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Abstract:

Purpose: The main purpose  of  this  paper is  to  propose a  methodological  approach and a decision
support  tool,  based  on  prescriptive  analytics,  to  enable  bulk  ordering  of  spare  parts  for  shipping
companies operating fleets of  vessels. The developed tool utilises Machine Learning (ML) and operations
research algorithms, to forecast and optimize bulk spare parts orders needed to cover planned maintenance
requirements on an annual basis and optimize the company’s purchasing decisions.

Design/methodology/approach: The proposed approach consists  of  three  discrete  methodological
steps, each one supported by a decision support tool based on clustering and Machine Learning (ML)
algorithms. In the first step, clustering is applied in order to identify high interest items. Next, a forecasting
tool is developed for estimating the expected needs of  the fleet and to test whether the needed quantity is
influenced by the source of  purchase. Finally, the selected items are cost-effectively allocated to a group of
vendors. The performance of  the tool is assessed by running a simulation of  a bulk order process on a
mixed fleet totaling 75 vessels. 

Findings: The overall findings and approach are quite promising Indicatively, shifting demand planning
focus to critical spares, via clustering, can reduce administrative workload. Furthermore, the proposed
forecasting approach results in a Mean Absolute Percentage Error of  10% for specific components, with a
potential for further reduction, as data availability increases. Finally, the cost optimizer can prescribe spare
part acquisition scenarios that yield a 9% overall cost reduction over the span of  two years.

Originality/value: By  adopting  the  proposed  approach,  shipping  companies  have  the  potential  to
produce meaningful results ranging from soft benefits, such as the rationalization of  the workload of  the
purchasing department and its third party collaborators to hard, quantitative benefits, such as reducing the
cost of  the bulk ordering process, directly affecting a company’s bottom line.
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1. Introduction

The maintenance of  the machinery onboard a vessel is a critical task, since any engine failure results in delays and
down-times in the voyage of  a vessel, which translates into additional cost and penalties (Kian, Bektaş & Ouelhadj,
2019). Therefore, ship management companies establish full proof  and robust planned maintenance frameworks
and systems, whilst giving high prioritization to the planned maintenance of  their vessels and undertaking cross
departmental projects to ensure the timely delivery of  high-quality spare parts, with as low a cost to the ownership
as possible. Depending on the age of  the vessel and the type of  machinery, those needs may vary but the overhaul
needs in parts and services when accumulated for the whole fleet may amount to a considerable expense for the
company. At the same time, costs of  maintenance and administration increase in a diminishing proportion as the
size of  a ship increases (Lun, Lai & Cheng, 2010), thus deeming the fleet mix an important parameter, further
complexing the design, plan and execution of  the maintenance strategy. 

In the research presented in this paper, the authors focus on the planned maintenance needs of  a fleet of  ships and
more specifically on sixteen (16) components commonly found when addressing the technical needs of  the vessels,
e.g.  connecting  rods,  pumps  etc.  The  process  of  simultaneously  assessing  spare  part  needs,  and  consequent
purchasing, for a fleet of  ships is commonly known as a bulk ordering process. Our research simulated the process
of  bulk ordering and the subsequent  planned maintenance needs of  a  ship management  company operating
approximately 75 vessels. The bulk ordering process is far from a trivial task, since the number of  distinct items
ordered each year is considerably high- amounting to several thousand different spare parts-  and the delivery
locations are not constant and are subject to the vessels’ movements. Furthermore, the suppliers that can provide
the necessary parts in the necessary volumes for overhauling processes are few and are mostly concentrated in two
geographic regions, i.e. Europe and Asia. 

In that context, the main challenges that shipping companies encounter are uncertainty, volume and administrative
workload. Uncertainty is inherent in the process since the demand for ship spares possesses an erratic nature as it
can arise at any time (Jiang, Kong & Liu, 2011). The need for ordering in high volumes is also essential, in order for
the ordering process to achieve economies of  scale. In that sense, bulk orders ideally would refer to more than
thirty (30) and sometimes reaching up to ninety (90) vessels with a span of  several thousand unique items every
year, making it very time-consuming to negotiate with the implicated suppliers and conclude the selection process.
Finally,  administrative  workload  is  undoubtedly  high  due  to  the  large  number  of  interconnected  parties  and
stakeholders participating in the process, which makes it very unwieldy and slow-moving. It is essential that the
administrative costs do not increase unreasonably as a proportion of  the value of  the purchased items (Huiskonen,
2001).  Empirical  research  results  indicate  that  even  in  cases  with  very  mature  planned  maintenance  systems
installed, significant additional FTE (Full Time Equivalent) effort is needed for the smooth completion of  the
process.

