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Abstract: 

Purpose: The majority of a company’s improvement comes when the right workers with the 

right skills, behaviors and capacities are deployed appropriately throughout a company. This 

paper considers a workforce scheduling model including human aspects such as skills, training, 

workers’ personalities, workers’ breaks and workers’ fatigue and recovery levels. This model 

helps to minimize the hiring, firing, training and overtime costs, minimize the number of fired 

workers with high performance, minimize the break time and minimize the average worker’s 

fatigue level.  

Design/methodology/approach: To achieve this objective, a multi objective mixed integer 

programming model is developed to determine the amount of hiring, firing, training and 

overtime for each worker type.  

Findings: The results indicate that the worker differences should be considered in workforce 

scheduling to generate realistic plans with minimum costs. This paper also investigates the 

effects of human fatigue and recovery on the performance of the production systems. 

Research limitations/implications: In this research, there are some assumptions that might 

affect the accuracy of the model such as the assumption of certainty of the demand in each 

period, and the linearity function of Fatigue accumulation and recovery curves. These 

assumptions can be relaxed in future work. 

Originality/value: In this research, a new model for integrating workers’ differences with 

workforce scheduling is proposed. To the authors' knowledge, it is the first time to study the 

effects of different important human factors such as human personality, skills and fatigue and 

recovery in the workforce scheduling process. This research shows that considering both 
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technical and human factors together can reduce the costs in manufacturing systems and 

ensure the safety of the workers. 

Keywords: fatigue; human factors; personality; workforce scheduling 

 
1.  Introduction 

Effective workforce scheduling is one of the most critical tasks affecting performance of 

manufacturing systems. It is important to assign the right job to the right person at the correct 

time. Also, it is very important to have a close match between workers’ skills, attitudes and 

strength and his/her tasks he/she performs (for simplicity, we will use he/him hereafter). This 

needs an effective workforce scheduling system. This system aims to reduce waste in 

employing people, lessen uncertainty about current personnel levels and future needs, and 

avoid worker and skills shortages or surpluses by hiring the right workers in appropriate 

numbers. Traditional workforce scheduling tools are limited and cumbersome. They are 

concerned with ‘head count’ rather than ‘head content’, which prevents the resulting schedule 

from being flexible enough to follow the growing demand of fast changing business dynamics 

(Birch, O’Brien-Pallas, Alksnis, Tomblin Murphy & Thomson, 2003; Castley, 1996; Jensen, 

2002). A major problem with existing models is the absence of the most important human 

factors inherent in the production system. As one of the main elements in a production 

system, human issues cannot be ignored without significantly reducing the benefits of the 

production system. Considering human factors in production planning has the potential to 

improve both injury risk and production performance (Neumann & Medbo, 2009; Udo & 

Ebiefung, 1999). It is important to integrate human factors early in the production planning 

phase because early changes to the product and work are less costly and easier to make than 

are late changes. Workforce planning is a systematic identification and analysis of what a 

company is going to need in terms of the size, type, and quality of workforce to achieve its 

strategic objectives.  It determines the right number of the right people in the right place at 

the right time. In this paper, a new model for workforce scheduling to support production 

planning is developed to achieve better production performance while reducing risks to 

operator health. The paper is organized as follows: Section 2 presents a literature review of 

human factors and their relation to the planning process. Section 3 describes the workforce 

scheduling model formulation and the notation used. Next, Section 4 presents the results and 

insights generated from the proposed model. Finally, conclusions and suggestions for future 

research directions are summarized in Section 5. 

2.  Literature review 

Human Factors (HF), or ergonomics, has been defined as “the theoretical and fundamental 

understanding of human behavior and performance in purposeful interacting socio-technical 
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systems, and the application of that understanding to the design of interactions in the context 

of real settings” (Wilson, 2000). During the last decades, ergonomics have been considered 

minimally in building production systems. Most business managers have accepted the idea that 

ergonomics are working as protectors of workers, rather than creators of systems (Dul & 

Neumann, 2009; Perrow, 1983). They generally associate ergonomics with health and safety 

issues rather than with the effectiveness of organizations (Jenkins & Rickards, 2001). 

Ergonomics is considered too late in the production system development process, making most 

managerial decisions hard to change (Helander 1999; Jensen, 2002; Neumann & Medbo, 

2009). Perrow (1983) mentioned that the main problem is that human factors specialists have 

limited influence and control within the organizational context. Also, they have no control of 

strategic resources and a weak network in and outside of the organization. However, it is 

shown that ergonomics can contribute to different company strategies and support the 

objectives of different business functions in the organization (Dul & Neumann, 2009). On the 

other hand, many ergonomics models have been developed without a clear understanding of 

how they could be implemented in a specific company (Butler, 2003; Hagg, 2003). Berglund 

and Karltun (2007) studied the effects of the human, technology and organizational aspects on 

the outcome of the production scheduling processes. Based on their study, schedulers need to 

consider uncertainty, their experience, problem solving, workers’ differences, technical system 

limitations, the degree of proximity between employees and their informal authority. Jensen 

(2002) presents approaches and tools developed in Scandinavian countries. He explained that 

the changes in the ergonomics role inside a company require understanding the organizational 

prerequisites.  He proposed a political agent in order to complement the roles of an expert and 

a facilitator. He also suggested developing studies on the management of ergonomics and 

organizational development. 

There are many reasons for not considering human issues early into production planning. 

Helander (1999) discussed seven common reasons for not considering ergonomics early in the 

production system development process. Some of the common misconceptions regarding 

ergonomics are that many people think that it is for the design of chairs and that it is just 

common sense; the research in ergonomics is too abstract to be useful; people are adaptive, 

so there is no need for ergonomics; and the technical system should be designed first before 

considering ergonomics. Bidanda, Ariyawonggrat, Needy, Norman, and Tharmmaphornphilas 

(2005) mentioned that the major reason is that human issues are typically difficult to quantify. 

However, none of these are reasons to not consider human factors early in the production 

process. 

In reality, there is a tremendous variability in individual capabilities. The result is that most 

production system designs ignore the effects of the human differences in production system 

design. Buzacott (2002) indicates that individual differences can result in substantial loss in 

throughput. Worker differences are a fundamental element to consider when assigning workers 
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to a workstation on the assembly floor. On the other hand, Broberg (2007) has pointed out 

that human factors tools to integrate ergonomics into the design process are not known by 

engineers. Some tools for handling human factors in planning are creating digital human 

models, integrating ergonomics into predetermined motion time systems and integrating 

ergonomics into discrete event simulation (DES). However, DES has been considered to be an 

appropriate tool that can incorporate human aspects at the earliest planning stage for optimal 

performance (Neumann & Medbo, 2009). Some ideas on how to integrate human performance 

modeling with DES in assembly lines are suggested (Siebers, 2004; 2006). Due to the 

variation in human performance, there is a need for non-deterministic models of worker 

performance. Dul and Neumann (2009) provided a conceptual framework to help ergonomists 

in research, education and practice to understand how to support the strategic objectives of a 

company. This framework helps ergonomics experts to focus on ergonomics from the point of 

view of business performance rather than occupational health and safety.  

