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Abstract:  

Purpose: The purpose of this study is to characterize, analyze, and demonstrate 

machine-understandable semantic process for validating, integrating, and 

processing technical design information. This establishes both a vision and tools 

for information reuse and semi-automatic processing in engineering design 

projects, including virtual machine laboratory applications with generated 

components. 

Design/methodology/approach: The process model has been developed 

iteratively in terms of action research, constrained by the existing technical design 

practices and assumptions (design documents, expert feedback), available 

technologies (pre-studies and experiments with scripting and pipeline tools), 

benchmarking with other process models and methods (notably the RUP and 

DITA), and formal requirements (computability and the critical information paths 

for the generated applications). In practice, the work includes both quantitative and 

qualitative components.  
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Findings: Technical design processes may be greatly enhanced in terms of 

semantic process thinking, by enriching design information, and automating 

information validation and transformation tasks. Contemporary design 

information, however, is mainly intended for human consumption, and needs to be 

explicitly enriched with the currently missing data and interfaces. In practice, this 

may require acknowledging the role of technical information or knowledge 

engineer, to lead the development of the semantic design information process in a 

design organization. There is also a trade-off between machine-readability and 

system complexity that needs to be studied further, both empirically and in theory.  

Research limitations/implications: The conceptualization of the semantic 

process is essentially an abstraction based on the idea of progressive design. While 

this effectively allows implementing semantic processes with, e.g., pipeline 

technologies, the abstraction is valid only when technical design is organized into 

reasonably distinct tasks.  

Practical implications: Our work points out a best practice for technical 

information management in progressive design that can be applied on different 

levels. 

Social implications: Current design processes may be somewhat impaired by 

legacy practices that do not promote information reuse and collaboration beyond 

conventional task domains. Our work provides a reference model to analyze and 

develop design activities as formalized work-flows. This work should lead into 

improved industry design process models and novel CAD/CAM/PDM 

applications, thereby strengthening industry design processes. 

Originality/value: While extensively studied, semantic modeling in technical 

design has been largely dominated by the idea of capturing design artifacts without 

a clear rationale why this is done and what level of detail should be favored in 

models. In the semantic process presented in this article, the utility and the chief 

quality criteria of semantic models (of technical information and artifacts) are 

explicitly established by the semantic processing pipeline(s). This constructively 

explains the significance of semantic models as communication and information 

requirement interfaces, with concrete use cases.  
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1 Introduction  

Designing complex machines involves the creation of design sketches and 

blueprints of various types. In addition to the primary objective of documenting the 

machine design for purposes of implementation and production, the design 

information can be utilized also in other applications. These include simulations, 

technical documentation, and virtual laboratory applications for training purposes.  

According to the current practice, producing material that is not directly related to 

core machine design is often considered merely as a “secondary” objective. Further, 

the related secondary tasks are not always directly linked to the primary design 

activities with clear requirements. As a consequence, producing the artifacts related 

to the secondary applications is sometimes detached from the primary design 

process: It might be performed by different people with other tools, perhaps even 

re-engineering data (implicitly) present in the early design process. However, to 

reduce development costs, and to meet the needs of the other designers, the 

requirements and information flows between actors need to be acknowledged 

throughout the design process. Motivation for this is relatively clear: In an ideal 

case, many secondary applications, such as part catalogues and visualizations, 

could be programmatically generated from the original, rich enough design data. 

In this article, we present an information processing architecture that captures and 

reuses the flow of semantics-aware technical information in a design process from 

design information systems to the primary and secondary applications. Our main 

use case is semi-automatically generating virtual machine laboratories from 

existing design information, including simulations for virtual prototyping purposes.  

The main contribution lies in elaborating and explaining the underlying semantic 

process related to machine design. Compared with the state of the art, instead of 

insisting a central data repository or a toolset, we emphasize the information 

protocols between different design activities in design. This yields certain 

minimalism in process planning: It captures the critical information flow in a design 

process, but leaves room for design culture specific organization of individual 

design tasks and tools. Our work culminates into introducing a novel, semantic 

process model for analyzing and managing design information flows. This provides 
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an efficient method for reusing design information using semantic data processing 

pipelines. We also demonstrate this by generating a simulation model from design 

data, utilizing a library of general-purpose simulations blocks. 

While semantic modeling methods are increasingly adopted in managing design 

information structures, pipeline-oriented semantic modeling is rather new. From our 

application point of view, semantic process perspective enables the low-cost 

semiautomatic generation of virtual machine libraries and other work products, 

secondary to traditional manufacturing. We also believe that the instructional 

aspect of this work very important, since it provides organizations conceptual tools 

for understanding and benchmarking their design processes, and promotes 

individual designer awareness (design as service vs. design as solo activity). 

We present our work in the context of a specific Semogen research project (phase I 

during 2010-2011) which studies industrial virtual laboratory production methods in 

the context of semantic modeling. Our applications are related to mobile rock-

drilling machines with a human operator. The project is mainly funded by the 

Technology Industries of Finland Centennial Foundation and benefits from the 

expertise of its industrial partners of different domains, including design and 

manufacturing, CAD/CAM development, documentation, and engineer training.  

The rest of this article is organized as follows: After this Introduction, we outline 

the background of our work in Section 2. In Section 3, we consider the elements of 

well-defined and reusable design processes in general. In Section 4, we establish 

an abstract model for semantic data processing, and consider implementations. In 

Section 5, we present a case study of generating simulations from hydraulics 

diagrams, and discuss related experiences. Finally, in Section 6, we conclude the 

article and make notes about the related trends of engineering design. 