The above challenges have triggered the case company, presented in this study, to scour for ways to optimally
address them and unlock further value of  the bulk order process. It has to be noted that current practice in the
shipping industry is to leverage experience and simple analytics to determine the optimum quantities, timing and
allocation of  suppliers among the procured items. The absence of  a sophisticated and well-structured process
drives the total timing of  this project  to almost nine months (this  project is undertaken every year) with the
involvement of  multiple departments. The case company looked to ML due to its current strong standing and high
maturity profile in deploying advanced analytics to increase effectiveness and boost efficiency in supply chain areas
such as general consumables forecasting, crew scheduling and strategic network design. This gave rise to the topic
of  this research paper which will aim to address the aforementioned key challenges by taming a very sizeable and
overly complex dataset, providing ways to extract useful information and insights from historical data, facilitating
the ability to forecast the needs of  the fleet, reducing administrative workload and support the decision-making
process by generating indicative solutions.

In the following sections, the applicability of  ML in dealing with similar business issues will be examined and the
design of  an integrated tool that aims to tackle challenges throughout the bulk ordering process, will be attempted.
More specifically, clustering and forecasting of  the quantities needed by the vessels will be undertaken, to provide a
laser focused and current view of  the critical needs of  vessels. This will be done by integrating exogenous factors,
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such as ship age, which in a way determine demand for spare parts. To further reduce the administrative workload
and  generate  cost  optimal  scenario  in  steps,  blending  of  analytics  with  traditional  operations  research,  i.e.
prescriptive analytics, will be examined in an attempt to drive the optimum sourcing decisions on the basis of
minimum Total Cost of  Ownership (TCO). As a result, a decision- support tool is formulated that can lead to
significant decrease of  the administrative workload and the total time needed to complete the project and provides
viable scenarios for spare parts acquisition strategies that overall yield a total cost saving of  9%. 

2. Literature Review
Despite its importance, spare parts management literature has paid little attention to its integration in supply chain
management to optimize ordering policy and reduce costs of  spares in the maritime industry (Vukić, Stazić, Pijaca
& Peronja, 2021). Few are the authors who identify and highlight the significance of  the subject, one of  them being
Nenni  and Schiraldi (2013), who state that spare parts management in the maritime industry is indeed a very
important issue due to the complexity and uniqueness of  the ship operational environment, where reliability and
safety are particularly essential. 

Still, according to our review and to the best of  our knowledge, only three journal papers are published in the last
five years that are directly relevant to the research presented in this paper. First, the paper by Eruguz, Tan and van
Houtum (2018) attempts to minimize the expected total discounted cost of  spare part deliveries, part replacements,
and inventory holding over an infinite planning horizon. To do so, the authors formulate the problem as a Markov
decision  process  and  use  numerical  experiments  to  show  that  the  cost  savings  obtained  by  the  integrated
optimization of  spare part inventory and part replacement decisions are significant. Finally, they attempt to validate
their approach, by using real-life data from a collaborative company, i.e. Fugro Marine Services. In the research
presented in this paper, we also attempt to provide an integrated approach to forecast and optimize the spare parts
quantities in bulk needed to cover planned maintenance requirements on an annual basis. Still, this is done quite
differently, by utilizing ML algorithms for clustering and forecasting, while introducing cost optimization only in the
third step of  the approach. By evaluating these two approaches in combination, one can actually note that there is
an increased level of  complementarity. The model proposed by Eruguz et al. (2018), deals with Condition Based
Maintenance, hence the Markov chain, while this paper deals with tactical Planned Maintenance. The CBM model
in Eruguz et al. (2018) seems to have difficulties in scaling, while the one proposed in this paper utilises a more
condition-agnostic approach, thus is able to scale more efficiently on fleet level and for numerous components. In
our opinion, these two approaches could work in tandem, offering a very strong predictive maintenance approach,
albeit using telemetry data on P-F curves, instead of  Markov chains.

Second, we have to note the very recent efforts by  Jimenez, Bouhmala and Gausdal (2020). In their paper, the
authors develop a predictive maintenance solution based on a computational artificial intelligence model using real-
time monitoring data in the shipping industry. In doing so, they analyze a set of  historical sensor data, using the
statistical programming language R. Their results highlight the potential of  using big data analytics for developing a
predictive vessel maintenance model. Still, the authors state that there is a number of  further issues that have to be
addressed prior to designing the algorithms and a solution based on artificial intelligence. 

Third, the work of  Kian et al., (2019), is considered marginally related to the work presented in this paper in the
sense that it also provides an integrated solution for the challenge of  spare parts management for maintenance
scheduling in the maritime industry. But this is where the relevancy with the research presented in our paper stops,
since the authors focus on a specific problem of  Condition-Based Monitoring predictive maintenance dealing with
a vessel operating on a given route that is defined by a sequence of  port visits. When a warning on part failure is
received, the problem decides when and to which port each part should be ordered, where the latter is also the
location at which the maintenance operation would be performed. The authors use a mathematical programming
model of  the problem and a shortest  path dynamic programming formulation for a  single  part  to  solve the
problem. Furthermore, the validation they use is based on simulation tests of  different scenarios and not in actual
case data.

