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Abstract:  

Purpose: The purpose of this paper is to propose and compare the performance 

of the “two” robust mathematical models, the Robust Integer Facility Location 

(RIFL) and the Robust Continuous Facility Location (RCFL) models, to solve the 

emergency response facility and transportation problems in terms of the total 

logistics cost and robustness. 

Design/methodology/approach: The emergency response facilities include 

distribution warehouses (DWH) where relief goods are stored, commodity 

distribution points (CDP), and neighborhood locations. Authors propose two 

robust models: the Robust Integer Facility Location (RIFL) model where the 

demand of a CDP is covered by a main DWH or a backup CDP; the Robust 

Continuous Facility Location (RCFL) model where that of a CDP is covered by 

multiple DWHs. The performance of these models is compared with each other 

and to the Regular Facility Location (RFL) model where a CDP is covered by one 

main DWH. The case studies with multiple scenarios are analyzed. 

Findings: The results illustrate that the RFL outperforms others under normal 

conditions while the RCFL outperforms others under the emergency conditions. 

Overall, the total logistics cost and robustness level of the RCFL outperforms 
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those of other models while the performance of RFL and RIFL is mixed between 

the cost and robustness index. 

Originality/value: Two new emergency distribution approaches are modeled, and 

evaluated using case studies. In addition to the total logistics cost, the robustness 

index is uniquely presented and applied. The proposed models and robustness 

concept are hoped to shed light to the future works in the field of disaster logistics 

management. 

Keywords: emergency response, facility location, disaster recovery, emergency relief 

goods, spreadsheet model, facility disruptions 

 

1 Introduction  

After emergency events such as natural disasters or terrorist attacks, it is critical 

through emergency response facilities to distribute for rapid recovery emergency 

supplies to the affected areas in a timely and efficient manner. The emergency 

response facilities considered in this paper include distribution warehouses (DWHs), 

where emergency relief goods are stored, intermediate response facilities termed 

Disaster Recovery Centers (DRCs), sometimes referred to as break of bulk points 

(BOBs), where emergency relief goods can be sent to the affected area in a timely 

manner for rapid recovery, and neighborhood locations in need of relief goods. The 

distribution of emergency supplies from these facilities to the affected areas must 

be done via a transportation network. Given the significance of transportation costs 

and the time involved in transporting the relief goods, the importance of optimally 

locating DWHs and BOBs in the transportation network is apparent. 

Traditional facility location models, such as set-covering models, p-center models, 

p-median models, and fixed charge facility location problems (Dekle, Lavieri, 

Martin, Emir-Farinas & Francis, 2005) implicitly assume that emergency response 

facilities will always be in service or be available, and each demand node is 

assumed to be satisfied by a supply facility as assigned by the optimization model. 

However, it is very likely that some emergency response facilities may be damaged 

or completed destroyed and cannot provide the expected services. When this 

happens, the demands of the affected areas will have to be satisfied by other 

facilities much farther away than the initially assigned facilities. This obviously will 

increase the distribution cost and time of relief goods. Compared to the prior-
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disaster transportation costs minimized by the traditional facility location models, 

the actual or post-disaster transportation costs can be substantially higher. Thus, it 

is very important to take into account the post-disaster costs as well as the prior-

disaster costs in emergency response facility location modeling. 

In light of the significant difference in siting between emergency response facilities 

and other types of facilities and the paucity of the research literature in this area, 

we propose a new emergency response facility location model that can better 

account for the uncertainty caused by the disruptions of critical infrastructure and 

that would minimize the post-disaster costs. Assuming that some DWHs might be 

unavailable after disastrous events, we compare the new model with a traditional 

facility location model based on case studies to demonstrate the developed model’s 

capability to better deal with the risks in emergency response caused by the 

disruptions of critical infrastructure. 

2 Literature review 

Facility location models have been extensively researched for decades. Dekle et al. 

(2005) develop a set-covering model and a two-stage modeling approach to 

identify the optimal DRC sites. Their objective is to minimize the total number of 

DRCs, subject to each county’s residents being within a certain distance of the 

nearest DRC. Horner and Downs (2007) conduct a similar study to optimize BOB 

locations (in our paper, BOBs and DRCs are used interchangeably). As shown in 

Figure 1, emergency relief goods are shipped from central distribution warehouses 

to BOBs and distributed to victims of catastrophes. Given the number and locations 

of initial warehouses, Horner and Downs formulate the problem as a multi-objective 

integer programming. Two objectives are considered. The first objective is to 

minimize the transportation costs of servicing BOBs from warehouse locations, and 

the second one is to minimize the transportation costs between BOBs and 

neighborhoods in need of relief goods. 