2 Background and motivation 

In the context of progressive design paradigm (Herrman, 2010), improving design 

process flow requires first considering the process of information structuring for 

formal reuse (Troussier, Pourroy, Tollenaere & Trebucq, 1999), and then 

introducing the modern semantic modeling and computing techniques to provide 

ICT support for the tasks (Zhang & Yin, 2008; Brandt, Morbach, Miatidis, Theißen, 

Jarke & Marquardt, 2008). A practical solution of the efficient reuse problem 

involves at least three components: CAD/CAM and simulation environments, 

product data management and resource planning systems, and data processing 

tools. By using modern design tools one may readily establish a link between a 
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design activity (such as mechanics design), product data management, and 

simulation. Commercial products such as SolidWorks and Dynamic Designer provide 

tool suites for both designing and rapid simulating of specified artifacts. In addition, 

general-purpose information architectures such as DITA exist for facilitating reuse 

in technical documentation (Raaphorst & Johnson, 2007).  

Considerable research efforts have been made to develop open-source platforms for 

high level simulation software, such as the simantics.org project which provides an 

Eclipse-based framework of tools for structural data management and simulations 

(Järvinen, Puolamäki, Siltanen & Ylikerälä, 2009; Eclipse, 2010a). In general, the 

process of accessing data in a machine-readable way, or generating simulations, is 

usually based on reusable blocks or templates and automation is sought from 

added descriptions (Lucko, Benjamin, Swaminathan & Madden, 2010). Actual 

modeling has traditionally been conducted according to the Integration DEFinition 

(IDEF) modeling principles but the development of Unified Modeling Language 

(UML), and Extensible Markup Language (XML), specifications has introduced an 

option of using new, perhaps more easily applicable technologies and tools for the 

task (Noran, 2000). Using more formal models not only enables data integration 

but also automated inconsistency handling (Almeida da Silva, Mougenot, Blanc & 

Bendraou, 2010). 

Database-centric design paradigm has also renewed its popularity. The recent 

TIKOSU project (2009-2011) emphasizes database centric design of machine 

control systems by defining the linkage between these artifacts across process 

boundaries, establishing a centralized, single source data repository. As a part of its 

activities, the project reviewed several system engineering data models such as 

Föderdal information architecture, AutomationML, PG-Pla-INC project, GENESYS 

project, Vector informatik’s eAsee tool, CANopen XML specification, PLCopen XML 

specification, AP233 of ISO 10303, ASAM automotive specifications (Alanen et al., 

2011). It is noteworthy that according to the current systems, formal design 

information models typically emphasize "static" data structures and not to the 

automated pipeline processing aspect of the design information flow between 

different designers and design tasks. Indeed, some authors suggest that integrated 

design should cover both data/knowledge modeling and process planning aspects 

(Ramana & Rao, 2004). In particular, in design systems, tool integration is often 

largely accomplished by data transfer or data integration via a central data store, 

neglecting the requirements of the work processes, and communication in the 

design team is only supported by generic tools like e-mail, video conferences, etc., 

which are not integrated with engineering design tools (Marquardt & Nagl, 2004).  



Journal of Industrial Engineering and Management - http://dx.doi.org/10.3926/jiem.329 

 

- 674 -  

 

However, well-established technologies do exist for asserting general requirements 

and protocols on the business logic and on the structural information level; consider 

OASIS Web Services Business Process Execution Language (OASIS, 2007), Ant 

processor DITA (Raaphorst & Johnson, 2007), or XProc: An XML Pipeline Language 

(Walsh, Milowski & Thompson, 2010). Combined with traditional and modern 

engineering design (Pahl & Beitz, 1996; Airila, Pietola & Kuuva, 2001), these 

provide the necessary processing methods also for design engineers. In turn, 

however, this shifts the attention from the manually managed global repositories to 

the information signaling interfaces between design tasks. 

In Finland, methods for strengthening design processes have been extensively 

studied over the past several years. Perhaps the two most significant research 

initiatives include the national Technology programme of Mechanical Engineering 

MASINA 2002-2007 (Tekes, 2008) and the national Technology programme of 

Digital Product Process DTP 2008–2012 (Tekes, 2010). In addition to the particular 

advancements, the strategic message is relatively clear: First, the simultaneous 

design of different technical processes is inevitable in order to develop modern, 

optimized products (Lehtonen, 2006). Second, digitalization of the design (product) 

processes, in particular during the early stages of design play a key role in 

establishing competitive advantage in companies of the global market (Ventä, 

Taklo, & Parviainen, 2007). The entire domain of mechanical engineering research 

in Finland has also been evaluated in 2000-2007 by international experts (Lensu, 

2008). Among other things, the main recommendations include putting more 

emphasis on fundamental research supporting the long-terms needs of industry and 

encouraging interdisciplinary collaborations in engineering research.  

For us a very practical motivation for studying the semi-automatic generation of 

virtual machines originates from already (manually) implementing several 

laboratory environments with industry partners (Ranta, 2005; Palonen, Leino, 

Koskinen, Ranta, Punki, & Mäkelä, 2007; Markkula, Rokala, Palonen, Alarotu, 

Helminen, Koskinen, Ranta, Nykänen & Salonen, 2011), and concluded that many 

of the steps could be automated. However, to do so, the semantic information flows 

in the machine design process should be elaborated. With this respect, our related 

work includes, e.g., semantic modeling, computing, and interpretation studies 

(Nykänen 2007; Nykänen, 2009a; Nykänen 2009b) and research about the various 

aspects of designing and modeling hydraulics systems (Leino, Koskinen, & Vilenius, 

2005; Markkula, 2009; Virta, Aaltonen, Koskinen & Vilenius, 2009). 
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However, practice shows that the systemic complexity of design information, 

systems, and methods is a fundamental issue. Also, many design and consulting 

companies are quite small which raises practical concerns. For instance, about 80% 

of the 223 Finnish Association of Consulting Firms SKOL (2010) member 

organizations in Finland have less than 31 employees. Thus, adopting new design 

practices boils down to process ownership and HR management: Introducing the 

role of a knowledge engineer to lead the semantic design information process. In 

practice, this role might be distributed among the project manager and the chief 

engineers. For brevity, we do not consider the managerial aspects in detail in this 

article (Malhotra, Heine & Grover, 2001; Danilovic & Browning, 2007). 