Finally, our research produced a small number of  references, which attempt to address the issue of  spare parts
management in the shipping industry from different perspectives. Their approaches are not directly comparable

-606-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3446

with the one presented in this paper, still they are highlighted in the remainder of  this section, for completeness
purposes.  Azizah  and Subiono (2018) focus exclusively on the spare parts  of  the ship engine and propose a
Petri-Net approach representing its component’s spare part ordering. Then they elaborate a max-plus algebra model
to obtain the date when the spare part should be ordered. Efficiency measures or cost benefits from applying the
method are not mentioned in the paper.  Hmida, Regan and Lee (2013), propose a multicriteria inventory policy
using  inventory  classification  method integrated  with  a  preventive  maintenance program.  The  authors  report
savings of  thirty-four (34) service days as a result of  the decrease in the number of  downtime days due to pumps
failure and 10% reduction in inventory, by the application of  their approach. Last, but not least, we have to note the
emergence of  Additive Manufacturing (AM) in the scientific field of  spare parts management for the shipping
industry, which promises to provide disruptive solutions, enhanced flexibility and significant economies for the
whole process (Kostidi & Nikitakos, 2008).

3. The Clustering Component
The ordering of  spare parts for planned maintenance purposes is a time-consuming project, in part due to the high
number of  items that comprise a bulk order. In the interest of  industry-wide standardization, each item in the spare
parts industry can be referred with a unique number called a maker reference. In each bulk order, there could be
over 4,000 distinct product codes making it an arduous process to compare the items or even to systemically log the
prices of  each supplier. Therefore, it seems important to be able to narrow down the high-interest product codes
for each bulk order to facilitate and expedite the process. From an analytics perspective this is a task best tackled by
the clustering approach, which is one of  the most common unsupervised ML techniques (Hinton  & Sejnowski
1999). This way the analysis can be focused only on product codes that have been identified as high-interest and
therefore the volume of  administrative workload for the departments will be smaller. 

Identifying the input variables in the unsupervised learning algorithm is of  great importance as the relationship
between them will determine the product codes upon which forecasting will be attempted. In this study, we identify
the  following input  variables:  a)  Price:  which indicates the  acquisition price of  the  item (also accounting for
discounts- if  any), b) Quantity: which indicates the number of  times the item was bought in the past for planned
maintenance purposes, c) Total Volume: as provided by the product of  price times quantity. This variable highlights
the importance of  items that have a medium price but are ordered in considerable quantities, thus making the total
volume quite high, d) Number of  Unique Vessels: which indicates the number of  different vessels that the item is
installed on. This variable increases the importance of  an item, even if  it doesn’t have a considerable volume, price
or quantity, if  it is installed on many vessels and therefore has an increased influence in the uniformity and possible
problems across several vessels and e) Average Age: which indicates the average age of  the vessels this item is
installed on.  The main goal  is  to  determine the  product  codes that  have an abnormally  high price,  quantity,
combination of  both or/and are installed on several vessels. 

Therefore, a clustering process is required in order to identify the ‘outliers’ of  the dataset, thus labelling the items
that have the characteristics described above. This process is often called anomaly detection (Zimek & Filzmoser
2018). In this paper, the Density-Based Spatial Clustering of  Applications with Noise (DBSCAN) algorithm (Ester,
Kriegel, Sander & Xu, 1996) is used, as it automatically creates a cluster containing the outliers. DBSCAN is a data
clustering algorithm that given a set of  points in some space, classifies in the same category, points that are closely
packed together. At the same time, it marks as outlier points, those that lie in low-density regions. The items are
clustered using DBSCAN algorithm with minPoints=10 and local radius for expanding cluster set to eps = 1.8. The
results are visualized in Figure 1.

Cluster 0, hereafter the “Outlier Cluster”, contains the outliers of  the analysis. The mean quantity of  the Outlier
Cluster is considerably higher than the one of  Cluster 1, which contains the clear majority of  the data, here on after
the “Average Cluster”. The same can be said for the price of  the Outlier Cluster as compared to the price of  the
Average  Cluster.  Evidently,  the  total  volume,  which  is  computed  as  the  product  of  the  aforementioned
characteristics  (price  and quantity),  is  also considerably  higher.  Finally,  the number of  unique vessels,  that  as
mentioned before describes the number of  distinct vessels that the specific item is installed on, is also considerably
higher in the outlier cluster. However, the average age of  the vessels is virtually the same for the two clusters.
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Cluster 2 contains a small fraction of  the total items that have a large quantity and are installed on several young
vessels. The product codes that will be included in the analysis are those that are contained in the outlier cluster. To
further analyse the data k-Means clustering on the previously identified high-interest items is performed.