Snyder and Daskin (2005) develop a reliable facility location model based on the p-

median and the incapacitated fixed-charge location problem. They defined the extra 

transportation cost caused by the failure of one or more facilities as the “failure 

cost”. Obviously, adding additional facilities as backups would reduce the failure 

cost. However, this will increase the day-to-day system operating cost. The main 

goal of their model is to find the best “trade-off” between the operating cost and 

the expected failure cost of a facility location design. The developed model is solved 

by a Lagrangian relaxation algorithm. Berman, Krass and Menezes (2007) also 
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develop a reliable facility location model based on the p-median problem. In their 

research, each facility is assigned a failure probability. The objective is to minimize 

the expected weighted transportation cost and the expected penalty for certain 

customers not being served. The developed model has a nonlinear objective 

function and is difficult to solve by exact algorithms. These authors thus proposed a 

greedy heuristic for their model. 

 

Figure 1. Distribution strategy for emergency relief goods (Horner & Downs, 2007) 

Hassin, Ravi and Salman (2010) investigate a facility location problem considering 

the failures of network edges. Their goal is to maximize the expected demand that 

can be served after disastrous events. In their study, it is assumed that a demand 

node can be served by a facility if it is within a certain distance of the entity in the 

network that survived disaster. The failures of network edges are assumed to be 

dependent on each other. These authors formulate the problem as an exact 

dynamic programming model and develop an exact greedy algorithm to solve it. 

Eiselt, Gendreau and Laporte (1996) also propose a reliable model for optimally 

locating p facilities in a network that takes into account the potential failures of 

road network links and nodes. These authors develop a low-order polynomial 

algorithm to solve the proposed facility location model.  

Li and Ouyang (2010) examined a continuous reliable incapacitated fixed charge 

location (RUFL) problem. They assume that facilities are subject to spatially 

correlated disruptions and have a location-dependent probability to fail during 

disastrous events. A continuum approximation (Langevin, Mbaraga & Campbell, 

1996; Daganzo, 2005) approach is adopted to solve the developed model. The 
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authors consider two methods to model the spatial correlation of disruptions, 

including positively correlated Beta-Binomial facility failure. 

Cui, Ouyang & Shen (2010) investigate a discrete reliable facility location design 

problem under the risk of disruptions. Their model considers a set of i customers 

and j facilities, with the goal of minimizing the sum of fixed facility and expected 

transportation costs. Similar to Snyder and Daskin (2005), Cui et al. (2010) assign 

each customer to multiple levels to ensure the robustness of the final facility 

location design. They also develop a Lagrangian relaxation algorithm to solve the 

proposed model.  

Our research is built upon the work done by Horner and Downs (2007) and also 

motivated by the recent trend in facility location studies to consider the risk caused 

by critical infrastructure disruptions. Contrary to the one-stage model developed by 

Horner and Downs and which optimized the location of BOBs only, we develop a 

two-stage integrated facility location model that simultaneously optimizes the 

locations of DWHs and BOBs. In addition, we propose two robust models for the 

case of disasters.  

The rest of this paper is organized as follows. In the next section, an integrated 

facility location model is introduced. Based on this integrated model formulation, 

robust integrated facility location models are proposed and described in detail. 

Following the description of the model formulations, case studies are conducted and 

the resulting analysis is presented. The last section summarizes the developed 

models and research findings. It also provides recommendations for future research 

directions. 

3 Development of integrated facility location model 

Let M be the set of all neighborhoods and potential distribution warehouse 

locations, indexed by m. We separate M into two sets: M={N, I}, where I denotes 

the set of potential distribution warehouse locations (indexed by i =1, 2, …,w) and 

N represents the set of neighborhoods (indexed by n =1, 2, …, p). In this research, 

we assume BOBs can be located at any neighborhoods and potential DWH 

locations, while DWH can be built at candidate DWH locations only. Based on these 

two assumptions, let J be the set of potential BOB locations indexed by      , 

where j = 1, 2, …p, p+1, p+2, …p+i, …,p+w. Given this problem setting, we 

formulate the following integer quadratic programming (IQP) model that minimizes 

the total logistics cost, which is the sum of fixed facility costs and the transportation 
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costs from DWHs to BOBs and between BOBs and neighborhoods/candidate DWH 

locations that are not selected: 