There have been many interesting developments on the technical side of planning and 

scheduling processes. Many researchers considered a few human aspects in their quantitative 

models. Da Silva, Figueira, Lisboa, and Barman (2006) developed an aggregate production 

planning model that includes workers’ training, legal restrictions on workload and workforce 

size. Jamalnia and Soukhakian (2009) have developed a fuzzy multi-objective nonlinear 

programming model for aggregate production planning problem in a fuzzy environment. 

Learning curve effects have been considered in formulating the model. Wirojanagud, Gel, 

Fowler, and Cardy (2007) used the general cognitive ability metric to model individual 

difference in efficacy of cross-training and worker productivity. Azizi, Zolfaghari and Liang 

(2010) considered workers motivation, learning and forgetting factors and workers' skills to 

measure employees’ boredom and skill variations during a production horizon. Corominas, 

Olivella and Pastor (2010) have taken into account learning curves and workers experience in 

modeling a scheduling problem. Also, researchers utilized mathematical models, heuristics and 

simulation to study the impact of cross-training on system performance. Stewart, Webster, 

Ahmad and Matson (1994) developed four optimization models for different cross-training 

scenarios to assist managers in deciding optimum tactical plans for training and assigning a 

workforce according to the skills required by a forecasted production schedule. Felan and Fry 

(2001) investigated the concept of a multi-level flexibility workforce using simulation. The 

results indicate that it is better to have a combination of workers with high flexibility and 

workers with no flexibility rather than employing all workers with equal flexibility. Blumberg 

and Pringle (1982) developed a model that can link between worker motivation and productive 

performance. In their paper, they suggested that expected work performance of individuals is 

determined by three factors: Capacity, Opportunity and Willingness. Jaber and Neumann 

(2010) developed a mixed-integer linear programming (MILP) model that describes fatigue and 

recovery in dual-resource constrained systems. The results obtained from their model suggest 

that short rest breaks after each task, short cycle times and faster recovery rates improve the 
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system’s performance. Fatigue may be defined as a physical and mental weariness existing in 

a person and harmfully affecting the ability to perform work. Worker fatigue can greatly impact 

system performance in terms of quality (Eklund, 1997). It can significantly affect human 

productivity (Oxenburgh, Marlow, & Oxenburgh, 2004). Inordinately long working hours and 

poorly planned shift work can result in employee fatigue.  

As discussed above, the literature review demonstrated that most of the work on workforce 

planning and scheduling assumed that workers are identical. The problem seems to be 

systemic and there is an obvious need to integrate ergonomics processes into the organization 

early so that underlying principles can be incorporated. Our research will contribute to the 

literature by extending existing models of service workforce planning and scheduling beyond 

current capabilities. This model will incorporate human issues such as skills, training, worker 

personalities, worker recovery and worker fatigue. Four objective functions are considered in 

the proposed model. The first one is cost minimization and the second one is top performance 

workforce firing minimization, the third one is idle time minimization and the last one is fatigue 

rate minimization. In summary, ergonomics must be implemented concurrently with 

production planning in order to improve planning process performance. The problem 

description, assumptions and formulation are given in the next section.       

3.  Mathematical modelling of the multiple-objective workforce scheduling problem 

In this paper, we analyze the scheduling problem in a job shop environment consisting of 

different machines types, which are grouped into several machine levels depending on many 

factors such as the complexity and sophistication of the machine, the quantity of the process 

plans available and training budget. For example, if we have three machine levels, machine 

level one is the less complicated one and machine level three is the most complicated level. 

Worker flexibility can be achieved by using overtime and training. Workers are grouped 

according to different human skills and personalities and we have made the assumption that 

the number of worker skill levels is equal to the number of machine levels. Personality can be 

defined as a dynamic and organized set of characteristics possessed by a person that uniquely 

influences his or her cognitions, motivations, and behaviors in various situations. We assume 

that each worker will have at least one personality level that can be assigned to a certain 

machine level depending on his personal traits such as constructive, creative, dynamic, 

educated, efficient, etc. They are grouped within the categories of an individual's miscellaneous 

attributes and skills. We divided the skill levels and the personality levels into three levels: 

level 1 indicates the lowest level, level 2 indicates the middle level, and level 3 indicates the 

highest level. In contemporary psychology, the dimensions of personality which are used to 

describe human personality are openness, conscientiousness, extraversion, agreeableness, and 

neuroticism. Openness includes characteristics such as curiosity, novelty, imagination, insight 

and variety. Conscientiousness is a tendency to show self-discipline and being organized, and 
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achievement-oriented. Extraversion includes characteristics such as sociability, excitability, 

assertiveness, and talkativeness. Agreeableness includes characteristics such as morality, 

trust, cooperation, kind and sympathy. Finally, Neuroticism is the tendency to experience 

emotional instability, anger, anxiety, sadness and depression.  In this paper, these traits are 

measured based on percentile scores. Level 1 indicates the range from 0 to 33.3th percentile, 

level 2 indicates the range from 33.4 to 66.6 percentile, and level 3 indicates the range from 

66.7 to 100th percentile. For example, people with high scores on conscientiousness tend to be 

responsible, organized and mindful of details, whereas people with low scores on openness 

tend to have less curiosity and more traditional interests. However, people with similar 

characteristics are grouped into personality levels, which reduce the variability of considering 

individual personality profiles. Special questionnaires can be developed and validated for use in 

applied research settings to measure the Big Five domains. If, for example, a worker wants to 

improve his skills, training can be used. It can also help the person to grow and develop his 

personality traits. Layoffs or hiring new workers affect the performance of the present workers 

because they need to be trained to the same level as the previous fired workers. Workers have 

a certain capacity during work, which is the maximum endurance time, defined as the length of 

time that workers can continue to work without becoming fatigued. It is assumed that 

endurance time increases as the personality level is increased. When the productive time 

increases, the average workload on the worker increases, so that rest breaks have to be given 

for the physiological recovery of a worker. Relaxation allowance is used to assist recovery from 

fatigue. It is an addition to the basic time intended to provide the worker with the opportunity 

to recover from the physiological and psychological effects of carrying out specified work under 

specified conditions. The amount of allowance will depend on the nature of the job, personality 

attributes and environment. The proposed mathematical programming model is based on the 

following assumptions: 

 All the objective functions and constraints are linear equations. 