3 Elements of a well-defined and reusable design process 

A stereotypical product life cycle includes product planning and marketing, 

engineering design, manufacturing, order management, production and 

procurement, and customer delivery and service, including after-sales and 

maintenance. An ideal engineering design process may further follow the activities 

of identification of a need, background research, goal statement, performance 

specifications, ideation and invention, analysis, selection, detailed design, 

prototyping and testing, and production (Norton, 2008), often aligned with 

agreement, technical, and evaluation processes. However, if the success and cost 

indicators of design projects fail to credit “forward thinking”, there is a danger of 

local (over)optimization of individual design activities and tasks. Thus, to optimize 

the utility of design information, two central challenges of design projects need to 

be acknowledged. We call these the coordinated process challenge and the 

semantically rich modeling and computing challenge.  

3.1 Coordinated process challenge 

In progressive design, each design step should ideally aim serving the needs of the 

other steps: The following step(s) should be served with information, the preceding 

steps with reasonable requirements. The worst-case scenario involves “re-

engineering” artifacts of the earlier design stages (Hislop, Lacroix & Moeller, 2004). 

Good practices enable not only efficient but also sustainable development (Ramani, 

Ramanujan, Bernstein, Zhao, Sutherland, Handwerker, Choi, Kim & Thurston, 

2010). In both cases, initial design decisions play a central role. 

Coordinated process issues typically result from unclear practices or missing 

protocols for exchanging information. Problems typically culminate when 

professionals from different disciplines meet. For instance, “hard” machine 
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engineering designers are often unaware of the technical information requirements 

posed by “soft” after-sales application developers, and viceversa.  

Perhaps the most widely applied, structured design process framework is found 

from software engineering: The (IBM) Rational Unified Process (RUP) (Kroll & 

Kruchten, 2003; Kroll & Royce, 2005). RUP is an adaptable development process 

framework that is tailored by the development organizations according to their 

needs. Note that general frameworks also help identifying concrete tools, such as 

composer and management tools, wikis, and issue trackers (Eclipse, 2010b). 

In the machine design context, we may now use RUP for helping to answer the 

questions like "What are the elements of a good machine design process in 

general?" or "What elements is a particular machine design process missing?" RUP 

points out several nice practices applicable in the machine design context: 

 Project lifecycle takes place in four phases (in which iterations may take 

place): Inception, Elaboration, Construction, and Transition. In particular, 

the Inception and the Elaboration phases suggest setting clear 

requirements, constraints, and key features before Construction. 

 Work is takes place around Roles (who), Work Products (what), and Tasks 

(how). This provides concepts for identifying a specific design task in a 

system of manageable units and interfaces. 

 There are six engineering disciplines: Business and Modeling, Requirements, 

Analysis and Design, Implementation, Test, and Deployment. Thus, system 

engineering is not “only technical designing”; specific design tasks must be 

accompanied with e.g. process management which in our case requires the 

identification of and coordination with other activities.  

 There are also supporting disciplines, including Environment, Configuration 

and Change Management, and Project Management. In our case, the 

Configuration and Change Management suggests acknowledging the 

configuration (versioning) management of design information. 

 General best practices minimize faults and maximize productivity, namely: 

Develop iteratively, Manage requirements, Use components, Model visually, 

Verify quality, and Control changes. These serve as rules of good 

engineering in general, suggesting active collaborations and seeking means 

to use external tools and representations to manage the process. 
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This helps identifying success criteria for well-coordinated design processes: 

 The measures of design productivity and costs must be established on an 

appropriately high management level, based on Business and Modeling 

and/or Project Management principles. (Not only within a particular phase 

or “core” engineering discipline.) 

 The roles of designers and the work products need to be explicitly identified, 

setting concrete requirements and protocols between project activities. (Not 

only agreed informally between expert designers.) 

Equipped with this insight, we will next consider our second challenge.  

3.2 Semantically rich modeling and computing challenge 

The second challenge results from the inherit complexity of an engineering process. 

Ideally, the design process is properly modeled (OMG, 2008) and the relevant 

design information can be read from the properly encoded design documents. In 

practice, processes may be poorly described and reading design documents may be 

difficult for humans and impossible to software. Writing out implicit information in 

design documents, however, may introduce additional work. Thus, concrete 

benefits must be pointed out by project management-level indicators. 

The first step in addressing the challenge lies in understanding the typical elements 

of information in a design task. In practice, even very restricted design tasks 

involve using lots of models, specifications and model-specific attributes. Troussier, 

Pourroy, Tollenaere and Trebucq (1999) identify over twenty categories of 

attributes related to a particular well-defined mechanical design analysis case. 

Ideally, these specifications would automatically match the needs of the other 

design activities. In practice, however, this requires sufficiently formal information 

interfaces between design activities. Since information needs may vary upon 

application (e.g. a simulation model or a simple pass/fail simulation outcome), 

information interfaces should be introduced upon concrete needs.  