 

 

(1) 

Subject to 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 
(7) 

 
(8) 

 
(9) 

 
(10) 

where, 

ai: fixed cost for contructing and operating DWHi; 

bj: fixed cost for contructing and operating BOBj; 
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Bj: 1 if neighborhood j is selected as a BOB, 0 otherwise (decision variable); 

dij: distance between DWHi and BOBj; 

dim: distance between DWHi amd location m; 

djm: distance between BOBj and location m; 

DB: maximum number of BOBs can be built (set to 5); 

Dm: demand of location (can be either neighborhood or DWH) m;  

Dw: maximum number of DWHs can be built (set to 3 in this study); 

ki: maximum number of BOBs a DWH must handle (set to 1 in this study); 

Ki: maximum number of BOBs a DWH can handle (set to 5 in this study); 

Lj: minimum number of neighborhoods a BOB needs to cover (set to 2); 

Uj: maximum number of neighborhoods a BOB can cover (set to 6); 

Wi: 1 if a candidate warehouse i is selected, 0 otherwise (decision variable); 

xij: 1 if BOBj is covered by DWHi, 0 otherwise (decision variable); 

yjm: 1 if location m is covered by CDPj, 0 otherwise (decision variable). 

Since the main purpose of this paper is to demonstrate how the proposed model 

works, we further simplify the objective function by excluding the fixed cost terms 

for BOBs and for DWH. Also, the numbers of BOBs and DWHs to be built are pre-

specified. For real-world applications, once the real data are available, such 

restrictions can be readily relaxed to generate meaningful results. In this paper, we 

use the following simplified objective function for the simultaneous optimization of 

DWH and BOB locations. 

 

(11) 

 

Constraints (2) require that at most DW DWHs can be constructed; DW is provided 

by the user.  
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Constraints (3) ensure that the potential DWH location will not be selected 

simultaneously as both DWH and BOB.  

Constraints (4) ensure that if a potential DWH location i is not selected (i.e., Wi=0) 

(its demand must be satisfied by a BOB).  

Constraints (5) make certain that each neighborhood (   ) is assigned to exactly 

one BOB.  

Constraints (6) limit the minimum and maximum number of BOBs to be served by 

each DWH.  

Constraint (7) ensure that DWHs only supply the selected BOBs, not all candidate 

BOBs.  

Constraints (8) limit the total number of selected BOBs to be less than or equal to a 

user-specified number, DB.  

Constraints (9) ensure that neighborhoods or unselected DWH locations can only be 

assigned to the candidate BOBs that are finally selected.  

Constraints (10) ensure that each selected candidate BOB must cover a minimum 

number of Lj neighborhoods and can only cover a maximum of Uj neighborhoods. 

Hereafter, this newly introduced model given by Equations (2)-(11) is referred to as 

the Integrated Facility Location (IFL) model. 

4 Development of robust optimization models 

A property of the IFL model is that the optimal plan generated by it may not be 

optimal after disastrous events. If a DWH becomes unavailable after the disaster, 

BOBs assigned to this DWH need to be reassigned to other adjacent DWHs with 

extra capacity. Then the post-disaster logistics cost may become much larger than 

the pre-disaster optimal cost. To reduce post-disaster logistics cost, one potential 

solution is to require each BOB to be covered by a backup DWH as well as a main 

DWH. To do that, we solve the IFL model after changing the right-hand-side of 

Equation (4) to be 2 from 1 and find the optimal DWH and BOB locations, denoted 

by Wi
*2 and Bj

*2. We call this model the Robust Integer Facility Location (RIFL) 

model. Note that the robust model would minimize the post-disaster cost, not the 

pre-disaster cost. To find the pre-disaster cost for the RIFL model, we solve for the 

optimal coverage of BOBS and neighbors, xij
* and yjm

*, after setting the RHS of 

Equation (4) back to be 1, with the Wi
*2 and Bj

*2 fixed. 
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An alternative way of developing the robust model is to add the capacity constraints 

of candidate DWHs in a disaster-prone area. For instance, if a DWH has a high 

probability of being damaged in disastrous events, one can specify that all BOBs 

assigned to this DWH can only have up to certain percentages of their demand 

satisfied by it. This strategy would avoid putting all eggs in one basket and improve 

the robustness of the model. In fact, if a DWH is partially damaged due to disaster, 

this model would be useful. Now, let xij be a continuous decision variable between 0 

and 1, denoting the fraction of BOBj’s demand satisfied by DWHi. Then, the 

following capacity constraint is added to the IFL model: 

