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Abstract:

Purpose: The purpose of  this paper is to describe the implementation of  a Fleet Management System
(FMS) that plans and controls the execution of  logistics tasks by a set of  mobile robots in a real-world
hospital environment. The FMS is developed upon an architecture that hosts a routing engine, a task
scheduler, an Endorse Broker, a controller and a backend Application Programming Interface (API). The
routing  engine  handles  the  geo-referenced  data  and  the  calculation  of  routes;  the  task  scheduler
implements algorithms to solve the task allocation problem and the trolley loading problem using Integer
Linear Programming (ILP) model and a Genetic Algorithm (GA) depending on the problem size. The
Endorse Broker provides a messaging system to exchange information with the robotic fleet, while the
controller implements the control rules to ensure the execution of  the work plan. Finally, the Backend API
exposes some FMS to external systems. 

Design/methodology/approach: The first part of  the paper, focuses on the dynamic path planning
problem of  a set of  mobile robots in indoor spaces such as hospitals, laboratories, and shopping centres. A
review of  algorithms developed in the literature, to address dynamic path planning, is carried out; and an
analysis of  the applications of  such algorithms in mobile robots that operate in real in-door spaces is
performed. The second part of  the paper focuses on the description of  the FMS, which consists of  five
integrated tools to support the multi-robot dynamic path planning and the fleet management.

Findings: The literature review, carried out in the context of  path planning problem of  multiple mobile
robots in in-door spaces, has posed great challenges due to the environment characteristics in which robots
move. The developed FMS for mobile robots in healthcare environments has resulted on a tool that
enables to: (i) interpret of  geo-referenced data; (ii) calculate and recalculate dynamic path plans and task
execution plans,  through the implementation of  advanced algorithms that take into account dynamic
events; (iii) track the tasks execution; (iv) fleet traffic control; and (v) to communicate with one another
external systems.

Practical implications: The proposed FMS has been developed under the scope of  ENDORSE project
that  seeks  to  develop  safe,  efficient,  and  integrated  indoor  robotic  fleets  for  logistic  applications  in
healthcare and commercial spaces. Moreover, a computational analysis is performed using a virtual hospital
floor-plant.

Originality/value: This work proposes a novel FMS, which consists of  integrated tools to support the
mobile multi-robot dynamic path planning in a real-world hospital environment. These tools include: a
routing engine that handles the geo-referenced data and the calculation of  routes. A task scheduler that
includes a mathematical model to solve the path planning problem, when a low number of  robots is
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considered. In order to solve large size problems, a genetic algorithm is also implemented to compute the
dynamic path planning with less computational  effort.  An Endorse  broker  to exchanges  information
between the robotic fleet and the FMS in a secure way. A backend API that provides interface to manage
the master data of  the FMS, to calculate an optimal assignment of  a set of  tasks to a group of  robots to be
executed on a specific date and time, and to add a new task to be executed in the current shift. Finally, a
controller to ensures that the robots execute the tasks that have been assigned by the task scheduler.
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1. Introduction

Over the last years, healthcare centres have become concerned to increase the service quality not only to the
patients, but also their workers. In this regard, mobility of  medical staff  within the hospital has been considered a
key aspect to improve their productivity. The reduction of  time in which medical staff  spends with tasks that do
not provide value is crucial. These mobility tasks include the transfer of  medicines, medical equipment, biological
samples, bedding, pharmaceuticals, postal packages or medical waste, amongst others. Bardram and Bossen (2005)
estimates that in one day shift medical staff  can walk an average of  6.1 km for 7.9 hours, while nurses and doctors
on call walk an average of  6.1 km for 18.9 hours. This study was conducted in the haematology department located
in a three-story building with 46 patients hospitalized at the same time. In this regard Huang, Cao and Zhu (2019)
state that mobility activities in indoor spaces would improve with the deployment of  mobile robots, highlighting the
advantages that such mobile robots would have in hospital environments.