In this context, semantic modeling means writing out the meaning of the given 

structures with respect to a certain application in a machine-processable way, 

without having to understand them in per se. This typically involves describing the 

classifications and relationships of the design artifacts with respect to some 

common domain model and/or theory. For instance, a specific block in a CAD 

design might be described as a component of a specific type, drawn from machine 

component ontology (e.g. as a pump). This added piece of information would then 
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allow automatically integrating the block with a simulation model in a later design 

activity (e.g. with a generic Simulink “pump” model with few parameters). 

Technically, this requires three things: First, identifying the desired (e.g. CAD) 

block with a well-defined reference, second, classifying the identified object with 

respect to some controlled vocabulary, and third, acknowledging the context of this 

information with respect to a semantic design and application process. Equipped 

with this information, one can then semantically compute with the data. 

By semantic computing we mean “computing with (machine processable) 

descriptions of content and (user) Intentions” (IJSC, 2010). In our context, this 

means describing data semantics with respect published common data models and 

theories, and then making queries and other computations on the level of the 

encoded descriptions. For instance, simply knowing that a component “a10” in a 

hydraulics design is a kind of a hydraulic pump, that hydraulic pumps are machines 

(now in the sense of abstract physics), and that machines typically create heat as a 

byproduct, allows pinpointing components that produce heat in a system.  

Typical machine design activity takes place iteratively, starting from problem 

definition and sketching. In a semantic process, these should capture both design 

insight and information requirements. For instance, a semantically rich, machine 

readable sketch of a machine simulation model not only captures the design insight 

of a particular simulation implementation, but also points out what information is 

assumed to be requested from the preceding design activities (such as mechanical 

design, component list, and machine-specific parameters and attributes). 

Optimizing the global design cost might suggest moving information production 

responsibilities downwards in the global information consumption food chains, to a 

point where further delegation would introduce additional costs.  

When considering specific technologies for the semantic modeling part, good 

candidates exist. Considering the modeling part, perhaps the most obvious general-

purpose technologies for semantic modeling are provided by the W3C Semantic 

Web technologies (W3C, 2010; Gómez-Pérez, Fernández-López & Corcho, 2004; 

Ellemang & Hendler, 2008). Perhaps surprisingly, adopting a good, specific 

semantic machine description (etc.) vocabulary is much more difficult. While 

general-purpose technical vocabularies exist (including the licensed ones, see, e.g., 

(SFS, 2008) and similar standards), precise global vocabularies are not always 

available or used in hands-on design – particularly when PDM systems does not 

support or require this and when designers adopts ad hoc terminologies. Thus, 

unless using standard classifications is systematically insisted on the level of project 
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quality control, at the early stages of adoption, semantic processes are likely to 

capture "only" the terms of the local design culture. Using standard names, 

however, is crucial for machine processing and transfer. Once a proper process is 

followed, benefits cumulate and motivating should become easier.  

From the semantic computing perspective, we may perceive the design process in 

terms of a semantic data processing pipeline: The data processing pipeline consists 

of tasks pointed out by the project coordination, where each task transmits 

information as requested by the design (sketching) activities. Depending on the 

technical design of the pipeline and the formality of the data, the data processing 

pipeline may be used for documenting information interfaces, validating information 

requirements, and even automatically processing technical design data and thus 

generating new applications. Pipelines may also encode information that is simply 

useful for informal designer communication (common map or reference).  

We may now outline success criteria for semantic modeling/ computing as follows: 

 Semantic modeling that is required to capture design information has two 

main use cases: Capturing design insight for the purposes of the particular 

engineering task and asserting formal information requirements for the 

preceding activities. In other words, design activities are not independent, 

but linked though well-defined inputs and outputs. 

 For purposes of automated information processing, a progressive design 

process may be technically modeled as data processing pipeline which also 

points out a framework for particular semantic computing components. 

 While acknowledging the coordination challenge, the specific organization of 

a data processing pipeline should reflect the actual organizational structure. 

In other words, the pipeline structure is due to both the abstract 

information requirements and the concretely assigned employees' tasks.  

In practice, this may require re-thinking designer roles and responsibilities. 

4 Thinking in terms of semantic processes  

In a design organization, we may identify three kinds of top-level processes: 

 The business process, which sets the general objectives, success indicators 

and constrains on the organizational level. If the business process fails on a 

critical level, the entire organization may break down. 
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 Organizational quality control processes, which among other things define 

the stereotypical structure of design projects within the organization. This 

typically includes setting the principles of staffing, process activities and 

models, documentation practices, tools, project-level progress measures, 

and organizational learning feedback loops from the completed projects. 

 Concrete project processes, which are related to ongoing projects with 

specific objectives, resources, and timetables. In our case, these are 

typically engineering design projects for external customers. If the project 

processes succeed, a learning organization will perform better and is likely 

to favor the successful project patterns in the future. 

Now, semantic process thinking appears both on the level of quality control 

processes (2) and on the level of concrete project processes (3), within the 

constraints of the business process (1). In particular, appreciating semantic process 

thinking on the level of organization quality control (meta) processes requires 

acknowledging the fact that besides tools, also common project policies and 

protocols are needed. Further, unless local activity costs are analyzed with respect 

to global cost savings, there is a risk of trying to (in error) minimize business costs 

by minimizing each design activity costs individually. 

Equipped with this insight, let us then analyze semantic processes on a project 

level. Assume we would like to generate virtual machine laboratory applications 

from design information, e.g., prototyping or training purposes. Consider capturing 

the flow of information in a related machine design process, as depicted in an 

intuitive example depicted in Figure 1.  