Figure 1. Product codes clustered in three clusters using DBSCAN

Figure 2. K-means clustering in the outlier cluster

Cluster Description Data Points Percentage of  Total Cost of  Outlier Cluster

1 High volume – young vessels 220 73.27%

2 High volume – old vessels 128 21.68%

3 Low volume 141 5.04%

Table 1. Summarized results for 2nd clustering
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The cluster of  k-means was further used as an independent variable in the forecasting analysis of  the next
section. The product codes previously identified as cost drivers, will be used as a basis for the bulk order price
collection and winner nomination.  Simulation results  indicate that  approximately 4% of  the  total  items can
represent roughly 50% of  the total cost.  By leveraging this  finding, the purchasing department of  any ship
management  company  can  focus  only  on  the  pre-identified  items  to  collect  prices,  assess  the  quotations,
negotiate  with and select  the  winners  and therefore  decrease  its  administrative  workload.  Concurrently,  the
product codes identified as cost drivers will provide the basis for the subsequent steps of  this analysis, i.e. the
predictive and prescriptive components.

4. The Predictive Forecasting Component
The proposed forecasting model aims to calculate the nominal quantity that a vessel needs in the coming year and
maker reference. The model variables are: a) Average Age: The age of  the vessel is one of  the most important
vessel characteristics and, as described in the introduction, the maintenance of  the vessel and thus the quantities of
the items that will be ordered are highly correlated; b) Average Price: The price of  an item is one of  the most
important demand characteristics and in the sections below its relationship with the final quantity will be examined;
c) DWT: This variable is an indicator to the size of  the vessel and to its needs; d) Type: A categorical variable
which, in combination with DWT, denominates the class of  the vessel; e) Origin: This variable indicates the country
of  construction of  the vessel. It is a categorical variable of  three levels: South Korea, Japan and China and aims to
unveil correlations between the shipyard and the quality of  the vessel and f) k-Means cluster: denoting one of  the
three clusters the item belongs to as per above. 

The available dataset is divided into 16 core components. In the simulation dataset, there is an evident scarcity of
data for this application therefore one of  the main challenges that needs to be addressed is the overfitting of  the
models. The training set and the test set with a random 80-20 data partition, as for most of  the components, lacks
the number sufficient number of  data points to create a validation set. This is a commonplace finding in the
shipping industry where abundance of  data availability and quality remains elusive. In addition, time series analysis,
which seems as the most direct approach to such a problem is not applicable in this case due to factors commonly
plaguing such algorithms e.g. multicollinearity, heteroscedasticity and autocorrelation (Hanke and Wichern, 2009) as
well as due to the high degree of  influence of  the demand by exogenous factors. Considering the aforementioned
limitations, the below models were chosen; 

• Random Forest (RF), due to its ability to avoid overfitting (Hastie, Tibshirani & Friedman, 2008) and its
superior efficiency (Ho, 1995). 

• Generalized Linear Model (GLM), due to its simplicity and its ability to handle error distributions other
than normal ones (Nelder & Wedderburn, 1972).

• Principal Component Regression (PCR); due to its ability to be applied when the number of  variables is
high in relation to the number of  available data. (Jackson, 1991).

For each component the mean absolute percentage error is computed as per the below formula:

The results are presented in Table 2. For a number of  components, forecasting did not take place as the entries
were not enough to properly train and test the algorithms.

As can be seen from Table 2 the forecasting error is, in some cases, considerable while in some cases, where it is
below 40%, it qualifies as satisfactory. The satisfactory error level was determined after interviews with practitioners
of  the shipping industry, specifically in the purchasing department. To better visualize the performance of  the
algorithms, a snapshot for the forecasting results for the component ‘Compressors’ is depicted in Figure 3.
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Component RF GLM PCR Number of  Points

Compressors 34% 119% 112% 272

Rods 77% 111% 272% 31

Cylinder Heads 140% 220% 221% 906

Cylinder Liners 111% 311% 301% 157

Fuel Injection Valves 98% 109% 128% 287

Fuel Oil System 22% 45% 34% 26

Pistons 64% 256% 259% 298

Shaft 64% 70% 85% 81

Turbo Chargers 48% 70% 48% 55

Table 2. Mean absolute errors for indicative components

Figure 3. Forecasting results for the component ‘Compressors’

For the component ‘Fuel Injection Valves’, the error of  the random forest algorithm is 98%. As seen in Figure 4,
there are two data points that have order quantity over a hundred items, which is significantly higher than the
average quantity observed. Therefore, a data cleansing method is used to determine such data points and eliminate
them from the training and evaluating sets of  the algorithms. In the specific dataset, it is common to come across
data points that can be considered as outliers. In a business sense, this can be explained by a superintended engineer
over/ under estimating actual demand or a vessel having abnormally high/low needs for a specific year due to a
sequence of  unplanned maintenance events. Consequently, DBSCAN is used to determine the outliers and exclude
those data points from the analysis, with minPts = 6 and eps = 0.5. Parameter minPts was set to six by multiplying
the dimensions by two. The dimensions for which DBSCAN is applied are only the numeric ones (age of  the
vessel, DWT, price of  the product code). Parameter eps was dictated by interpreting the k-NN graph (Ester et al.,
1996).