Facilitating the deployment of  mobile robots in health centres is one of  the objectives of  the ENDORSE project
(A Safe, Efficient and Integrated Indoor Robotic Fleet for Logistic Applications in Healthcare and Commercial
Spaces) (Vartholomaios, Ramdani, Christophorou, Georgiadis, Guilcher, Blouin et al., 2019).  ENDORSE project
looks for the design and development of  integrated logistic robotic systems to enable efficient, cost-effective and
safe  indoor  logistic  services  for  hospital  spaces  (Ramdani,  Panayides,  Karamousadakis,  Mellado,  Lopez,
Christophorou et al., 2019). Currently, there are limited applications of  mobile robots in hospitals, this is because
they must meet several functional and non-functional requirements that are more difficult to meet than those
arising in industrial spaces. The main difference between industrial and public indoor spaces (hospitals, nursing
centres, hotels, museums, malls) is the environment since robots in public spaces face a significantly more dynamic
environment, surrounded by people and objects, and with architectural limitations, while in industrial and storage
spaces are characterized by a structured and defined environment where robots move along predefined paths and
the interaction of  people with mobile robots is easier to avoid (Ramdani et al., 2019). In indoor spaces the robots
must be able to adhere to a space that has not been created specifically for its deployment and to adapt to small
spaces that cannot be modified, they must also be less expensive and more efficient than a team of  human workers
who perform the same task. Therefore, it is necessary to take into account the impact of  such requirements on the
design of  the robot. 

The objective of  the paper is to describe the implementation of  the Fleet Management System (FMS) that plans
and controls the execution of  logistic tasks by a set of  mobile robots in a real-world hospital environment. To reach
this aim, we began a review of  the algorithms developed in the literature to address dynamic path planning problem
of  a set of  mobile robots in indoor spaces is carried out. Furthermore, we present the design and implementation
of  a routing engine, a task scheduler, an Endorse Broker, a controller and a backend API at the core of  the FMS.
The FMS has been implemented and benchmarked using a virtual hospital floor-plant. The implementation also
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encompasses the FMS integration with mobile robots, equipped with a diagnostic support module mounted on the
robot chassis. 

In order to deal with the objective, the paper is organised as follows: section 2 presents a literature review on
algorithms used to solve dynamic path planning problems in indoor spaces. Section 3 defines the problem to be
solved. Section 4 describes the Fleet Management System (FMS) architecture, which consists of  a routing engine
tool, a task scheduler, an Endorse broker, a backend API, and a controller. Section 5 depicts the computational
experiments carried out to validate two proposals used in the task scheduler, ILP and GA. Finally, conclusions and
future research lines are outlined in Section 6.

2. Literature Review 
The first task to develop in terms of  routing and path planning algorithms was to perform a thorough review of
current state of  the art of  algorithms used to solve dynamic robot path planning problems in the context of  indoor
spaces. Initially, the applications of  mobile robots in healthcare environments are studied, and subsequently the
applications in other interior spaces with dynamic obstacles. For a better understanding, Table 1 describes the most
relevant concepts treated in this paper as regards mobile robot planning, navigation system, localization, mapping,
path planning in a variety of  scenarios.

Concept Definition and characteristics Author

Mobile
Robot

Robots that have the ability to move from one place to another 
autonomously, without the help of  external human operators. 

Tzafestas (2018)

Robot
Planning

Describes how a mobile robot must operate to get from one place to another
place (path planning, motion planning) and how to perform a required task 
(task planning. Robot planning is a key element of  autonomous robot 
systems.

Khatib, Quinlan & Williams 
(1997)
Tzafestas (2018)

Navigation
System

The process of  guiding a mobile robot between different positions by using 
sensors to detect the environmental conditions around it. Navigation system 
requirements for transport tasks involve mapping; localization; and path 
planning.

Koubaa, Bennaceur, Chaari, 
Trigui, Sriti, Ammar et al. 
(2018)
Thurow, Zhang, Liu, 
Junginger, Stoll & Huang, 
(2019)

Mapping The process of  learning the environment. A mobile robot requires a map of  
its environment in order to locate itself  in a space and move from one point 
to another. It means that the mobile robot must follow the map of  a known 
environment to identify addresses and locations. 

Da Mota, Rocha, Rodrigues, 
De Albuquerque and De 
Alexandria (2018)
Koubaa et al. (2018)
Thurow et al. (2019)

Localization Determines the detailed position information of  the mobile robot; o in other
words, localization determines the robot's position in the environment, 
allowing to use that information to calibrate movement. Localization system 
for mobile robots uses encoders, gyroscopes, sensors, cameras, ultrasound 
sensors, laser rangefinder, and radio-frequency identification (RFID).