 

Figure 1. An intuitive example of a semantic design process 

Clearly, the example is an oversimplification since, e.g., all activities, feedback 

loops (e.g. negotiating information requests and responsibilities), and internal 

iterations with sub-activities are not specified. Nevertheless, it helps pinpointing 

critical properties of the task: Organize work into modules of activities with clear 

information interfaces, set requirements for critical information to enable fluent 

information flow and reuse, establish a working culture (and indicators) to support 



Journal of Industrial Engineering and Management - http://dx.doi.org/10.3926/jiem.329 

 

- 681 -  

 

rational division of labor, and provide tools to designers both for transforming data, 

generating applications and for validating the information they produce. (Compare, 

with requirements-based testing in software engineering as in Sommerville, 2004). 

Note that semantics appears here in three complementary roles: 

 Designer communication and design process management, e.g., sharing a 

common terminology and asserting well-formed information requirements. 

 Automated data processing, e.g., generating drafts of documentation or 

simulator models utilizing enriched technical design data with machine-

processable semantics (reusing data provided by the preceding activities). 

 Novel end-user applications, e.g., introducing applications that allow end-

users to (semantically) search and visualize information based on the well-

defined semantic concepts of technical design. (In our case, a complete 

end-user application includes a semi-automatically generated virtual 

machine laboratory including interactive, linked simulation models, 

diagram/3D views, and component catalogues). 

Depending on the management objectives, a semantic process may be interpreted 

informally (a collaboration metaphor for coordination and management), semi-

formally (intuitive information interfaces and best practices for encoding technical 

data), or formally (data interfaces with machine-readable semantics for purposes of 

automated validation and processing). Note that conceptually, the semantic search 

provides a strong basement for various kinds of end-user applications, also in cases 

when the query language is not visible to the end-users. The semantic search can 

also cover the current or the recorded state(s) of the dynamic simulation and the 

semantic model might be modified dynamically (by run-time update), which opens 

up interesting analysis, prototyping and training possibilities.  

A successful semantic process should have positive learning and cumulative 

knowledge gain effects within organizations. In brief, this means two things. First, 

we would like to minimize the “extra” work effort in enriching design data (activity 

A5 in Figure 1), by increasing the reusability and utility of the actual design data. 

Second, we would like to increase the volume of good and reusable legacy input 

from the past projects, establishing a positive information reuse cycle between 

projects (activity A1 in Figure 1).  
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4.1 An abstract model of a semantic data processing system 

Let us next focus onto the specific data processing needs of the semantic process.  

 

Figure 2. A semantic data processing system: Activities (A), processing targets (T), 

communications schemas (C), and information requirement schemas (R) 

We define a semantic data processing system as a quadruple (A, T, C, R) of 

(directed, feed-forward) graph of activities (A), processing targets (T), 

communication schemas (C), and information requirement schemas (R). For an 

example, see Figure 2 above. 

We may consider a semantic data processing system as a special kind of data 

processing pipeline (compare with, e.g., Walsh, Milowski & Thompson, 2010). The 

graph of activities (A) establishes two data processing roles, indicated with the 

directed arcs: information provider and information requestor (or consumer). The 

graph points out the critical information paths of the system: When an activity Aj 

requests information from a providing activity Ai (the graph includes a directed arc 

from Ai to Aj), processing Aj as a processing target Tj depends on the activity Ai.  

The communication schemas define the basic communication protocols between the 

directly connected activities. When activity Aj requests information from a providing 

activity Ai, a formal communication schema Cij may be asserted. This enables 

validating that Ai transmits information in a format that Aj claims to understand. 

Besides rudimentary structures and references, communication schemas typically 

introduce shared controlled vocabularies and formal ontologies.  

The information requirement schemas (Rji) are used for asserting strong, particular 

information requirements between the directly connected activities to validate the 

actual information content. This may include, e.g., checking names, instance data, 

and cardinalities, and performing arbitrary calculated tests. Note that information 

requirement schemas are typically more activity-specific than communication 

schemas. For instance, in a certain application one may adopt the policy of using a 

single communication schema for the whole network (e.g. RDF/cXML) and then 

assert specific information requirements per activity. Also, asserting information 
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requirement schemas typically requires a more expressive schema language than 

asserting mere communication schemas.  

 

Figure 3. Target processing related to information objects. The arrows represent the 

transformations of information objects between different activities 

An analytical definition of information requirements schemas can be pointed out by 

organizing the data outputted by an activity Ai into an explicit set of abstract 

information objects aih associated with (semantic) properties piht, { <aih, piht> } (for 

an illustration, Figure 3). As a consequence, a processing target Tj may now be 

perceived as a transformation from the sets of the requested information objects to 

the set of the provided information objects. This involves both acknowledging the 

identity of information objects and asserting their properties, where the modeling is 

due to the actual information requirements. 

4.2 Semantic modeling for machine design projects 

We may use the term ontology to denote an explicit specification of a shared 

conceptualization. For instance, the classes and instances that are used to describe 

a machine design might be called ontology. In an abstract treatment, however, the 

general term ontology should not be confused with a specific knowledge 

representation language, such as the Web Ontology Language (OWL). In many 

cases, a less expressive ontology language, such as the SKOS Simple Knowledge 

Organization Language, RDF Schema, or a even well-designed XML Schema –based 

markup language, is sufficient. Also, it is possible to interpret some of the formal 

entailments in applications in a non-orthodox way (Nykänen, 2007). 

In engineering, ontologies should be designed with concrete use cases in mind. 