Next, the three models described before are applied, trained and tested on the ‘cleaned’ dataset. The training and
testing of  the algorithms in a sanitized dataset, produces better results, by reducing the mean average percentage
error by around 36%. Still, there are some components that the outlier handling could not decrease the error to
satisfactory levels, i.e. ‘Cylinder Heads’, ‘Cylinder Liners’. For those components, an analysis of  the optimum eps
value is presented in Figure 5. According to Ester et al. (1996), when the eps parameter decreases the number of
data points included in the analysis is increased (the outliers are decreasing). At the same time the forecasting error
decreases as well.  As can be seen from the graph, the optimum error (without simultaneous elimination of  a
considerable amount of  data points) is at eps=0.8. However, the MAPE, after the optimization process, is still
considerably high making it very difficult to rely on the applied forecasting methods for these components with this
dataset.
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Figure 4. Forecasting results for the component ‘Fuel Injection Valves’

Figure 5. Change of  MAPE (left) and number of  data points (right) as eps parameter increases for component ‘Cylinder
Heads’

The least mean absolute error for each component for all methods (RF, PCR, GLM) are presented in Table 3,
showcasing that  the  best  performing method for the vast  majority  of  the components  is  the  random forest
algorithm.  This  result  was  expected as  the  random forest  algorithm best  handles  the  exogenous factors  that
influence the outcome in a stochastic manner that makes it impervious to over/ under fitting (Hastie et al., 2008).

Component Minimum MAPE Method

Compressors 31% Random Forest No Outliers

Rods 0% Random Forest No Outliers

Cylinder Heads 125% Random Forest No Outliers

Cylinder Liners 111% Random Forest 

Fuel Injection Valves 44% Random Forest No Outliers

Purifiers 46% Random Forest No Outliers

Fuel Oil System 10% Random Forest No Outliers

Pistons 53% Random Forest 

Shaft 29% Random Forest No Outliers

Turbo Chargers 0% Random Forest No Outliers

Table 3. Least mean absolute error for indicative components for all methods
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Finally, the exceptional case of  items that are reordered during the same period is studied. This reordering is either
due  to  miscalculation  of  the  vessel’s  needs,  unplanned  maintenance  events  or  failure  of  previously  bought
equipment. To determine those additional quantities a forecasting process is used. The forecasts are generated by
following the same sequence of  actions as for the nominal quantities with one additional dimension, i.e. Bulk
Market.  This  variable  is  a  categorical  variable  with two levels:  maker  or  parallel,  i.e.  purchased from original
equipment manufacturer or from a source providing imitation spares, respectively. The variable will be used to
explore possible correlation between the source of  purchase and the additional quantities. The results are presented
in Table 4. The forecasting of  the extra quantities is performed only on a small number of  components (12 out of
16) as the rest  do not exhibit  variations in the data making the  completion of  the training very challenging.
Especially after outlier handling the number of  forecastable components drops even further, from 12 to 8. This
particular finding could generate an area for further research in the future.

In conclusion, forecasting the nominal needs of  the vessels exhibits satisfactory results (average MAPE 53%) and
could, in the future when the training samples increase, become more accurate.

For some specific components that show increased accuracy, e.g. fuel oil system (MAPE = 10%) the tool can be
used to expedite the process, while decreasing the workload both for the vessel and for the shore- based engineers.
However, the forecasting of  the extra needs does not yield such results. The average MAPE is increased compared
to the forecasting of  the nominal quantities, while the number of  components upon which forecasting is applied
decreases. In the next section, the forecasting results are used to create the cost optimizer that leads to optimum
allocation of  items to vendors so as to minimize total cost of  the bulk orders.

Component Minimum MAPE Method

Rods 0% Random Forest No Outliers

Drive Section 0% Random Forest

Fuel Injection Valves 88% Random Forest No Outliers

Pumps 14% Random Forest No Outliers

Purifiers 6% Principal Component Regression No Outliers

Turbo Chargers 0% Random Forest

Table 4. Mean absolute errors for extra needs for indicative components

5. Cost Optimization Component
The cost optimization prescriptive model ties in the entire bulk order analytics framework and shifts it toward the
decision support domain by serving as a guideline on the optimal cost basis of  spare parts procurement. The model
facilitates the choices whether each spare part should be ordered more times than the nominal need of  the vessel
and whether it should be bought from maker or from the parallel market. The components of  the cost function are
the following: 

• Acquisition cost: it represents the cost of  purchase for each item. It depends on the total quantities and on
the acquisition price of  each item. What needs to be noted here is that for the two main categories of
suppliers, makers and parallels, the acquisition price changes considerably.

