.2 Sensitivity analysis for the purchasing price w

Increasing the unit purchasing price which is paid by the buyer to the vendor, w, increases the

percentage improvement, PI. It is since under joint optimization, the purchasing price doesn’t

affect the joint total profit. On the contrary, under independent optimization, the buyer has to

increase the selling price to compensate the augmentation of the purchasing price. Therefore,

the demand as well as the total profit decreases under independent optimization. In addition,

Fig.2 shows that for the more price sensitive demand, the slope of the percentage

improvement against the purchasing price is faster. Hence, for more price sensitive demand,

increasing of the purchasing price brings about much more percentage improvement. These

results and which Sajadieh and Jokar (2009) obtained for the linear demand function are the

same. Therefore, the effects of the purchasing price on the supply chain are independent of

demand function’s type.

Figure 2. Effect of the buyer purchasing price on the percentage improvement
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4.3 Sensitivity analysis for the unit inventory costs ratio hv/hb

Table 3 and Fig. 3 shows that the percentage improvement, PI, and the optimal number of

shipments, n, decrease when a=hv/hb increases. In the other words, joint optimization will be

less beneficial when there isn’t a significant difference between the buyer’s and the vendor’s

holding costs. Under independent optimization, the growth of hv doesn’t influence the buyer’s

selling price and the demand rate, but the vendor prefers to keep fewer stocks. So, it

decreases the number of shipments, n, to reduce its inventory level. However, under joint

optimization, the selling price increases besides decrease in the number of shipments.

Therefore, the increase of JTP, where both the selling price and number of shipments change,

is lower than the increase of TPI, where the number of shipments only changes. Consequently,

the percentage improvement reduces. 

Figure 3. Effect of a=hv/hb on the percentage improvement

hb a Independent optimization Joint optimization
PI(%)

p Q n TPB TPV TPI Qv p Q n JTP Qv

0.5 0.2 31 1825.3 12 103,390 9,928 113,318 21903.6 18.4 2385.7 13 117,060 31014.1 3.30
0.4 31 1825.3 9 103,390 9,688 113,078 16427.7 18.5 2230.1 10 116,730 22301.0 3.23
0.6 31 1825.3 7 103,390 9,491 112,881 12777.1 18.6 2180.7 8 116,470 17445.6 3.18
0.8 31 1825.3 6 103,390 9,317 112,707 10951.8 18.7 2116.6 7 116,240 14816.2 3.14

1 0.2 31 1825.3 6 103,390 9,152 112,542 10951.8 18.7 1966 7 116,040 13762.0 3.11
0.4 31.3 1284.6 12 103,020 9,600 112,620 15415.2 18.7 1672 13 116,250 21736.0 3.22
0.6 31.3 1284.6 9 103,020 9,262 112,282 11561.4 18.8 1560.5 10 115,800 15605.0 3.13
0.8 31.3 1284.6 7 103,020 8,986 112,006 8992.2 19 1524.1 8 115,430 12192.8 3.06

1.5 0.2 31.3 1284.6 6 103,020 8,740 111,760 7707.6 19.1 1477.8 7 115,110 10344.6 3.00
0.4 31.3 1284.6 5 103,020 8,509 111,529 6423.0 19.2 1371.3 7 114,830 9599.1 2.96
0.6 31.5 1045.1 12 102,730 9,363 112,093 12541.2 18.9 1355.8 13 115,640 17625.4 3.16
0.8 31.5 1045.1 9 102,730 8,951 111,681 9405.9 19.1 1264 10 115,080 12640.0 3.04

Table 3. Sensitivity analysis for the unit inventory costs ratio a=hv/hb
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4.4 Sensitivity analysis for the set up cost toward the ordering cost S/A

As can be discerned from Fig.4, an increase in g =S/A increases the number of shipments and

the vendor’s production quantity. It is a reasonable result because under fixed value of A,

higher g means higher setup cost, S. In such a situation, it is expected from the vendor to

increase its production quantity in each setup. Therefore,  the number of shipments, n, and the

vendor’s production quantity, Qv, increase. Furthermore, percentage improvement PI,

decreases by g  (see Fig. 5). Hence, coordination of the supply chain is less attractive when the

vendor’s setup cost is considerably higher than the buyer’s ordering cost. 

Figure 4. Effect of S/A on the vendor’s production quantity

Figure 5. Effect of S/A on the percentage improvement

In this article, an integrated production-inventory-marketing model for a two-stage supply

chain is presented. It is assumed the demand rate is an iso-elastic function of the selling price.

Then, the total cost functions are developed, and the optimal values of the selling price, order

quantity and number of shipments are obtained under independent and joint optimizations. A

numerical example and the sensitivity analysis are done, and the main following findings are

attained.
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The optimal selling price under independent optimization is higher than its value under joint

optimization, and so coordination increases the demand- and profit of the supply chain.

Furthermore, supply chain’s members can get more profits from coordination in a competitive

market in which sensitivity of the demand to price is high. Another finding is that increasing

the unit purchasing price, which is paid by the buyer to the vendor leads to increase in the

percentage improvement. Finally, coordination of the supply chain is less attractive when the

vendor’s setup cost is considerably higher than the buyer’s ordering cost.

Future research can be done for multi-vendors and multi-buyers supply chains. In addition, the

model can be developed for imperfect products and also deteriorating items.
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Appendix 

As (b-1) is smaller than b, we have:

a β (β−1) p−β −1<a β 2 p−β −1 (A.1)

Furthermore, we know that p > w+v. Therefore, it can be concluded: 

−a β (β +1 )(c+v)p−β−2<−a β (β +1)p−β−1 (A.2)

After summation of Eqs. (A.1) and (A.2), we have:

−2a p−β −1+a β (β +1) p−β −2(p−w−v)<−a β p−β−1 (A.3)

Eq. (A.3) shows that −2a p−β −1+a β (β +1) p−β −2(p−w−v)<0 . In addition, it is obvious that the

last part of Eq. (5), i.e, −
β (β +2 )√ a p−β Ahb

2 √ 2p2
, is always negative. Consequently, it is proved that

Eq.(5) is always negative.
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