Choi, Lee, Lee, and Park, 
(2011).
Koubaa et al. (2018)
Thurow et al. (2019)

Path
Planning

Consists of  finding an optimal collision-free path from a starting point to a 
target in a given environment. The environment can be static (start and 
destination positions are fixed, and the obstacles do not change with time) or
dynamic (unexpected changes in a planned route due to the arrival of  new 
moving obstacles or changes in the target). Based on the knowledge of  the 
robot environment, path planning may be: (i) local, when the robot is in an 
uncertain environment and, while in motion, builds an estimated map, this 
means that the robot generates a new route in response to changes in the 
environment in real-time; or (ii) global, when it is performed in a static 
environment, the robot has complete knowledge of  the path that it must 
follow before its movement begin.

Raja and Pugazhenthi (2011)
Koubaa et al. (2018)
Tzafestas (2018)

Table 1. Definition of  key concepts

-57-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3284

2.1. Applications of  Mobile Robots in Healthcare

The environment in healthcare public  spaces is  characterized by being dynamic,  due to human presence and
spontaneous arrivals of  new service demands during a service. Table 2 characterises the algorithms proposed to
deal with the dynamic path planning problem of  mobile robots in healthcare.

The algorithms are classified according to the taxonomy proposed by (Andres, Sanchis & Poler, 2016). It comprises
Optimizer  algorithms (OA)  technique  that  guarantees  to  find  the  optimum solution,  in  problems with  large
instances are usually slower, Heuristic algorithm (AH) this technique does not ensure to find optimal solutions, but
it can reach near-optimal solutions and Metaheuristic algorithm (AM) these techniques can obtain good or almost
optimal solutions, this technique uses random search strategies that require a stopping rule. 

The column related with the simulation determines if  the tests were performed in a simulated environment, in
which a robot obtains information from an algorithm. Commonly, in these simulations are sought to analyse the
performance  of  robots  with  different  types  of  routes  and  obstacles  randomly  generated.  The  objective  of
simulation in dynamic environments is to analyse how the robots reach the goals and the goodness of  the proposed
algorithms for re-planning routes when robots encounter obstacles. Moreover, the software in which experiments
are developed is identified. Finally, the algorithms application in a single or multi-robot environment is determined.
Multi-Robot Path Planning (MRPP) addresses the problem of  how autonomous teams of  mobile robots are able to
navigate collaboratively and share a common workspace and avoid interference between them (to ensure that two
robots do not collide when following their respective paths) (Koubaa et al., 2018).

Author Algorithm
Real

Application Simulation
Experiments

software
Single (S)/

Multi-robot (M)

Fung, Leung, Chow, Liu, 
Xu, Chan et al. (2003)

OA/ AStar (A*) algorithm Yes No
N/S (Not
specified)

S

Shieh, Hsieh & Cheng 
(2004)

OA/ Dynamic
programming

No Yes N/S S

Wang, Wei, Zhang & Chen
(2009)

OA/ Obstacle-rounding
path planning algorithm

No No N/S S

Jeon, Lee & Kim (2017)

OA/ Single-task allocation
algorithm.

OA/ Multi-task allocation
algorithm

Yes Yes N/S M

Huang; Cao et al. (2019)

OA/ Mixed path planning
algorithm

OA/ A* algorithm
AH/ Artificial potential

field algorithm

No Yes MATLAB M

Table 2. Algorithms for path planning in healthcare applications

2.2. Applications of  Mobile Robots in Other Sectors

There exist several types of  mobile robots that have been tested and installed in spaces different from healthcare.
Gross, Boehme, Schroeter,  Mueller,  Koenig, Einhorn  et al. (2009)  introduce TOOMAS, an assistive shopping
mobile robot. Proposing a robust autonomous navigation, and a path planning that uses A* algorithm, and a
movement control to avoid collisions.  Amanatiadis,  Henschel,  Birkicht, Andel,  Charalampous, Kostavelis  et al.
(2015) present an autonomous vehicle extraction and transportation (AVERT) based on the “a-robot-for-a-wheel”
concept.  AVERT mobile  robot  is  able to extract  vehicles  from confined spaces,  swiftly  and in any direction.
AVERT uses a D* Lite algorithm for computing path planning and for position changes. Yuan, Twardon and
Hanheide (2010) present to BIRON II, a mobile robot designed for an interactive scenario called home-tour. When
BIRON II enters in real-world apartment, it shows the apartment in an autonomous way to new users. This mobile