Where safety stock depends on the desired service level (SL). The safety stock will also be added to the
acquisition and transportation cost as it is assumed that both the target inventory and the safety stock are
bought together, considering that price fluctuations in the spare parts are not high. The safety stock follows
the formula below (Ballou, 2003).
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Where LT is the lead time, Z¬SL is the inverse distribution function of  a standard normal distribution
with cumulative probability of  the underlying service level and demand refers to the historical demand of
the  relevant  item.  For both the  lead time and average demand there are more  than 30 observations
therefore by the central limit theorem it can be said that these variables satisfy the underlying assumptions
(i.e. normal distribution) of  the above formula. 

• Transportation cost: this cost component represents the cost of  the transportation of  each item on board the
vessel. This cost depends on several parameters such as the location of  the supplier, the trading route of
the vessel, any specific requirements for clearance etc. For the purposes of  this analysis it is assumed that
the transportation cost depends mainly on the lead time which determines the transportation mode to
main logistics hubs, e.g. the Netherlands.

Empirical research indicates that there are two main regions from which ship spare parts can be sourced:
Europe and Far East (Japan, Korea and China). Without loss of  generality, we assume that around 30% of
the spare parts are sourced in Europe wherein we will assume transportation costs to be zero, given the
proximity of  the vessels and the high frequency that they call European ports. Therefore, according to the
above the final formula for the transportation cost is the below:

• Inventory Cost: this cost component represents the costs that are incurred because of  the inventory held on
the vessel. The inventory cost follows the simple formula below

where: SS is the safety stock and WACC is the weighted average cost of  capital with WACC ∈ [3%, 8%]. 

• Stock out cost:  this cost component represents the costs that are incurred when an item that should have
been on board the vessel is not. For its computation the authors present a novel approach as an inverse
function of  the Safety Stock SL variable

5.1. Acquisition Cost

The main components of  the acquisition cost are the total quantities and the purchase price. To determine the level
of  the nominal needs and any additional quantities for each product code the best performing model (the one
exhibiting the smallest MAPE) was used (see Table 3). Figure 6, depicts the final quantities (nominal + extra) for
‘Fuel Injection Valves’, and the differences created from the sourcing parameter (maker/parallel). Next, the safety
stock for each item is calculated. The average demand and standard deviation of  are computed regardless of  the
market, using past data. The lead time assumes on-hand stock availability from makers and a range between 5 and
35 days from the parallel market.
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Figure 6. Extra needs depending on the market for component ‘Fuel Injection Valves’

Lastly, to make the calculation stochastic in nature rather than deterministic, and account for the forecast errors of
the previous models for each component the forecast bias is computed, and it is determined whether there is an
over-forecasting or an under-forecasting bias. If  there is an over-forecasting bias, then the safety stock computed is
multiplied by the accuracy of  the forecast of  nominal quantities. The forecast bias is computed using the following
formula:

This forecast bias, is sometimes called the normalized forecast metric. As can be seen, the metric [-1, +1] where 0
indicates the absence of  forecast bias (Singh, 2017). Negative values show a tendency to under-forecast and positive
values to over-forecast. In a business sense, the safety stock is needed to cover needs arising from either demand
and/ or lead time variability, e.g. unplanned maintenance events or manufacturing issues at supplier. However, if  the
demand has been forecasted with a method that indicates positive bias the final quantity that will be purchased will
be unnecessarily high. This reasoning explains the final formula of  the safety stock. An example of  a positive
forecast bias for the component ‘Cylinder Liners’ is shown in Figure 7.

As seen in Figure 7, the forecast for some components tends to overestimate the quantities that will ultimately be
needed to cover the planned maintenance needs of  the vessel. Therefore, the over forecasted quantities can be used
as safety stock. This will avoid over-stocking the vessels with unnecessarily high quantities of  items that have been
forecasted with methods that exhibit high positive forecast bias. To determine the optimum service level of  each
product code exhaustive enumeration was used, as the problem size is limited and there are no problem-specific
heuristics to reduce the set of  candidate solutions to a manageable size.

Figure 7. Example of  positive forecast bias in the component ‘Cylinder Liners’
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Random service levels were used to compute the total cost of  the items and the service level having the minimum
total cost was identified as the optimum service level and was used in the final step of  the prescriptive model. The
random service levels were chosen in the range of  95% to 99.9%. As the items ordered in the bulk process are
critical for the smooth running of  machinery, this range was chosen to address business and technical needs often
found in the shipping industry. In Figure 8, one can see a high fluctuation of  the total cost (around 20%) as the
service level changes, highlighting the need to determine the optimum service level.

Minimum cost is achieved for different service levels for makers (maker optimum service level = 95.18%) and for
non-makers  (parallel  optimum service  level  = 96.31%),  which is  explained  by  the  changes  in  the  underlying
quantities which can be observed in Figure 9.