 (12) 

Where, Ci: maximum fraction of BOB’s demand that can be satisfied by DWHi 

For candidate DWHs with a high probability of damage or shutdown during 

disastrous events, Ci would take relatively smaller values, whereas for DWHs in 

stable and safe areas, Ci would take larger values. By making xij a continuous 

decision variable, the robust facility location model becomes a mixed integer 

quadratic programming (MIQP) problem, which can be linearized by defining a new 

decision variable as follows: 

zijm = xij · yjm,  (13) 

Where zijm denotes the fraction of neighborhood m’s demand satisfied by DWHi via 

BOBj. Then solving this robust facility location problem is equivalent to solving the 

following mixed integer linear programming (MILP) problem: 

 

(14) 

Subject to equations 2, 3, 4, 5, 7, 8, 9 and 10; 

 
(15) 

 
(16) 

 
(17) 
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(18) 

We call the above model the Robust Continuous Facility Location (RCFL) model. 

Note that if Ci=1, ∀i, the RCFL model is equivalent to the IFL model and produces 

exactly the same solutions. To find the pre-disaster cost for the RCFL model, we 

solve the RCFL model by adjusting Ci, such that the post-disaster cost is minimized. 

Then with Wi
* and Bj

* obtained for the minimum post-disaster cost fixed and Ci=1, 

∀i, we solve the RCFL model again and the resulting total cost will be the pre-

disaster cost. 

5  Case study and observations 

The integrated model and two robust models can be solved by a variety of 

optimization software packages, such as LINDO, LINGO, or GAMS. However, coding 

the developed MILP model using these tools may not be an easy task, since so many 

decision variables and constraints are involved. Recently, many researchers and 

practitioners are paying significant attention to Microsoft Excel spreadsheet-based 

optimization modeling because of its non-algebraic approach. Several powerful 

software packages based on the Excel spreadsheet model, such as Solver, What’s 

Best, CPLEX, etc., make Excel spreadsheet-based modeling attractive. In this paper, a 

CPLEX for Microsoft Excel Add-In is used to solve the proposed MILP model. 

To evaluate the developed MILP model, we conduct a case study using cities in 

South Carolina. 20 cities are selected as neighborhoods and 5 cities among 

neighborhoods, with Charleston, Columbia, Florence, Greenville, and Orangeburg 

considered as candidate sites for DWHs, as shown in Figure 2. All neighborhoods 

are candidate locations for BOBs. Tables 1(a), 1(b) and 1(c) show the distances (in 

miles) between any two neighborhoods. Also shown in Table 1(c) are the demands 

(in thousands) for all neighborhoods. These demands are hypothetical values 

proportional to each neighborhood’s year 2000 population and can be readily 

replaced by true demand data for real-world applications. Based on these input 

data, an Excel Spreadsheet model is developed. 
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 Figure 2. Candidate Warehouses, BOBs, and Neighborhoods 

We solve the three models, IFL, RIFL, and RCFL. To show how robust the RIFL and 

RCFL models are, two scenarios are considered. The first (normal) scenario 

assumes that all candidate DWHs remain available after disastrous events, whereas 

the second considers the shutdown/unavailability of a DWH. Hereafter, these 

scenarios are referred to as normal and shutdown scenarios, respectively. For 

normal scenario, we evaluate and present the results of facility location and 

transportation scheme as shown in Tables 2(a), 2(b) and 2(c). From the results 

under normal scenario in Tables 2(a), 2(b) and 2(c), we see that all three models 

include Columbia and Charleston as DWHs. Thus, it would be interesting to see 

what would happen if one of DWHs is unavailable and to compare the post-disaster 

costs of the three models. We select DWH Columbia to be unavailable after 

disaster, evaluate the three models, and present the results in Tables 2(a), 2(b) 

and 2(c), under the shutdown scenario. 

Note that in Tables 2(a), 2(b) and 2(c), we assume that Columbia, the unavailable 

DWH for the shutdown case, can still cover the Columbia area and consequently is 

not assigned to any BOB. We call this Case I. But, more likely, the unavailable DWH 

after disaster can’t even operate for its own area. Thus, it might be necessary for 

the affected area to be assigned to a BOB. We call this situation Case II.  