Following a typical modeling practice (Gómez-Pérez, Fernández-López & Corcho, 

2004; Böhms, Leal, Graves & Clark, 2009), we may organize the semantic models 

related to a semantic process into three layers. These include the top-level 

management and integration ontologies, various engineering design (domain) 

ontologies, and specific design (instance) data related to particular design artifacts 

or products (Figure 4). 
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Figure 4. A simplified information architecture for machine design 

In brief, the top-level enterprise ontology provides the common framework for 

integrating all data within an organization. The design project ontology introduces 

the concepts of the machine design process, such as phases, activities, objectives, 

work products, tasks, and roles. It also refers to the semantic process ontology, 

which defines the concepts of a semantic process, including targets, critical 

information paths, and communication and information requirement schemas. Quite 

obviously, the information captured by the design project and semantic process 

ontologies should be aligned. Thus, the semantic process should enable capturing 

how to reach the objectives of the project. 

The common engineering design (domain) ontologies then provide the concepts to 

capture the design structures related to, say, mechanical, hydraulics, simulation 

engineering, and virtual machine laboratories. When a formal formulation of the 

project deliverables and requirements is needed with respect to some application, 

the design ontologies might be complemented with application ontologies. This 

might be required for validating project deliverables, or simply translating 

information to end-user concepts in applications. 

Finally, the knowledge elicitation and product modeling layer encodes information 

specific to various projects. This typically includes the instance data that is 

produced and consumed in project activities, and interpreted with respect to the 

ontology framework. Note that while all information in the above information 

architecture is clearly subject to change and needs thus to be properly versioned, it 

is usually assumed that the daily hands-on design activities mostly modify 

information on the knowledge elicitation and product modeling layer. In particular, 

the pace of evolution of the underlying semantic standards is typically much slower 

than of the given instance data (Nykänen, 2009a). 

Of course, on the implementation level, the ontology landscape might be more 

detailed. For instance, it typically makes sense to organize ontologies into several 
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modules, e.g. by separating specific constructions from the general-purpose 

components. Also, separating the top-level enterprise ontology and design project 

ontology allows extending the design with new ontology components, e.g. related 

to life-cycle management. In turn, this also suggests complementing product 

design information with life-cycle information of deployed products. When the 

overlap between different (3rd party) engineering ontologies becomes problematic, 

e.g. when the same concept is defined in several places, one may add mapping or 

translation ontologies, etc. 

The above information architecture is linked to semantic data processing pipelines 

in two major ways. First, the activity and the requirements structure of the 

semantic data processing pipeline is designed using the concepts of the semantic 

process ontology and linked with the design project ontology. Second, the 

communication schemas are designed using the engineering ontologies.  

4.3 Notes about implementation 

The basic insight of project management lies in recognizing that teams need to be 

given a clear goal, educated about the process methods, and providing guidance 

and tools for successfully applying the methods throughout the project. More 

formally, abstract semantic processing must be linked with the concrete and well-

defined project activities. This boils down to well-defined roles, work products, and 

tasks: People perform certain activity tasks and are responsible for certain 

validated work products, in concert with the project timeline and objectives.  

 

Figure 5. Roles, work products, and tasks in a semantic process 

Figure 5 captures a more detailed example of the two activities from Figure 1, 

namely Preliminary Analysis and Legacy Input and Hydraulics Design, and 

introduces a previously hidden activity: Ontology Modeling. The basic idea is that 



Journal of Industrial Engineering and Management - http://dx.doi.org/10.3926/jiem.329 

 

- 686 -  

 

three roles are identified (in the scope of the given process fragment): Chief 

Engineer, Knowledge Engineer, and Hydraulics Engineer. Chief Engineer performs 

the tasks of Legacy Input identification and Concept Design, and participates in the 

Ontology Modeling task. Hydraulics Engineer performs the Hydraulics Design task 

and participates in the Requirements Design task in the Hydraulics Design Activity. 

Knowledge Engineer performs the tasks of Semantic Annotation, Delivery & 

Automated Processing, Requirements Design, and Ontology Modeling, in 

collaboration with the respectful machine design engineers. The identified work 

products include CAD (etc.) legacy documents, semantic descriptions, formal 

requirements (as schemas), partially automatically generated activity output 

documents, and the top-level ontology (etc.). (To make the figure less cluttered, 

the responsibilities are omitted.)  

Perhaps the simplest approach to implement a development process is to model the 

work breakdown structure and automated data processing in terms of a file system, 

interpreted with respect to suitable project and semantic process ontologies. In 

brief, this allows easy versioning of data collaboratively (e.g. with SVN (Apache, 

2010a)), applying integrated development environments such as the Eclipse 

(Eclipse, 2010a), and using general-purpose pipeline data processors such as the 

Apache Ant (Apache, 2010b) or the Wille Visualisation System (Nykänen, Salonen, 

Haapaniemi & Huhtamäki, 2008; TUT, 2010). This also allows benchmarking the 

approach with respect to well-known architectures, such as the Darwin Information 

Typing Architecture (DITA) (Raaphorst & Johnson, 2007).  

Technical semantic modeling may be based on the Semantic Web technologies. 

Besides the taxonomies for capturing or design cases, we have developed a 

canonical application profile of RDF/XML called RDF/cXML to capture semantic data 

in the data processing pipeline. This allows a dual interpretation of data (either XML 

or RDF interpretation) which means that both XML and RDF schema languages and 

processing tools are applicable (Nykänen, submitted). Asserting information 

requirement schemas in ISO Schematron is thus possible. This enables asserting 

very expressive requirements, even without ontologies in description logic.  