To calculate the acquisition cost of  each item the prices of  the items depending on the market were determined
using historical data.

Figure 8. Cost of  an indicative item of  component ‘Connecting
Rods’ as a function of  the service level

Figure 9. Total quantity of  an indicative item of  component
‘Connecting Rods’ as a function of  the service level

5.2. Stock-out Cost

This cost component represents the cost of  urgently re-supplying the vessel with the item, if  the existing stock runs
out. Stock-out cost is normally higher than the previous costs since there is no time to receive quotations from
several vendors or to make extensive price negotiations. When a requisition is made on an urgent basis, lead time is
of  critical importance and the transportation cost of  the shipment can be higher due to an inconvenient delivery
port and/or because there might be no additional orders to achieve economies of  scales in either airfreight, road
freight or launch boat cost. The components of  the stock out cost are analysed below:
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where is the percentage of  the times that on an urgent basis the parts are bought from the maker. For the purposes
of  this simulation we will assume a=0.5

and

where SL is the service level for each item.

where the urgency factor can be defined as -

6. Results

To evaluate the performance of  the proposed model, here on after ‘Model 1’, we are including a comparison with
the common practice in the maritime industry here on after ‘Model 2’. The results are shown in Table 5.

From empirical research, we have concluded that ship management companies do not take stock out cost into
consideration when determining the quantities needed for the fleet and the underlying stockout probability on
average is 25%. As can be derived from Table 6 there is a well expected difference in total costs after the application
of  the two alternatives, i.e. Model 1 and Model 2.

Figure 10, visualizes the difference between the total costs in the four cost components after the implementation of
Models 1 and 2.

It is evident that the cost components that drive this difference are the acquisition and the stock out costs. The
increased acquisition cost can be attributed to two main factors: quantity increase due to safety stock estimation and
alternate choice between more expensive spare parts purchased from original manufacturers over imitation spare
parts. As previously said the stock out cost of  Model 2 was calculated assuming that the actual quantities did not
account for safety stocks. Figure 11, visualizes the effect of  the probability of  stock out in actual savings from the
implementation of  Model 1. The implementation of  the model is expected to generate savings from the first year
of  implementation when the underlying probability of  stock out for Model 2 is more than 30%. 

Parameters/ Variables Model 1 Model 2

Service Level Variable [95% - 99.9%] Constant [75%]

Extra Quantities Included Not Included

Stock Out Cost Included Not included

Inventory Cost Included Not Included

Transportation Cost Included Included

Table 5. Comparison of  the Models
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Component Delta between Model 1 and Model 2

Compressors 37%

Camshaft -16%

Rods -1%

Cylinder Heads 24%

Cylinder Liners 4%

Drive Section -28%

Fuel Injection Valves -35%

Pumps -48%

Purifiers 13%

Fuel Oil System -31%

Lubricating Oil Purifiers 6%

Diesel Generator 5%

Mechanical System 170%

Pistons 35%

Shaft 160%

Turbo Chargers 9%

Total 4%

Table 6. Comparison of  total costs incurred after application of
Model 1 and Model 2

Figure 10. Percentage change across Model 1 and Model 2

What needs to be noted here is that the increased quantities purchased in the first year can be considered as an
investment which, keeping all other factors stable, would be paid back in full in the 2nd year of  implementation of
Model 1 regardless of  the probability of  stock out. In the first year of  implementation, the purchase of  higher
quantities to serve as inventory is proposed increasing the acquisition cost by 27% compared to Model 2. In total,
the acquisition cost is increased 13% accounting for the nominal purchases of  the 2 years and the creation of  a
safety stock on board the vessels. On the other hand, by implementing Model 1 the stock out cost dramatically
decreases (22% decrease) resulting in total cost savings of  around 9% as shown in Figure 12.
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Figure 11. Sensitivity analysis for stock out probability

Figure 12. Final total costs incurred for 2 years

In conclusion, the analysis indicates that the purchase of  safety stock will lead to decreased costs from the second
year  of  implementation.  The safety  stock  demands an  initial  investment  of  almost  one quarter  of  the  total
acquisition cost that, according to the model, will decrease the stock out probability, thus decreasing the total costs
of  the process.

7. Conclusions
The main objective of  this  paper is  to  propose  a methodological  approach supporting the spare  parts’  bulk
ordering process of  companies managing and operating a fleet of  vessels in the shipping industry. Studying the
literature on spare parts management in the shipping industry and its intersection with ML- enhanced forecasting
techniques and tools, confirmed the authors’ initial assumption, that the shipping industry lags behind in both
understanding and further more utilizing these techniques and tools in the every-day business practice. Literature
proves that spare parts forecasting with the use of  ML is still an area at its infancy for the companies of  the
shipping industry and that is exactly where the research presented in this paper sets its focus. That is to provide
proof  to shipping industry professionals that ML can be a useful and efficient tool that they can understand, master
and apply to their everyday practice.