-58-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3284

robot uses a combination of  human-aware path planning,  dynamic re-planning abilities,  and dynamic obstacle
avoidance. It uses A* algorithm to estimate the path. Liu, Stoll,  Junginger and Thurow (2012) and Liu, Stoll,
Junginger and Thurow (20132) calculate the shortest path for tasks through a hybrid algorithm considering the
Floyd algorithm and genetic algorithm, in order to manage transport tasks on a single floor, sending available
robots to planned routes and informing about real-time transport. Abdulla, Liu, Stoll and Thurow (2017) present a
mobile route planning application to move robots within laboratories distributed on different floors. Designing a
hybrid Backbone-Floyd algorithm to calculate dynamic path planning.

2.3. Dynamic Path Planning of  Mobile Robots in Indoor Spaces: Study Cases

The interest of  researchers in the dynamic path planning of  mobile robots is acquiring great relevance, due to new
technological developments in mobile robots. Furthermore, path planning for mobile robots is one of  the most
important aspects of  robot navigation (Miao & Tian, 2013). 

Author Algorithm 1 2 3 4

Elshamli, Abdullah & Areibi (2004) AM/ Genetic algorithm C S S-D N

Ma & Lei (2010) AM/ Artificial Bee Colony Algorithm (ABC) MATLAB S S-D N

Shi & Cui (2010) AM/ Genetic algorithm VISUAL C++ S S-D N

(Chung & Huang (2011) AH/ Dynamic AO* (DAO*)
AH/ DAO* with D* (DDAO*) algorithm

N/S S S-D N

Yun, Parasuraman & Ganapathy 
(2011) AM/ Genetic algorithm MATLAB M S-D Y

Langerwisch & Wagner (2011) OA/ Lifelong Planning A* (LPA*) algorithm
OA/ Time D* algorithm

MATLAB S S-D N

Valero-Gomez, Valero-Gomez, 
Castro-Gonzalez & Moreno (2011) AM/ Genetic algorithm C++ M S-D N

Tuncer & Yildirim (2012) AM/ Genetic algorithm N/S S D N

Miao & Tian (2013) AM/Simulated Annealing (SA) MATLAB S S-D N

Othman, Samadi & Asl (2013) OA/ D* algorithm C++ S D N

Serpen & Dou (2015)
AH/ D* lite path search algorithm 
OA/ A* algorithm 
AH/ Uniform cost search (UCS) algorithm

Java M S-D N

Li, Xu & Zuo (2015) AH/ Improved Q-Learning algorithm N/S S S-D N

Zhang, Zhao, Deng & Guo (2016) AM/ Improved Genetic algorithm C# S S-D Y

Das, Behera, Jena & Panigrahi 
(2016)

AH/ Improved gravitational search algorithm
(IGSA)

N/S M S-D Y

Song, Gao, Cao & Huang (2018) OA/ A* algorithm MATLAB S S-D Y

Haj Darwish, Joukhadar & 
Kashkash (2018) AM/ Bees Algorithm MATLAB S S-D Y

Faridi, Sharma, Shukla, Tiwari & 
Dhar (2018)

AM/ Artificial Bee Colony Algorithm (ABC) 
AH/ Evolutionary programming (EP)

N/S M S-D N

Zhang & Wang (2018) OA/ A* algorithm N/S S S-D Y

Huang, Huang, Zhong, Long, 
Wang, Qiang, et al. (2019)

OA/ D* algorithm N/S S S-D N

(1) Programming Languages; (2) Single (S)/Multi-robot(M); (3): Static(S) or dynamic (D) obstacles; (4) Real Application Yes 
(Y), No (N).

Table 3. Study Cases on dynamic path planning of  mobile robots in indoor spaces
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Dynamic  path  planning  problems  for  mobile  robots  in  indoor  spaces  are  generally  presented  as  NP-Hard
(Nazarahari, Khanmirza & Doostie, 2019)  due to computational complexity. Researchers have always looked for
efficient techniques or methods to solve these problems. In the literature, we find different types of  techniques,
including heuristic or metaheuristic algorithms. The algorithms in route planning generally look for the mobile
robot to reach its objectives, consuming a minimum time, traveling a minimum distance with the least energy
consumption and finding a free route in an environment full of  objects (dynamic and static) that includes more
robots.  Table  3  presents  a  compilation  of  these  techniques.  In this  table,  it  is  indicated that  the  most  used
algorithms are the Genetic algorithms followed by the A* and D* algorithms.