 The demand in each period is deterministic over time. 

 Fatigue accumulation and recovery curves are linear over time. 

 The fraction of maximum load capability is applied continuously by the worker when 

performing a task for a period equivalent to the task’s duration. 

 The length of the break between tasks is not long enough to result in full recovery. 

 The top performers have skill and personal levels greater than or equal to 2. 

 The length of the shift work of a worker is less than 12 hours including overtime.  

The model presented herein is deterministic and in order to satisfy the total demand of each 

period, we are interested in determining: 

 How many workers to assign to each machine level in each period? 

 How many workers, with which skill levels, to hire or fire in each period? 
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 How many workers to train from lower skill level to higher one in each period? 

 How many hours a worker with specific skill and personality level can work on overtime 

basis? 

 How long a worker spends on a task in each period? 

 How long a break time following any task a worker can take? 

3.1.  Model characteristics  

The model developed is a multi-objective integer programming model that allows a number of 

different staffing decisions to be made (e.g. hire, train, fire and overtime) in order to minimize 

the sum of hiring, firing, training and overtime costs and minimize the top performance 

workers fired over all periods, minimize idle (unproductive) time and minimize the physical 

load on the workforce.  

3.2.  Notation and model variables 

In presenting the model, the following notations are used: 

Indices: 

t  = Index of planning periods (days), t=1, 2,…, T  

kj,  = Indices of human skill levels, j, k = 1, 2,…, S  

yx,  = Indices of machine levels, x, y = 1, 2,…, ML 

p  = Index of personality attributes, p= 1, 2,…, P 

s  = Index of tasks, s =1, 2,…, TS  

Parameters: 

jpth  = Cost of hiring a p - level worker with skill set j in period t ($/worker-day) 

jptf  = Cost of laying off (firing) of a p - level worker with skill set j in period t ($/worker-day) 

kjpttr
 

= 
Cost of training a p - level worker from skill set k to skill set j in period t ($/worker-day) 

jptsr  = Daily salary of a p - level worker with skill set j at regular time in period t ($/worker-hour) 

jptso  = Hourly rate of a p - level worker with skill set j at overtime in period t ($/worker-hour) 

jtA  = Available regular working hours of a worker with skill set j for each person in each period t (worker-
hours/worker-day), 

jtAOT  = Available overtime working hours of a worker with skill set
 
j for each person in each period t 

(worker-hours/worker-days) 

jtD  = Demand for skill level
 
j in period t (worker-hours) 

kjss  =




0

1
  

if training from skill level k to skill level j is possible; 
otherwise 

jxws  =





0

1
 

if working on machine level x with skill level j is possible; 
otherwise 

jpswt  =





0

1
 

if a p - level worker with skill level j can do task
 
s; 

otherwise 

psfra  = Fraction of maximum load capability of p - level workers doing task s 

psMET  = Maximum endurance time of
 
p - level workers doing task s (worker-hours) 

psmaxF  = The maximum fatigue load p - level workers can accumulate in any task s (%. hour) While the units 
shown here are %, hour, the values are shown as fractions in Tables 6 and 11.  
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psREC  = Recovery allowance required by
 
p - level for task s 

MLC
 

= Maximum load capability (force unit) 

M  =  A big number 

m = Number of cycles during a whole period of work 

zw  = Positive weights that reflect the decision maker’s preferences regarding the relative importance of 

each goal, z = 1, 2, 3, 4  

Cgoal  = Desired cost level 

Pgoal  = Desired number of fired top performance workers 

Bgoal  = Minimum amount of unproductive time 

Fgoal  = Minimum fatigue level can be achieved 

Decision variables: 

jptxW  = Number of p - level workers with skill set j required to be assigned to machine level x in period t 
(worker-days)  

jptxH  = Number of p - level workers with skill set j hired and assigned to machine level x  in period t (worker-

days) 

jptxL  = Number of existing p - level workers with skill set j who are assigned to machine level x in period t-
1and they are laid-off in period t (worker-days) 

kjptyxY
 

= Number of p - level workers who were assigned to machine level y and then are trained from skill set k 
to skill set j and assigned to a higher machine level x in period t (worker-days) 

jptxOT  = Overtime hours of p - level workers with skill set j in period t (worker-hours) 

jptsxTI  = Time p - level workers with skill set j spend on task s on machine level x during period t (worker-
hours) 

jptsxB  = Break time of
 
p - level workers with skill set j following task s on machine level x during period t 

(worker-hours) 

CC d,d

 
= The positive and negative deviation from goal C 


PP d,d

 
= The positive and negative deviation from goal P 


BB d,d

 
= The positive and negative deviation from goal B

,
 


FF d,d

 
= The positive and negative deviation from goal F

.
 

Objective function:  

The mathematical programming model of the workforce scheduling problem is now given as 

follows: 

Minimize:   FBPC dwdwdwdwOBJ 4321  

Subject to: 

1. Goal constraints: 

           
     



   


T

t

P

p

S

j

S

k

ML

x
C

ML

y
CCjpktxyjpkt

T

t

P

p

S

j

ML

x
jptxjptjptxjptjptxjptjpgtjpt goalddYtrOTsoWsrLfHh

1 1 1 1 1 11 1 1 1

 
(1) 

PPP

T

t

P

p

S

j

ML

x

jptx goalddL  

   


1 2 2 1

 

 (2) 

  BBB

T

t

P

p

S

j

TS

s

ML

x

jptsx goalddB  

    


1 1 1 1 1

 

 (3) 

   

FFF
ps

T

t

P

p

S

j s

ML

x
jptsx

ps

ps
T

t

P

p

S

j s

ML

x
jptsx

ps

ps
T

t

P

p

S

j

TS

s

ML

x
jptsxps

goaldd
maxF

B
REC

fra
mB

REC

fra
mTIfram


































            

          

2

1
1 1 1

9

9 11 1 1

8

1 11 1 1 1 1

 

(4) 
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2. Other constraints: 

    jt

P

p

P

p

ML

x
jptx

TS

s
jptsx

ML

x
jptxjt DOTBNWA   

  1 1 111

 t,j
    

 (5)  

  jptx

TS

s
jtxjptjptsxjptsx WABNBTIN 

1
9

 

x,t,p,j
 (6) 

    psxjpt
p

p

s

jptsx
ps

ps
TS

s

jptsxps FB
REC

fra
mB

REC

fra
mTIfram max1 9

9

9
8

11















 



 

x,t,p,j
 (7) 

     