Neighborhoods

Candidate DWHs
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No. Neighborhoods Aiken Anderson Augusta Beaufort Camden Clemson Clinton 

1 Aiken 0.00 99.69 16.98 121.37 86.19 120.42 69.85 

2 Anderson 99.69 0.00 92.34 246.70 148.32 18.05 50.04 

3 Augusta 16.98 92.34 0.00 127.63 128.68 110.82 81.00 

4 Beaufort 121.37 246.70 127.63 0.00 166.79 271.49 181.15 

5 Camden 86.19 148.32 128.68 166.79 0.00 169.48 87.01 

6 Clemson 120.42 18.05 110.82 271.49 169.48 0.00 63.95 

7 Clinton 69.85 50.04 81.00 181.15 87.01 63.95 0.00 

8 Conway 186.02 253.07 228.30 188.83 110.14 264.79 190.71 

9 Georgetown 206.74 269.41 224.91 137.08 113.48 247.81 226.23 

10 Greenwood 55.53 39.50 62.00 167.60 102.90 56.53 26.97 

11 Hilton Head 152.40 277.66 158.59 41.02 198.23 239.42 196.77 

12 Myrtle Beach 207.12 266.99 225.29 202.69 124.06 262.91 204.74 

13 Rock Hill 124.47 120.98 142.64 206.76 71.32 120.00 65.57 

14 Spartanburg 142.14 60.36 160.32 225.30 125.80 59.19 35.54 

15 Sumter 112.39 172.26 130.57 125.70 29.34 168.17 104.57 

16 Charleston 162.96 226.73 207.56 70.32 146.74 248.36 170.50 

17 Columbia 56.41 116.50 75.10 134.16 34.69 128.22 61.20 

18 Florence 132.44 192.92 136.00 150.80 50.43 201.61 137.72 

19 Greenville 150.96 31.00 120.94 234.12 134.62 30.10 41.61 

20 Orangeburg 53.75 135.02 76.00 83.91 62.98 161.39 97.82 

Table 1(a). Distances (in miles) between Neighborhoods 

 

No. Neighborhoods Conway Georgetown Greenwood Hilton Head Myrtle Beach Rock Hill Spartanburg 

1 Aiken 186.02 206.74 55.53 152.40 207.12 124.47 142.14 

2 Anderson 253.07 269.41 39.50 277.66 266.99 120.98 60.36 

3 Augusta 228.30 224.91 62.00 158.59 225.29 142.64 160.32 

4 Beaufort 188.83 137.08 167.60 41.02 202.69 206.76 225.30 

5 Camden 110.14 113.48 102.90 198.23 124.06 71.32 125.80 

6 Clemson 264.79 247.81 56.53 239.42 262.91 120.00 59.19 

7 Clinton 190.71 226.23 26.97 196.77 204.74 65.57 35.54 

8 Conway 0.00 36.62 218.67 193.54 14.03 186.15 223.24 

9 Georgetown 36.62 0.00 247.64 157.04 34.76 232.88 258.84 

10 Greenwood 218.67 247.64 0.00 183.21 232.70 89.97 59.39 

11 Hilton Head 193.54 157.04 183.21 0.00 191.40 210.80 231.61 

12 Myrtle Beach 14.03 34.76 232.70 191.40 0.00 200.16 237.25 

13 Rock Hill 186.15 232.88 89.97 210.80 200.16 0.00 61.93 

14 Spartanburg 223.24 258.84 59.39 231.61 237.25 61.93 0.00 

15 Sumter 80.81 79.19 116.18 138.17 94.56 87.32 130.47 

16 Charleston 97.41 60.92 191.91 104.98 97.34 186.88 205.42 

17 Columbia 140.20 123.04 72.81 142.64 146.75 67.33 93.13 

18 Florence 53.11 68.54 165.08 170.49 67.14 96.09 170.14 

19 Greenville 231.03 266.62 51.09 234.53 244.49 89.80 29.09 

20 Orangeburg 124.74 105.96 95.52 102.33 138.49 108.05 129.92 

Table 1(b). Distances (in miles) between Neighborhoods (continued) 
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No. Neighborhoods Sumter Charleston Columbia Florence Greenville Orangeburg Demand 