The proposed approach is based on the development of  a comprehensive decision support tool able to facilitate
the process of  the bulk orders and optimize the purchasing decisions. The approach consists of  three discrete
methodological steps, each one supported by a decision support tool based on clustering and ML algorithms. In the
first step, the initial dataset is rationalized using clustering techniques to reduce the base of  analysis by identifying
the  high  interest  items.  The  rationalization  refers  directly  to  the  reduction  of  workload for  the  departments
involved in the process and the creation of  a targeted and added value subset for further analyses. The next step
involves  the  development  of  a  forecasting  tool  for  estimating  the  expected needs of  the  fleet  regarding  the
previously identified items and to test whether the needed quantity is influenced by the source of  purchase. Finally,
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in the third methodological step, a cost-related decision support tool is developed to cost-effectively allocate the
selected items to a group of  vendors.

The application of  our proposed approach produced several interesting findings that can fuel fruitful discussions
at the decision-making level  of  the companies in the shipping industry. First,  one has to note the value of
clustering, when applied to the item codes dataset. In the benchmarking dataset chosen in this paper, focusing on
the  4% of  high-  interest  items  which contribute  to  50% of  the  total  process  cost,  results  in  a  significant
reduction of  the administrative workload for both the internal departments involved in such a process as well as
the suppliers. The use of  the proposed statistical forecasting tool for the nominal needs of  the vessels, initially
produces satisfactory results (average MAPE 53%), which can potentially further improve with the training of
the  samples.  Additionally,  for  specific  components  that  show  increased  accuracy,  e.g.  fuel  oil  system
(MAPE = 10%), the tool can be used to expedite the process while decreasing the workload both for the vessel
and for the shore- based engineers. However, a further analysis including more independent variables, related to
the types of  machinery and their nominal running hours etc. could be performed in the future as they were out
of  the scope of  this paper.

In addition, the proposed prescriptive model suggests that increased quantities will potentially lead to total cost
savings of  9% versus the baseline case depicted in Model 2. This comes as a result of  the high contribution of  the
stock out cost to the total cost function. Indeed, the cost to deliver an item on board at expedite/urgent conditions
is very high. Even if  the previous exercise showed no influence of  the source of  purchase on the extra quantities,
the prescriptive model suggests an increased allocation of  items to makers. This, however, mainly stems from the
fact the makers have lower delivery lead times, thus driving the safety stock down. In summary, the application of
the proposed prescriptive model suggests an initial investment on increased safety stock that would be paid back in
full (all other factors constant) after the 2nd year of  implementation. 

Based on the results described above, the authors conclude that the adoption and application of  their proposed
methodology from shipping companies managing and operating a large fleet of  vessels has the potential to produce
meaningful  results  ranging from soft  benefits,  such as the rationalization of  the  workload of  the  purchasing
department and its third party collaborators to hard, quantitative benefits, such as reducing the cost of  the bulk
ordering process, which directly affects a company’s bottom line. Inherent limitations do exist in the proposed
approach, such as the concept of  endogeneity. In purchasing, traditionally prices are ‘manipulated’ by the choice of
the supplier. The proposed approach indirectly assumes that quantity is, among others, a function of  price, which
often is not accurate, since the price suffers from shocks relative to the choice of  the supplier. The authors, in
coordination with the case company, decided not to treat the endogeneity issue. First, because the actual business
impact  of  such  an  intervention  was  deemed  by  purchasing  executives  as  not  practical  and  efficient,  since
year-to-year price surges were spotted in just a few large suppliers and second because development was at risk in
falling into an unnecessary and not cost-effective vicious cycle, performing an iteration process in order to correct
the error between the quantity that was forecasted with a certain price and the actual quantity that might have a
different price minimum. In other words, a change in the supplier of  an item, would create a new price, and the
combination of  price-item as an input in the forecasting tool, could generate a different quantity, potentially leading
back to a different choice of  supplier/ service level etc.

Further research on the subject includes the re-evaluation of  the entire algorithmic framework using datasets with
larger breadth in terms of  independent variables and depth in terms of  observations. More specifically, with a
sizeable enough critical mass of  data, deep learning algorithms could be performed and assessed to see if  they
would  further  improve  accuracy  and  performance  indicators,  such  as  the  Mean  Absolute  Percentage  Error
produced by the statistical forecasting tool. Moreover, the companies adopting the tools proposed in this paper
should re-evaluate the P-F curves of  the critical items identified by the clustering algorithms, especially if  their
origin is from the parallel market. Retrieving and consolidating this information in a structured format from the
engineering crew onboard, in between overhauls with the bulk order spare parts, would subsequently pave the way
for a more holistic predictive/ condition-based maintenance model. The latter should gauge this improved visibility
into  the  spare  part  reliability,  when  predicting  demand  or  prescribing  outcomes  for  optimum  total  cost  of
ownership.
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