 

j

j
jk

k

k
jk

y

y
xy

jkptxy

x

x
xy

kjptyxjptxjptxxjptjptx YYLHWW

2
1

2
1

2
1

2
1

1
 x,t,p,j  (8) 

jptxjtjptx WAOTOT 
 

x,t,p,j  (9) 

xtjp

S

jk
k

ML

y

jptxjkptxy WLY ,1,

1 1




 

  x,t,p,j  (10) 

jpxjptx wsML   x,t,p,j  (11) 

jpxjptx wsMH   x,t,p,j        (12) 

kpykjptyx wsMY   y,x,t,p,k,j  (13) 

jpxkjptyx wsMY   y,x,t,p,k,j  (14) 

kjkjptyx ssMY   y,x,t,p,k,j  (15) 

jptx

S

k
kjptyx ZMY 

1  
y,x,t,p,j

 (16) 

 jptxjptx ZML  1
 

x,t,p,j
 (17) 

jptxjptx UMH 
 

x,t,p,j
 (18) 

 jptxjptx UML  1
 

x,t,p,j
 (19) 

jptxpsjptsx WMETmTI 
 

x,s,t,p,j
 (20) 

jpsjptsx WTMTI 
 

x,s,t,p,j
 (21) 

jptsxpsjptsx TIRECB 
 

x,s,t,p,j
 (22) 

psfra

ps eMET






 

s,p
 

(23) 

pspspmax METfraMLCF 
 

s,p
 

(24) 

0,,,,,,,,,,,,,,, 
ffttppccjptsxjptsxjptxkjptyxjptxjptxjptx ddddddddBTIOTYLHW

 
y,x,t,p,k,j

 
(25) 

 1,0, jptxjptx UZ
 

x,t,p,j
 (26) 
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The objective function aims to minimize: all costs incurred including worker hiring and firing, 

training costs and overtime costs; the top performer layoffs; idle (unproductive) time; and the 

weighted average fatigue rate. The purpose of optimization is to minimize the deviations from 

specific goals based on the importance of each one. Constraints (1), (2), (3) and (4) represent 

the cost goal, top performance goal, unproductive time goal and fatigue level goal constraints, 

respectively. Constraint (5) shows that the total regular time a worker spends on a task plus 

the total overtime hours are equal to the number of hours required for each skill in each 

period. Constraint (6) shows that the total regular time a worker spends on a task plus the 

total breaks and interruptions during should not be greater than the available labour capacity. 

Constraint (7) ensures that the fatigue rate at the end of a period has to be less than the 

maximum fatigue load a worker can accumulate in any task. Constraint (8) ensures that the 

workforce in any period should equal the workforce in the previous period plus the new hires 

and is trained to the upper level minus the layoffs. Constraint (9) ensures the overtime 

workforce available should be less than the maximum overtime workforce available in each 

period. Constraint (10) ensures that the total number of workers who are assigned to machine 

level x in period t-1 and now fired or trained for upper skill levels should not be greater than 

the number of workers required in the previous period. Constraint (11) ensures that workers 

can be fired if and only if the assignment is possible. Constraint (12) denotes that workers can 

be hired if and only if the assignment is possible. Constraint (13) ensures that training for 

better skills is possible if and only if the previous assignment is possible. Constraint (14) 

ensures that training for better skills is possible if and only if the latter assignment is possible. 

Constraint (15) ensures that training for better skills is possible if and only if training to that 

skill is possible. Constraints (16) and (17) guarantee the workers who are trained for skill level 

j should not be fired in the same period.  Constraints (18) and (19) ensure that either hiring or 

firing workers occurs but not both. Constraint (20) ensures that the processing time for any 

task cannot exceed the maximum endurance time for any individual performing that task. 

Constraint (21) states that the worker can perform any task if and only if the worker 

assignment to that task is possible. Constraint (22) ensures that the break time following any 

task is to be less than or equal to the recommended recovery duration for that task. Constraint 

(23) calculates the value of maximum endurance time based on the fraction of the maximum 

load capability applied when performing certain task. Constraint (24) calculates the total limit 

for maximum fatigue index. Finally, constraints (25) and (26) are the non-negativity 

constraints.  

Goal programming can be used to solve the multi-objective functions. It provides a way of 

striving towards conflicting objectives simultaneously. The basic approach of goal programming 

is to establish a specific target for each of the objectives, formulate an objective function for 

each objective, and then seek a solution that minimizes the (weighted) sum of deviations of 

these objective functions from their targets. There are two methods for solving goal programs: 

the non-preemptive method (weights method) and the preemptive method. The weights 
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methods form a single objective function consisting of the weighted sum of the goals, where all 

goals are roughly comparable of importance. On the other hand, the preemptive method 

organizes the goals one at a time starting with the highest priority goal and terminating with 

the lowest one without degrading the quality of a higher-priority goal (Hillier & Lieberman, 

2010). In this paper, the non-preemptive method is used to solve the problem. The decision 

maker must determine penalty weights that reflect his preferences regarding the relative 

importance of each goal. For example, penalty weights equal to 1 signify that all goals carry 

equal weights. The determination of the specific values of these weights is subjective. Different 

methods have been developed to estimate the weight values (Tamiz, Jones, & Romero, 1998; 

Cohon, 1978). The solution procedure considers one goal at a time, starting with the costs 

minimization goal, and terminating with the fatigue minimization goal. The process is carried 

out such that the solution obtained from a first goal never degrades the other goals solutions. 

However, weighted goal programming considers all goals simultaneously within a composite 

objective function comprising the sum of all deviational variables of the goals from their 

targets. One of the drawbacks of this method is the use of different units of deviational 

variables in an objective function where the sums of unwanted deviational variables are 

minimized. This different measurement unit may damage the relative importance of the 

objective to the decision maker or cause an unintentional bias towards the objectives with a 

larger magnitude (Tamiz et al., 1998). This problem can be solved by the use of a 

normalization procedure or simply using same unit for all deviational variables in the objective 

function. Different normalization techniques are suggested (De Kluyver, 1979; Jones, 1995; 

Masud & Hwang, 1981; Wildhelm, 1981). In this research, the following steps are used to 

handle multi-objective functions:  

  Define LP1 as the first Linear programming model with objective function: minimize 

goal c ; LP2 is the second linear programming model with objective function: minimize 

goal P ; LP3 is the third linear programming model with objective function: minimize 

goal B ; LP4 is the fourth linear programming model with objective function: minimize 

goal F . 

  Identify the goal values of each model in step 1, and add these values to the right hand 

side of each constraint (1), (2), (3) and (4), respectively, to ensure the goals are 

satisfied. 

  Add penalty weights to reflect the decision maker's preferences regarding the relative 

importance of each goal; for example: in order to minimize total costs (goal C), its 

penalty weight should be multiplied by the amount over the costs target determined in 

step 2. Also, in order to minimize total number of top performers fired (goal P), its 
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penalty costs should be multiplied by the amount under the desired number that can be 

achieved, and so on. 