Reading data from the legacy file formats requires application-specific adapters. 

However, the elicitation process involves not only exporting authentic design 

structures from legacy design systems, but also further describing these structures 

semantically, when necessary. As a rule of thumb, our application experience 

suggests that it makes sense to enrich legacy data using relatively simple means: 

The bottom line is that design practices require that significant structures are 
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appropriately named and grouped for reference. Adding semantic structures to 

legacy design data (e.g. CAD) makes sense if semantic information can be injected 

into the editor GUI palette or macro level. A sufficient level of richness of semantic 

information has been reached when design data, PDM information (etc.), and 

semantic ontologies can be linked in a programmatic way. 

The information requirement schemas provide concrete validation tools for 

designers, since they allow providing explicit feedback to designers, e.g., as “Your 

design can be interpreted mechanically only up to 55%”, based on an evaluation of 

related ISO Schematron assertions. However, a major caveat against easily 

understanding this feedback is that information requirement schemas are typically 

evaluated with respect to the exported information (in XML), not the editing view in 

the legacy design system (e.g. a visual CAD graphical user interface). 

5 A Technical case study 

To demonstrate our approach in practice with specific technologies, we shall next 

discuss a simple design case using the data provided our industry stakeholders. 

5.1 Scope and design 

We received real-world design data of an operator-driven rock drilling machine. 

This source covers multiple aspects of the machine’s design, including hydraulic 

diagrams, mechanical models and controller-area network (CAN) design. We also 

had access to previously implemented simulation models of individual machine 

components. The material was mostly provided in original formats, including 

confidential reference information (in Vertex HD, CANopen, and PDF formats). We 

shall next consider a case study based on a restricted subset of the material, with 

the general objective to semi-automatically generate simulation models from the 

semantic information present in the hydraulic diagrams. Simulation models for 

other design domains such as CAN, can be generated similarly. 

The pivotal information source was a hydraulic diagram that was created with the 

Vertex HD hydraulic design software, with added semantic information. The 

diagram was drawn to model a simplistic, yet fully functional hydraulic system 

containing the following parts: a cylinder, a control valve, a pressure relief valve, a 

filter, a tank, a pump and connections (hoses and pipes) between components. In 

the HD design activity, the full hydraulic diagram was composed by creating copies 

(instances) of the macros and connecting these macros together with hydraulic 

volumes (hoses), where volumes are connection lines with type code. Bridging 
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different models succeeds only if shared schemas are followed. Thus, since 

hydraulics designers do not typically follow a formal typing or naming scheme for 

objects, the names of components and properties needed to be corrected. 

In this case, the simulations were to be compiled from a pre-defined library of 

parameterized simulation models of hydraulic etc. components. In brief, this 

allowed mapping models with the enriched reusable macros of the CAD drawings. 

Programmatic access to design information was due exporting well-defined 

structures from the Vertex HD format using a proprietary SVG adapter, thus 

providing access to data in relatively simple XML. 

 

Figure 6. A depiction of a macro with its common attributes in Vertex HD 

To provide semantic data about components that could be used in later stage of 

generation process, we also included common attributes to the CAD drawings. For 

instance, in a cylinder (Figure 6), common attributes were used to store 

information about the related area, diameter and different forces that could be later 

used as parameters in simulation. In production, some of this information should be 

included to a mechanical model or PDM since it is typically not included in the 

hydraulics design. However, the information which connects the structure and the 

semantics of the hydraulic diagram with the structure and semantics of the 

simulation models, should be part of the semantic processing pipeline definition.  

5.2 Generating a simulation model 

Once the semantic process of the case study was specified, it pointed out an 

automated generation process, performed in several steps. First, the hydraulics 

diagram designed in Vertex HD was first exported from a proprietary format to 

XML/SVG for further processing. Second, information from the exported SVG was 

extracted into a canonical form in RDF/cXML: 

<!ENTITY semogen "http://www.tut.fi/projects/semogen/" > ... 
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<rdf:Description rdf:ID="comp-3_21"> 

  <rdf:type rdf:resource="&semogen;hydraulicCylinder"/> 

  <dc:identifier>E3_21</dc:identifier> 

  <dc:title>Cylinder</dc:title> 

  <semogen:pistonDiameter>100</semogen:pistonDiameter> 

  <semogen:hasPort rdf:resource="#port-2_21"/> 

  <semogen:hasPort rdf:resource="#port-2_22"/> 

  <semogen:hasPort rdf:resource="#port-2_23"/> 

</rdf:Description> 

<rdf:Description rdf:ID="port-2_21"> 

  <rdf:type rdf:resource="&semogen;hydraulicPort"/> 

  <dc:title>Piston</dc:title> 

</rdf:Description> 

 

Hydraulic components, ports and their connections (pipes) are modeled as RDF 

resources with references to a project-scope RDF-based hydraulics schema. 

Selected common attributes are translated into RDF properties, in order to carry 

the information objects encoded into design documents into the semantic model. 

As a third step in the generation, the templates of component-specific simulation 

models (selected from the predefined Simulink library), with generation-specific 

parameters, are linked to the RDF/cXML data. For instance, components typed as 

hydraulic cylinders are linked to a cylinder template in the schema (e.g. triple 

semogen:hydraulicCylinder semogen:hasSimulationModel “cylinder”). 

Finally, a custom generator component (using Apache Ant and Python) was used to 

output a script that generates the simulation model. In this step component- and 

instance-specific parameters are also added. For instance, in order to generate the 

simulation block for the cylinder, the following code can be generated: 

add_block('Semogen/Hydraulics/Cylinder', 'system1/comp-3_21'); 

set_param('system1/comp-3_21', 'D_piston', 100); 

set_param('system1/comp-3_21', 'stroke', 300); 

 

Connecting signal lines due hydraulic pressure lines can also be added by scripting. 