(in 1000s) 1 Aiken 112.39 162.96 56.41 132.44 150.96 53.75 29 

2 Anderson 172.26 226.73 116.50 192.92 31.00 135.02 26 

3 Augusta 130.57 207.56 75.10 136.00 120.94 76.00 196 

4 Beaufort 125.70 70.32 134.16 150.80 234.12 83.91 13 

5 Camden 29.34 146.74 34.69 50.43 134.62 62.98 8 

6 Clemson 168.17 248.36 128.22 201.61 30.10 161.39 12 

7 Clinton 104.57 170.50 61.20 137.72 41.61 97.82 9 

8 Conway 80.81 97.41 140.20 53.11 231.03 124.74 12 

9 Georgetown 79.19 60.92 123.04 68.54 266.62 105.96 9 

10 Greenwood 116.18 191.91 72.81 165.08 51.09 95.52 23 

11 Hilton Head 138.17 104.98 142.64 170.49 234.53 102.33 48 

12 Myrtle Beach 94.56 97.34 146.75 67.14 244.49 138.49 32 

13 Rock Hill 87.32 186.88 67.33 96.09 89.80 108.05 72 

14 Spartanburg 130.47 205.42 93.13 170.14 29.09 129.92 37 

15 Sumter 0.00 106.14 43.41 39.28 150.20 56.99 41 

16 Charleston 106.14 0.00 114.54 109.92 214.24 75.98 121 

17 Columbia 43.41 114.54 0.00 79.49 100.91 40.83 130 

18 Florence 39.28 109.92 79.49 0.00 177.93 90.34 38 

19 Greenville 150.20 214.24 100.91 177.93 0.00 137.71 62 

20 Orangeburg 56.99 75.98 40.83 90.34 137.71 0.00 13 

Table 1(c). Distances (in miles) between Neighborhoods (continued) and Demands 

To further investigate the effects of the shutdown of DWHs and to see the 

performance of the robust models, we consider various shutdown scenarios, 

present the resulting costs for both cases in Table 3, and compare the results for 

the three models. 

As expected, the total transportation cost (TTC) for each model increases under the 

shutdown scenario and the increase in TTC are also reported in Tables 2(a), 2(b), 

2(c) and 3. For the IFL model, the TTC goes from $47,451.54 to 69,995.04, a 

47.5% increase. We observe that, on average, two robust models, RIFL and RCFL, 

outperform than the non-robust IFL model under the shutdown scenario, though 

they underperform under the normal scenario. 

Now, we propose a performance measure index, which is called a robustness index 

(RI) to show how much the results from each model are robust enough to cover the 

diverse scenarios in terms of cost minimization. Although there are many 

definitions of robustness, we adopt the one from Dong (2006) as “the extent to 

which the network is able to perform its function despite some damage done to it, 

such as the removal of some of the nodes and/or link in a network.” In this paper, 

each model’s performance may be evaluated by comparing it with the best 

performing model in terms of average TTC and its standard deviation. Hence we 

propose the following robustness index (RI): 

RI for a model g is defined as 
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(19) 

where AVG(λ) and STD(λ) stand for average and standard deviation of each model 

λ’s cost under given scenarios and α denotes the weight between the average and 

the standard deviation. Note that as RI for the model becomes closer to 1, the 

more robust the model would be. And RI can be used to decide the rank of each 

model in terms of robustness. We calculate RI for the three models for all possible 

shutdown scenarios and present them in Table 3. We calculate three different RIs- 

RI for a normal scenario and for Case I and Case II under the shutdown scenario, 

and an overall RI for both cases with the assumption that all individual scenarios 

have the same weight. As the RI values indicate, the IFL is most efficient under 

normal scenario, whereas the RIFL and RCFL seem to be the most robust for Case 

II and for Case I, respectively, under shutdown scenario. That is, on average, these 

robust models generate a slightly higher TTC for the normal scenario, but produce a 

lower TTC for the shutdown case than IFL.  

Model IFL 

Scenario Normal Shutdown 

DWH 
Selected 

1. Charleston 
2. Columbia 

3. Greenville 

1. Charleston 
3. Greenville 

BOBs covered 

by (DWH #) 

1. Beaufort (1) 

2. Aiken (2) 
3. Sumter(2) 

4. Anderson (3) 
5. Spartanburg (3) 

1. Beaufort (1) 

2. Aiken (3) 
3. Sumter(1) 

4. Anderson (3) 
5. Spartanburg (3) 

Neighborhoods 
Assigned to 

(BOB) 

•(Beaufort), Hilton- Head 
•(Aiken), Augusta, Orangeburg 

•(Sumter), Camden Conway, Florence, 

Georgetown, Myrtle-Beach 
•(Anderson), Clemson, Greenwood 

•(Spartanburg) 
Clinton, Rock Hill 

 