 Solve the combined objective function that minimizes the deviational variables which 

represents all goals. 

A normalization scheme technique is presented to scale all unwanted deviations to a 0-1 

range. The value zero represents a deviation of zero and the value one represents the worst 

(highest) possible value of the deviation within the feasible set. The one value can be found by 

a single-objective maximization or minimization depending on the objective function. However, 

it is not possible to find this value when the objective function is unbounded. Table 1 illustrates 

the worst possible values of unwanted deviational variables. 

Unwanted Deviation Maximum Value 

d+
C 455,995.4 

d+
P 1,142.3 

d+
B 4,098.2 

d+
F 27.1 

Table 1. the Worst Possible of Deviational Variables 

  This leads to the following objective function with the same set of constraints given 

previously. 































































12724098311424455995
4321

.

d
w

.

d
w

.

d
w

.

d
wOBJ FBPC  

The next section presents the resulting solution for the given problem. 

4. Computational results  

In this section, the feasibility of applying the proposed method is demonstrated to assess the 

effect of workers’ differences on the workforce schedule. Insights on the effect of various 

human factors on workforce scheduling decisions are presented. The sensitivity of decision 

parameters to the variations of relevant conditions based on the numerical example is tested 

to show the effects of fatigue level and personality levels on workforce decisions and 

performance.  

4.1.  Numerical example 

Model validation ensures that the model addresses the right problem, provides accurate 

information about the real system being modelled, and makes the model actually usable. In 

this section, a numerical example is given in order to demonstrate the application of the 

model; we assume a company produces its products to fulfil known demand along an 8-period 

planning horizon. Also, it is assumed that the worker is available for 8 hours a day (160 hours 
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per month) at regular time and for 2 hours a day (80 hours per month) at overtime. However, 

it is assumed that a worker is not productive during daily breaks and interruptions. Also, the 

maximum fatigue load a worker can accumulate in any task depends on the personality level. 

Many jobs require human effort, and some recovery allowance must be made from fatigue for 

relaxation. We assume that a worker with a high personality level and in top physical condition 

requires a smaller allowance to recover from fatigue than a low personality level worker. 

However, other factors such as the factors related to the nature of the work itself and the 

environment might affect the amount of relaxation allowances needed. Moreover, input data is 

shown in Tables 2 to 7. The known demand of worker skills in worker-hours in each period is 

summarized in Table 2. Table 3 shows workers’ availabilities. Table 4 shows the available 

workforce at period zero. Next, Table 5 shows the cost of training from skill level to another 

skill level in each period. Workers daily salary, hiring costs, lay-off costs, overtime costs and 

workers’ capacities are shown in Table 6. Finally, Table 7 shows the values of the maximum 

endurance time, fatigue fractions and the recovery rates for different workers. These values 

are estimated based on the formulas, which are adapted from Jaber and Neumann (2010). 

Using the input data presented, the model consists of 7,364 variables and 12,929 constraints 

and the optimal solution for the problem can be easily obtained using LINGO 13.0 software in 

less than a minute of program running.  

 

 D1a 
D2  D3  D4  D5  D6  D7  D8  

Worker Skill 1 320.0 160.0 320.0 320.0 320.0 320.0 320.0 320.0 

Worker Skill 2 400.0 320.0 320.0 320.0 400.0 160.0 320.0 480.0 

Worker Skill 3 400.0 480.0 480.0 480.0 320.0 160.0 320.0 320.0 

a
D1 represents Day 1 

Table 2. Demand of Worker Skills in Each Week (worker-hours) 

 

  D1 D2 D3 D4 D5 D6 D7 D8 

Worker Skill 1 
Availability (regular time) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 

Availability (overtime) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Worker Skill 2 
Availability (regular time) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 

Availability (overtime) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Worker Skill 3 
Availability (regular time) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 

Availability (overtime) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Table 3. Workers’ Availabilities (worker-hours) 
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  Machine Level 1 Machine Level 2 Machine Level 3 

Worker Skill 1 

P1b 20.0 
0.0 0.0 

P2 
 

10.0 0.0 0.0 

P3 
 

5.0 0.0 0.0 

Worker Skill 2 

P1 5.0 10.0 0.0 

P2 
 

10.0 5.0 0.0 

P3 
 

5.0 10.0 0.0 

Worker Skill 3 

P1 5.0 0.0 10.0 

P2 
 

0.0 10.0 0.0 

P3 
 

10.0 5.0 10.0 
bP1 represents Personality level 1 

Table 4. Initial Workforce Available in Each Machine Level (workers) 

 

From  To D1 D2 D3 D4 D5 D6 D7 D8 

Worker Skill 1 

P1 Skill 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

P2 Skill 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

P3 Skill 2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 

Worker Skill 2 

P1 Skill 3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

P2 Skill 3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

P3 Skill 3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 

Table 5. Training Costs in Each Period ($/worker-days) 

Results from the model are shown in Table 8 and 9. In this paper, many human factors such as 

workers’ training, skills, overtime, workers’ availabilities, workers’ breaks, workers’ 

personalities and workers’ fatigue are considered to show their importance at the early 

planning stages. However, the results from the model offer staffing decisions on what, how 

and when to hire, fire and train. Also, the number of worker-hours during regular time and 

overtime and the number of hours during breaks workers can take are determined. The 

optimal plan is obtained based on the present input data; if the prioritization of the goals and 

initial settings is modified, the results are likely to be different.  

 
   D1 D2 D3 D4 D5 D6 D7 D8 

Worker Skill 1 

P1 

Salary 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Hiring Costs 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 

Firing Costs 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 

Overtime 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 

P2 
 

Salary 110.0 110.0 110.0 110.0 110.0 110.0 110.0 110.0 

Hiring Costs 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 

Firing Costs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Overtime 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 

P3 
 

Salary 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 

Hiring Costs 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 

Firing Costs 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 

Overtime 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 
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   D1 D2 D3 D4 D5 D6 D7 D8 

Worker Skill 2 

P1 

Salary 130.0 130.0 130.0 130.0 130.0 130.0 130.0 130.0 

Hiring Costs 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 

Firing Costs 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 

Overtime 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 

P2 

 

Salary 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 

Hiring Costs 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Firing Costs 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 

Overtime 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5 

P3 

 

Salary 150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0 

Hiring Costs 115.0 115.0 115.0 115.0 115.0 115.0 115.0 115.0 

Firing Costs 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 

Overtime 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 

Worker Skill 3 

P1 

Salary 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 

Hiring Costs 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 

Firing Costs 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 

Overtime 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 

P2 

 

Salary 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 

Hiring Costs 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 

Firing Costs 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 

Overtime 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 

P3 

 