As suspected, the maturity of the resulting Simulink model depends on the well-

formedness of the source data. Outside the laboratory environment, it may be 

tricky to connect signals between Simulink components in a fully automated 

fashion, since this requires careful book-keeping of names (Figure 7).  
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Figure 7. Excerpt of a simulation model in Simulink 

However, once the generation pipeline utilizing the semantic process is functional, 

changing the configuration and the parameters of HD models is relatively easy, and 

the generation can be quickly recomputed. Designers can also modify the 

simulation models directly in Simulink. This also provides a natural way to develop 

new component simulation models, to be added to the library for automatic 

generation. Note that some of the global properties of the simulation model are 

partly due to the properties of the individual component models. For instance, an 

acceptable step size of the global simulation model typically depends on the design 

of particular simulation component. Once generated, the simulation model does not 

Simulink since an executable can be generated, including a network interface which 

provides simulated data for applications, such as browser-based view applications.  

5.3 Discussion 

While manual engineering is still needed both in the hydraulic diagram design and 

in design of the simulation components, the above semantic process 

implementation allows a notable part of the simulation to be automatically 

generated. As the generation is based on the semantic model, simulation models 

and the configurations of components can be added in a similar fashion, regardless 

of their design domain (hydraulics, CAN, mechanics, etc.). We may thus consider 

the generation application as configuration management problem: Doing things for 

the “second time” gets much easier since old diagrams may be effectively used as 

templates, and eventually taken into account in CAD macro design.  

With respect to the current (legacy) engineering design processes, some challenges 

exist. First, rigorous codification of names and structures may require rewriting 

design macros, and the related features in legacy applications. Second, semantic 

processes and the generation applications introduce needs for new kind of 

information that are not explicitly produced in a legacy design process. As a 

consequence, the designer roles need rethinking (who is responsible to create what 
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information). Also, the information placeholders and tools need to be identified 

(which tool is used and where the data are stored). In addition, the role of 

component manufactures as information providers requires rethinking. While it 

currently does not seem realistic to try to generate simulation models from exact 

component blueprints, it would still be beneficial to retrieve component data in a 

precise, semantic form. The challenge, of course, lies in identifying the subtle level 

of detail in the access to sensitive design information so that enough information is 

available for purposes of fruitful 3rd-party semantic processing (e.g. generation), 

but not too much (e.g. for purposes of non-licensed component manufacturing).  

Considering the tool chain, it seems that to maximize the amount of automation 

also the design tools need to evolve. For example, representing semantic structures 

and performing information validation might be considered as natural properties of 

CAD and authoring tools. Syntactic and semantic extensibility are also important. In 

particular, while the use of RDF for data modeling in favor of, e.g., proprietary XML-

based file formats requires some additional work in the beginning, it pays off in the 

semantic integration and validation applications in the end. 

6 Conclusion 

In this article we have identified and specified the concept of a semantic process for 

engineering design. The basic idea is to analyze a design process from the 

perspective of critical (semantic) information paths, and to establish a rational work 

break-down model with well-defined information interfaces for validating and 

processing design information. We have also demonstrated semantic process 

thinking in terms of a restricted simulation generation use case, which enables 

rapid prototyping and simulation of machines based on relatively simple sketches. 

In brief, we believe that semantic process thinking may be widely applied, and that 

it helps improving and implementing positive learning and concrete design 

information transfer policies within organizations. 

Our work continues in two fronts, studying the issues of particular design 

applications, and adapting the semantic process model in the context of 

mainstream process tools. In particular, semantic process thinking should become 

even more attractive when a complete product life is considered: The machine end-

user application/after-sales phase is typically much longer (and profitable) than the 

design phase. In turn, we expect that this work might also lead into improved 

industry design process models and novel CAD/CAM/PDM applications.  
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In applications, the main challenge lies in managing the inherit complexity of the 

task, with respect to both coordination and semantic computing. As such, the 

semantic process may also be simply used as a model for existing process analysis. 

Regardless of the level of implementation, however, one must take both the 

technical and the social system properties into account. Experience shows that 

concerns related to personal credit, intellectual property rights, and protection of 

business-sensitive information lie in the very core of processes, and need to be 

acknowledged in concrete projects. Indeed, the significance of proper policy 

management (clear rules for giving and receiving credit) gets typically highlighted 

in general data sharing systems research (Smith, Seligman & Swarup, 2008). 

Besides the particular applications of the Semogen research project, motivation for 

this work can be found from the broader context of design engineering. According 

to the Finnish Association of Consulting Firms SKOL (2010), the volume of services 

of its member companies (mostly industrial and construction) in 2009 was 1.2 

billion euros which means a big design business. Manufacturing and design 

industries, however, are undergoing significant structural changes in industrialized 

countries. Large companies tend to move manufacturing to countries “close to 

customers”, and/or to countries with cheaper production costs. Design industry will 

likely follow this trend, and countries (losing jobs) and organizations (losing 

customers) suffering from globalization need to rethink their strategies. In Finland, 

a recent national report about digital design/product process points out that 1) “the 

more challenging design activities” and 2) the design activities that are able to 

“increase their productivity/extent of value added”, are more likely to remain in 

Finland (Ventä, Taklo & Parviainen, 2007: page 25). Still, it is estimated that up to 

15-20% of the (design) services are at risk. Thus, the importance of introducing 

more powerful methods to design industry must be acknowledged.  
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