•(Beaufort), Hilton- Head 
•(Aiken), Orangeburg 

•(Sumter), Camden Conway, 

Florence, Georgetown, Myrtle-
Beach 

•(Anderson),August Clemson, 
Greenwood 

•(Spartanburg) 
Clinton, Rock Hill 

 

(CDB,CBN) TTC ($29116, $18,335) 

$47,451 
(A) 

($36,889, $33,105) 

$69,995 
(B) 

Increase  
(B)-(A) 

$22,543 

CDB: Cost from DWHs to BOBs, 1st Term in Eq. (12). CBN: Cost from BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN 

Table 2(a). Results comparison for normal/shutdown scenarios for three models 
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Model RIFL 

Scenario Normal Shutdown 

DWH 
Selected 

1. Charleston 
2. Columbia  

3. Orangeburg 

1. Charleston 
3. Orangeburg 

BOBs covered 

by (DWH #) 

1. Beaufort (1) 

2. Camden(2) 
3. Sumter (2) 

4. Clinton (2) 
5. Aiken (3) 

1. Beaufort (1) 

2. Camden(3) 
3. Sumter (3) 

4. Clinton (3) 
5. Aiken (3) 

Neighborhoods 
Assigned to 

(BOB) 

•(Beaufort), Hilton-Head  
•(Camden), Rock Hill 

•(Sumter), Conway, Florence, 
Georgetown, Myrtle-Beach 

•(Clinton),Anderson, Clemson, 
Greenwood, Spartanburg, Greenville,  

•(Aiken), Augusta  

 

•(Beaufort), Hilton- Head  
•(Camden), Rock Hill 

•(Sumter), Conway, Florence, 
Georgetown, Myrtle-Beach 

•(Clinton), Anderson, Clemson, 
Spartanburg, Greenville,  

•(Aiken), Augusta, Greenwood  

 

(CDB,CBN) TTC ($35,231, $23,216) 

$58,448 
(A) 

($44,462, $23,873) 

$68,335 
(B) 

Increase  
(B)-(A) 

$9,887 

CDB: Cost from DWHs to BOBs, 1st Term in Eq. (12). CBN: Cost from BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN 

Table 2(b). Results comparison for normal/shutdown scenarios for three models 

(continued) 

Model RCFL 

Scenario Normal Shutdown 

DWH 

Selected 

1. Charleston 

2. Columbia  
3. Greenville 

1. Charleston 

3. Greenville 

BOBs covered 

by (DWH #) 

1. Beaufort (1) 

2. Georgetown(1)  
3. Aiken (2) 

4. Anderson (3) 
5. Spartanburg (3) 

1. Beaufort (1) 

2. Georgetown(1)  
3. Aiken (3) 

4. Anderson (3) 
5. Spartanburg (3) 

Neighborhoods 
Assigned to 

(BOB) 

•(Beaufort), Hilton-Head  
•(Georgetown), Conway, Myrtle-Beach, 

Sumter, Florence 
•(Aiken), Augusta, Camden, 

Orangeburg 
•(Anderson), Clemson, Greenwood  

•( Spartanburg) 
Clinton, Rock Hill  

 

•(Beaufort), Hilton-Head  
•(Georgetown), Conway, Myrtle-

Beach, Sumter, Florence 
•(Aiken), Orangeburg 

•(Anderson), August, Clemson, 
Greenwood  

•( Spartanburg), Camden 
Clinton, Rock Hill  

 

(CDB,CBN) TTC ($31,531, $19,992) 

$51,523 

(A) 

($30,303, $35,079) 

$65,383 

(B) 

Increase  
(B)-(A) 

$13,860 

CDB: Cost from DWHs to BOBs, 1st Term in Eq. (12). CBN: Cost from BOBs to Neighbors, 2nd Term in Eq. (12). TTC= CDB+CBN 

Table 2(c). Results comparison for normal/shutdown scenarios for three models (continued) 
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Shutdown 
Scenario 