Salary 180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 

Hiring Costs 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 

Firing Costs 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 

Overtime 33.5 33.5 33.5 33.5 33.5 33.5 33.5 33.5 

Table 6. Salary, Hiring, Firing, and Hourly Overtime Costs ($) 

 

  Fmax T1c T2 T3 T4 T5 T6 T7 T8 T9 

Fatigue fraction  

P1 0.88 0.80 0.80 0.80 - - - - - - 

P2 0.60 0.50 0.50 0.50 0.50 0.50 0.50 - - - 

P3 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Recovery rate 

P1 0.88 0.52 0.52 0.52 - - - - - - 

P2 0.60 0.51 0.51 0.51 0.51 0.51 0.51 - - - 

P3 0.13 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

Endurance time 

P1 0.88 1.10 1.10 1.10 - - - - - - 

P2 0.60 1.17 1.17 1.17 1.17 1.17 1.17 - - - 

P3 0.13 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 

cT1 represents Task 1 

Table 7. Fatigue Levels and Recovery Rates 
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 D1 D2 D3 D4 D5 D6 D7 D8 

 Demand (workers) 40.0 20.0 40.0 40.0 40.0 40.0 40.0 40.0 

Worker Skill 1 

P1 

Workers used on level 1 29.1 22.1 44.2 44.2 44.2 44.2 44.2 44.2 

Workers hired on level 1 23.9 0.0 22.1 0.0 11.1 0.0 27.7 22.1 

Workers fired from level 1 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers trained to Level 2 14.8 0.0 0.0 0.0 11.1 0.0 27.7 22.1 

P2 

 

Workers used on level 1 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers hired on level 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers trained to Level 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

P3 

 

Workers used on level 1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers hired on level 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers trained to Level 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 Demand (workers) 50.0 40.0 40.0 40.0 50.0 20.0 40.0 60.0 

Worker Skill 2 

P1 

Workers used on level 1 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0 

Workers used on level 2 19.9 8.9 8.9 8.9 19.9 0.0 27.7 49.8 

Workers hired on level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 

Workers trained to Level 3 4.8 11.1 0.0 0.0 0.0 0.0 0.0 0.0 

P2 

 

Workers used on level 1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Workers used on level 2 5.0 5.0 5.0 5.0 5.0 5.0 1.4 1.4 

Workers hired on level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers trained to Level 3 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 

P3 

 

Workers used on level 1 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Workers used on level 2 10.0 10.0 10.0 10.0 10.0 10.0 0.0 0.0 

Workers hired on level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers trained to Level 3 0.5 0.0 0.0 0.0 0.0 0.0 10.0 0.0 

 Demand (workers) 50.0 60.0 60.0 60.0 40.0 20.0 40.0 40.0 

Worker Skill 3 

P1 

Workers used on level 1 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0.0 

Workers used on level 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers used on level 3 14.8 
 

25.9 25.9 25.9 8.8 0.0 0.0 0.0 

Workers hired on level 1,2&3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2&3 0.0 0.0 0.0 0.0 17.1 13.8 0.0 0.0 

P2 
 

Workers used on level 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers used on level 2 10.0 10.0 10.0 10.0 5.0 5.0 5.0 5.0 

Workers used on level 3 0.0 0.0 0.0 0.0 0.0 0 3.6 3.6 

Workers hired on level 1,2&3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2&3 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 

P3 
 

Workers used on level 1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

Workers used on level 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

Workers used on level 3 10.0 10.0 10.0 10.0 10.0 10.0 20.0 20.0 

Workers hired on level 1,2&3  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Workers fired from level 1&2&3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 8. Resulting Workforce Plan in Number of Workers 

 

 



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.451 

 

 
- 275 - 

 

 D1 D2 D3 D4 D5 D6 D7 D8 

 Demand (hours) 320.0 160.0 320.0 320.0 320.0 320.0 320.0 320.0 

Worker Skill 1 

P1 

Regular time on level 1 152.3 115.8 231.6 231.5 231.5 231.5 231.5 231.5 

Breaks 1 80.3 61.0 122.0 122.0 122.0 122.0 122.0 120.0 

Overtime Hours 58.1 44.2 88.4 88.4 88.4 88.4 88.4 88.4 

P2 
 

Regular time on level 1 52.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Breaks 1 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Overtime Hours 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

P3 
 

Regular time on level 1 26.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Breaks 1 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Overtime Hours 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 Demand (hours) 400.0 320.0 320.0 320.0 400.0 160.0 320.0 480.0 

Worker Skill 2 

P1 

Regular time on level 1 26.2 26.2 26.2 26.2 26.2 0.0 0.0 0.0 

Regular time on level 2 104.5 46.6 46.6 46.6 104.5 0.0 145.2 261.0 

Breaks 1&2 68.9 38.4 38.4 38.4 68.9 0.0 76.5 137.5 

Overtime Hours 49.8 27.8 27.8 27.8 49.8 0.0 55.4 99.6 

P2 
 

Regular time on level 1 52.8 52.8 52.8 52.8 52.8 52.8 52.8 52.8 

Regular time on level 2 26.4 26.4 26.4 26.4 26.4 26.4 7.1 7.1 

Breaks 1&2 40.7 40.7 40.7 40.7 40.7 40.7 30.8 30.8 

Overtime Hours 30.0 30.0 30.0 30.0 30.0 0.6 22.7 22.7 

P3 
 

Regular time on level 1 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 

Regular time on level 2 53.4 53.4 53.4 53.4 53.4 53.4 0.0 0.0 

Breaks 1&2 39.8 39.8 39.8 39.8 39.8 39.8 13.3 13.3 

Overtime Hours 30.0 30.0 30.0 30.0 30.0 0.0 10.0 10.0 

 Demand (hours) 400.0 480.0 480.0 480.0 320.0 160.0 320.0 320.0 

Worker Skill 3 

P1 

Regular time on level 1 26.2 26.2 26.2 26.2 0.0 0.0 0.0 26.2 

Regular time on level 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Regular time on level 3 77.7 135.6 135.6 135.6 46.2 0.0 0.0 0.0 

Breaks 1&2&3 54.8 85.3 85.3 85.3 38.1 0.0 0.0 0.0 

Overtime Hours 39.6 61.7 61.7 61.7 27.6 0.0 0.0 0.0 

P2 
 

Regular time on level 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Regular time on level 2 52.8 52.8 52.8 52.8 26.4 26.4 26.4 26.4 

Regular time on level 3 0.0 0.0 0.0 0.0 0.0 0.0 19.3 19.3 

Breaks 1&2&3  27.2 27.2 27.2 27.2 13.6 13.6 23.5 23.5 

Overtime Hours 20.0 20.0 20.0 20.0 10.0 0.0 17.3 17.3 

P3 
 

Regular time on level 1 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 

Regular time on level 2 26.7 26.7 26.7 26.7 26.7 26.7 26.7 26.7 

Regular time on level 3 53.4 53.4 53.4 53.4 53.4 53.4 106.9 106.9 

Breaks 1&2&3  66.4 66.4 66.4 66.4 66.4 66.4 128.9 86.9 

Overtime Hours 50.0 50.0 50.0 50.0 50.0 0.0 70.0 70.0 

Table 9. Resulting Workforce Plan in Worker-hours 

This research shows that workers’ differences can be used to predict hiring, firing and training 

workers and total break time. Table 8 shows the number of workers hired, fired and trained in 

each period for different personality levels. Also, Table 9 shows the time workers spend on all 

the tasks to satisfy the demand and the amount of break they take due to the fatigue level for 

each worker. From Tables 8 and 9, it can be seen that the workers who are not working during 

regular time have no breaks. Also, we can notice from running the model with different 

objectives that a worker at higher personality level required less amount of break to recover 

than a worker with low personality level. Moreover, the most of the workers hired and trained 

have low personality level, which represents the normal scenario in practice since it is assumed 
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the lower personality levels workers costs less than workers with high personality levels. 

However, these results will be different if the input data are changed or when the company 

goals are changed, as shown in Table 10. For example, if we considered different productivities 

for different workers personality levels, the model will prefer to hire and use workers with 

higher personality levels because of their high performance. 

4.2.  Model implementation and results analysis 

All workers have the right to take breaks. The actual amount of break a worker receives is 

usually set out in his contract of employment. Although there are some kinds of jobs that do 

not allow workers to take breaks such as air or sea transport and working part time during 

busy peak periods, not taking a break can result in overloaded, stressed, and unproductive 

workers. Rest breaks are one of break types that workers can take under special rules written 

in the employment contact. This model can help to estimate the amount of break a worker can 

take during a working day in order to minimize the risk caused by worker fatigue. In the 

previous section, a simple numerical example is given to illustrate the performance of the 

model. In this section, we will study the effects of fatigue level and worker differences on 

workforce decisions. Table 10 shows a comparison between the two cases with different goals. 

Also, it shows a comparison between two cases; the first one represents the case where 

fatigue level is different and the second one represents the case where the fatigue level is the 

same. However, considering human differences that exist between workers results in more 

accurate workforce decisions. In Table 10, it is assumed that the fractions of maximum 

workers’ capability are set to be the average values. This fraction can be used to determine the 

values of maximum endurance time, recovery rate and maximum fatigue. Also, it is assumed 

that we decision maker is looking to achieve three goals; costs minimization, the number of 

top performers fired minimization and idle time minimization. 

 

Total Goal 1 Goal 2 Goal 3 Goal 4 
Equal weights 

(Different fatigue) 

Equal weights 

(Same fatigue) 

Objective Value 223,618.2 1.9 2846.6 0.0 0.05 0.03 

Demand (Wd.days) 8,080.0 8,080.0 8,080.0 8,080.0 8,080.0 8,080.0 

Regular Time (hrs) 6,270.8 7,883.5 5,894.5 8,080 5,967.5 5,962.3 

Overtime (hrs) 1,810.223 206.0 2,185.3 0.0 2,112.5 2,117.6 

Breaks (W.hrs) 3,295.5 3,957.5 2,846.5 4,021 2,955.2 2,984.1 

Workers (W.days) 1,195.7 1,478.9 1092.7 1,512.6 1,115.3 1,118.3 

Training (W.days) 77.2 21.8 82.9 54.9 101.4 115.9 

Hiring (W.days) 70.4 265.5 249.5 344.8 104.9 105.8 

Firing (W.days) 46.9 186.6 227.9 264.7 82.5 82.6 

Fatigue (%.hr) 68.4 45.3 76.3 0.0 72.9 83.9 

Costs ($) 223,618.2 273,341.2 286,859.8 304,191.0 229,798.0 230,056.5 
d W represents Worker    

Table 10. Comparisons Between the Different Goals 
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This table shows the comparisons between the two cases regarding the importance of 

considering fatigue level differences between workers to generate a better solution. The total 

cost when fatigue level is same for all workers is $230,056.5, but when we consider different 

fatigue level between workers, the total cost is $229,798.0. The results show that by 

considering worker differences in the model the costs differences are not significant. Also, the 

present study found that fatigue is not significantly important for scheduling day workers from 

the economics perspective, but it help to determine the amount of the break workers can take 

depending on his personality, and salaries profiles. Further research should be done on the 

effects of the fatigue on worker scheduling with different shifts. Moreover, if the initial number 

of workers is changed, the number of hired, fired or trained workers is changed which will 

change the total costs. Also, in Table 9, we can notice that the company can use this model in 

planning process by selecting the specific goals based on its policy and budget. For example, 

we can assign a target value for each goal so that we can determine the number of workers 

needed in each period to satisfy the demand without exceeding the predefined goals. 

4.3.  Sensitivity Analysis 

Realistic mixed integer programming models require large amounts of data. Accurate data are 

expensive to collect, so we will generally be forced to use data in which we have less than 

complete confidence. This section discusses the actual implementation of the proposed model 

by manipulating different alternatives and analyzing the sensitivity of decision parameters to 

the variation of relevant conditions, based on the preceding numerical example.  

4.3.1  Implications Regarding Different Model Goals 

A user of a model should be concerned with how the recommendations of the model are 

altered by changes in the input data. Table 11 illustrates the comparisons between different 

scenario problems and the effects of changing the weights of the company goals on the total 

costs and utilization of the work. In this Table, we implement 10 scenarios to compare 

between the final results in terms of workers’ utilization, workers’ fatigue, and the total costs. 

The worker utilization is calculated by dividing the total productive time for all the workers by 

the total available hours. Worker break percentages represent the amount of break workers 

can take in average during a working day. Also, workers' fatigue represents the total physical 

load on the workforce during a working day. We change each scenario by changing the weights 

of the unwanted deviational variables in the objective function to show its effects on the final 

objective value. For example, in scenario 1, all goals have the same importance in the 

objective function. 

In the weighted goal programming method, we can use a set of preference weights assigned to 

the penalisation of unwanted deviations to provide solutions that are of practical use to the 

problem owner. In this weight space analysis, it is assumed that all weighting vectors have 

been normalized and hence sum to one. Note that in practice the weight of an unwanted 
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deviational variable has to be greater than zero to avoid the possibility of generating Pareto-

inefficient solutions. Tamiz and Jones (1996) defined Pareto inefficiency as an objective that 

can be improved without worsening the value of any other objective. Therefore, a small weight 

(e.g. 0.005) is suggested to replace a zero weight. Heuristic method and sensitivity analysis 

are developed to find the weight values in the weighting space (Jones & Tamiz, 2010). By 

comparing scenario 1 through 10, we can see that if we add more weight to the cost goal the 

total costs are reduced. Also, the total fatigue of the workers will be increased if more weight 

is added to the breaks minimization goal. However, increasing the physical load of the workers 

may not be desirable due to desired quality levels or occupational health and safety issues. 