Model 

IFL RIFL RCFL 

Normal 
Shutdown 

Normal 
Shutdown 

Normal 
Shutdown 

Case I Case II Case I Case II Case I Case II 

DWH 1 $47,451 $51,345 $70,000 $58,448 $59,277 $77,372 $47,451 $51,345 $70,000 

DWH 2  $47,451 $69,995 $85,883 $58,448 $68,335 $81,033 $51,523 $65,383 $81,271 

DWH 3 $47,451 $58,017 $65,573 $58,448 $59,046 $60,316 $47,500 $56,265 $63,834 

DWHs 1 & 
2 

$47,451 $85,958 $130,222 $58,448 $69,164 $100,523 $56,716 $80,770 $125,034 

DWHs 2 & 
3 

$47,451 $107,307 $142,028 $58,448 $117,534 $139,085 $52,478 $101,848 $135,829 

DWHs 1 & 
3  

$47,451 $61,911 $88,849 $58,448 $62,940 $82,306 $48,550 $58,001 $84,141 

AVG $47,451  $72,422  $97,093 $58,448  $72,716  $90,106 $50,703  $68,935  $93,252 

STD 0 $20,824 $31,742 0 $22,376 $27,203   $3,617 $19,107 $29,851 

RI 1 0.934 0.892 0.811 0.900 1 0.468 1 0.938 

Overall 
AVG 

$72,321 $73,756 $70,996 

Overall 
STD 

$29,305 $23,289 $26,392 

Overall RI 0.888 0.981 0.941 

*AVG and STD stand for average and standard deviation, respectively. 
*Alpha (α) is set to 0.5 for RI.  

DWH 1: Charleston for all models.  
DWH 2: Columbia for all models.  

DWH 3: Greenville for IFL and RCFL, Orangeburg for RIFL  

Table 3. Comparison between integrated and two robust models 

For Case I under the shutdown scenario, RIFL generates the highest TTC among the 

three models for the normal scenario and generates a slightly lower TTC than IFL. 

For the same weight between the average and the standard deviation, i.e.,      , 

the overall RI also indicates that RIFL has the highest robustness, followed by RCFL 

and IFL in this order. The threshold value for α, denoted by  ̃, turns out to be 

0.7586. It implies that for    ̃, RCFL seems to be the most robust model, followed 

by RIFL and IFL.  

From Table 3, we recommend that the proposed robust models, RIFL and RCFL, be 

used for optimally locating DWHs under the risk of disruptions. As discussed 

previously, transport of relief goods happens mostly after disaster. Therefore, for 

siting emergency response facilities, it would be more important to minimize the 

post-disaster cost rather than the pre-disaster cost and to better consider the 

unavailability of emergency facilities. The example provided here clearly 

demonstrates that the proposed robust facility location models can well suit the 

needs of siting emergency response facilities. 

6 Summary and conclusions 

In this paper, we develop an IFL (Integrated Facility Location) model and propose 

two robust models and compare them with a non-robust IFL. For the RCFL (Robust 

Continuous Facility Location) model, we introduce a continuous variable, defined in 

Equation (13), to denote the capacity constraint on a candidate DWH in disaster-

prone areas, so that it can only partially satisfy the demand of BOBs. We formulate 

the problem as a mixed integer linear programming model and solve it using CPLEX 

for Microsoft Excel Add-In. For the RIFL (Robust Integer Facility Location) model, 
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we set the constraint requiring each BOB to be served by multiple DWHs (two 

DWHs in this paper) on the IFL model, which requires each BOB to be served by 

one DWH. We propose a performance measure index to show how well the models 

perform after disaster, RI, defined in (19). Using numerical examples, we show that 

the two robust models, RIFL and RCFL, yield emergency response facility location 

plans of slightly higher TTCs (total transportation cost) than the IFL model under 

normal situations. However, they generate more robust facility location plans in the 

sense that they can perform better when some of the selected DWHs are shut down 

after disaster and these unavailable DWHs can’t distribute emergency supplies to 

the affected areas (Case II). 

 

The purpose of establishing emergency response facilities is for distributing relief 

goods after disaster. Therefore, when evaluating the efficiency and robustness of 

emergency response facility location plans, more weight should be given to their 

post-disaster performance. The resulting RIFL and RCFL models are designed in a 

robust manner such that they can better address scenarios with failures of key 

transportation infrastructure. Case studies are conducted to demonstrate the 

developed model’s capability to deal with uncertainties in transportation networks. 

Thus, the developed robust models can help federal and local emergency response 

officials develop efficient and robust disaster relief plans. 

 

For future research, it would be necessary to develop a robust model when both a 

DWH and a BOB could be unavailable in the shutdown scenario. In addition, we 

implicitly assume that each DWH always carries enough inventories of emergency 

relief goods, so that for the shutdown scenario the other DWH(s) can ship enough 

relief goods to the extra BOBs. Thus, it would be also interesting to include the 

constraint on the capacity of DWHs in any proposed model. 
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