Therefore, the determination of the weight values is a process of interaction with the decision 

maker(s). By doing this sensitivity analysis we can find the solution that fit with any company 

requirements. For example, scenarios 3 and 7 give a relatively high value of utilization 

compared to the other scenarios (e.g. scenario 2). This means that putting more weight on idle 

time minimization or hiring workers with fast rate recovery can increases workforce utilization. 

So the company can choose which scenario is best based on its policies and rules. However, 

sensitivity analysis can reveal which pieces of information should be estimated most carefully.  

 

Goal # W1 W2 W3 W4 Obj. value Utilization Fatigue Costs ($) 

1 0.25 0.25 0.25 0.25 0.019 66.0% 0 232,122.1 

2 0.991 0.003 0.003 0.003 0.002 65.4% 27.1 224,158.5 

3 0.003 0.003 0.991 0.003 0.0036 67.4% 76.3 272,090.2 

4 0.003 0.003 0.003 0.991 0.0002 66.0% 0 232,122.1 

5 0.495 0.005 0.495 0.005 0.027 66.3% 61.4 230.175.8 

6 0.495 0.495 0.005 0.005 0.006 66.1% 5.98 228,208.5 

7 0.005 0.495 0.495 0.005 0.0017 66.9% 34.1 245,700.4 

8 0.005 0.005 0.495 0.495 0.01 66.8% 0 275,017.1 

9 0.495 0.005 0.005 0.495 0.0016 65.0% 0 225,177.6 

10 0.005 0.495 0.005 0.495 0.0006 65.8% 0 231,985.9 

Table 11. Comparisons between Different Goals 

4.3.2 Impact of Different Loading Levels on the planning Decisions 

One assumption of linear programming is that all the parameters of the model are known 

constants. Actually, the parameter values used in the model are just estimates based on a 

prediction of future conditions. Sensitivity analysis investigates the changes to the optimal 

solution of a model as the result of changes in input data. In this section, some input 

parameters are studied; recovery allowance, maximum fatigue and maximum endurance time. 

However, all of these parameters depend on the fractions of the maximum load capabilities of 

the workers. Table 12 shows the scenarios with different load levels, recovery rates and 

maximum fatigue levels. So, the three scenarios will be studied based on different load levels. 

In the first scenario, the lower personality workers recover faster than higher personality level 
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workers. Scenario 2 is the same as the previous scenarios except all workers have the same 

fraction levels equal to 0.5. Scenario 3 assumes that the load levels are increasing as the 

personality levels are increasing.  

 

Scenario Fmax
 

T1 T2 T3 T4 T5 T6 T7 T8 T9 

1  

P1 0.88 0.80 0.80 0.80 - - - - - - 

P2 0.58 0.50 0.50 0.50 0.50 0.50 0.50 - - - 

P3 0.12 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

2 

P1 0.58 0.50 0.50 0.50 - - - - - - 

P2 0.58 0.50 0.50 0.50 0.50 0.50 0.50 - - - 

P3 0.58 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

3 

P1 0.12 0.10 0.10 0.10 - - - - - - 

P2 0.58 0.50 0.50 0.50 0.50 0.50 0.50 - - - 

P3 0.88 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Table 12. Different Scenarios with Different Load Levels (=1.3=0.215) 

Table 13 illustrates these different scenarios showing the costs, utilization and total fatigue for 

each scenario. In this experiment, we assume that the company is concerned only on the 

minimization of the total costs incurred. So the effects of other goals are eliminated from the 

model to compare the results from one perspective.  

Scenario Fraction Fatigue  Utilization (%) Costs ($) 

1 Decreasing 68.4 65.6 223,618.2 

2 Constant  75.0 65.7 223,265.7 

3 Increasing 68.6 66.1 222,295.0 

Table 13. Three Scenarios with Different Loading Levels 

The results show the differences in fatigue fractions between the three scenarios do not greatly 

affect the total costs. However, scenario 3 performs better in terms of costs and fatigue levels. 

Also, we can see that the workforce decisions are almost the same even though fatigue 

information is different. The main reason for not having big difference in the results is that the 

suggested fatigue input parameters are so close and the differences are minimal. However, if 

we hire fast recovery rates workers without changing other fatigue information, we can see the 

amount of breaks and costs are reduced significantly. 

This experiment clarifies that fatigue is not very important for scheduling day workers from the 

economics perspective, but it helps to determine the amount of break that workers can take 

depending on their personal and salaries profiles. 
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5. Conclusions 

In this paper, a new model for integrating workers’ differences with workforce scheduling is 

proposed. It is possible to include some fatigue and recovery aspects into workforce scheduling 

models to support the production process without overloading the workers. This model can 

take into account the human aspects such as worker skill, training, breaks, availability, fatigue, 

and personality to plan the workforce of any company so that customer satisfaction will be 

achieved with minimum cost. Also, two cases are given to test the influence of worker’s 

differences on the planning process. This research contributes to the production planning 

problem by incorporating the human aspects as an integral part of the production system. 

Specific contributions of this paper include: developing a workforce scheduling model that 

considers workers’ differences, workers’ training, workers’ skills, workers’ availabilities, 

workers’ breaks, workers’ fatigue, workers’ recovery and workers’ personalities. Also, the 

working levels and possibility of workers training and upgrading are considered. The results 

show that costs have a significant effect on the selection of workers with different skill ability. 

Also, workers’ fatigue can be incorporated to determine the amount of break that workers can 

take during their working shift  This model helps companies to decide what the best scenario 

for hiring, firing and training workers can be to satisfy their goals and without changing their 

rules. 

The results of the proposed model depend on the assumptions made for decision parameters 

such as costs, workers attributes, fatigue and recovery models and the forecasted demand. 

Hence, it is essential that a company uses assumptions that are in line with the company’s 

policies and practices. Future research could include other human factors such as learning 

curves and experience in workforce planning problems. Finally, future research might also 

consider the development of a decision support system that will help managers to solve the 

model in the context of uncertainty of demand and cost parameters. 

In conclusion, this research is believed to be one of the first attempts at incorporating human 

fatigue and recovery in the planning process. It has been shown that considering technical and 

human factors together can improve the working conditions and reduce the costs and wastes 

in manufacturing systems. 
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