3. Problem Description
In the problem, there are different types of  robots, conforming a robotic fleet that can execute a variety of  tasks,
either  logistic  tasks,  which  imply  the  transport  of  goods  (medicines,  medical  equipment,  biological  samples,
bedding, pharmaceuticals, postal packages or medical wastes, amongst others) through the hospital floor plant(s) or
other auxiliar sanitary tasks (measure blood-pressure, or perform a COVID-19 test) performed via specialized
e-health modules. 

To perform the logistic tasks, mobile robots pick trolleys of  specific characteristics that are loaded with a set of  objects
to be transported possibly to different locations. The trolley imposes limits on the dimension and weight of  the loads
(see Figure 1.). Each logistic task can be divided into a set of  low-level instructions or commands that need to be
executed by the robot. Examples of  low-level commands involved in logistics tasks are GOTO (move to a specific
location), PICK (pick a trolley to carry a set of  objects), or PLACE (place the trolley in the current location). 

From an operational point of  view, the Fleet Management System needs to determine the load of  each trolley, the
optimal routes between different locations and the optimal allocation of  tasks to robots. Depending on the task, the load
can have different properties, like size, weight, and type (food, sanitary equipment, medicines). There might be additional
constraints other than the capacity constraints of  trolleys (size and weight of  load) related to the type of  objects to
transport. In general, it is not recommended to transport in the same trolley two different types of  objects, but depending
on the destination, there might be additional regulatory or sanitary constraints (e.g. it might not be recommended to
transport in the same trolley medicines for specific types of  patients or food containing specific allergens). 

The strategy is to separate the trolley loading problem, the robot routing problem, and the task allocation problem:
First calculate optimal paths between locations, then decide the optimal allocation of  tasks to robots and finally
determine the load of  each trolley, each problem subject to its specific constraints. Determine the shortest path is
computationally inexpensive and can be calculated for every pair of  locations at low computational cost. Once the
distances are known, the task allocation problem can be seen as an instance of  the Multiple Travelling Salesman
Problem (mTSP), where the goal is to minimise an objective function proportional to the total distance, subject to a
set of  constraints (e.g. payload, battery). Finally, the solution to the mTSP problem determines the optimal load of
trolleys which is a trivial assignment problem. 

Robots on the other hand have dynamic properties that are relevant in the context of  MRPP. Each robot may be at
a different position when the MRPP is solved and clearly, it is important to take this aspect into account. Another
important parameter to take into consideration is the battery level. Robots have built-in functions to navigate back
to the charging station when the battery decreases below a certain level. The MRPP also needs to take this design
aspect into account.

Additionally, the number of  tasks is also dynamic. Users may plan a set of  logistic tasks to be performed at a given
periodicity (each shift, every day, once a week, etc), but the robotic fleet must be able to perform tasks on demand.
Users can define a new task to be executed now by any robot which is available or if  no robots are available, as
soon as possible. The navigation path is also dynamic. Aisles might be blocked for robots due to different reasons
(cleaning, congestion, or any situation that requires that there are no robots in a given installation). Therefore, the
FMS must have the ability to manage the planning of  task in a time horizon and also re-scheduling the plan
whenever this is required. 
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Based on these requirements, the objective is to provide the optimal allocation of  tasks to robots according to a set of
constraints and optimization criteria. In this sense, the primary goal, as mentioned above, is to finalize the set of  tasks
as quickly as possible, by minimising the total distance. Robots on the other hand need to solve local navigation
problems, avoiding collision with other robots or humans, thus dodging static and dynamic obstacles. Therefore, in the
design, it is also important to take into account the possible interactions between the global navigation optimisation
features of  the FMS and the local navigation features of  robots. Other important objectives are for instance, achieve a
human friendly navigation, avoiding crowded aisles or routing robots through narrow aisles. The following section
describes the main design considerations taken to solve the MRPP and implement the FMS. Figure 1 depicts a
prototype of  the trolley mobile robot used to test the virtual hospital environment.

Figure 1. Trolley mobile robot prototype

4. Fleet Management System
The FMS consists of  two integrated tools to support the multi-robot dynamic path planning. The architecture of
the FMS is depicted in  Figure 2. On the one hand, the routing engine handles the geo-referenced data and the
calculation of  routes. On the other hand, the task scheduler implements algorithms to solve the task allocation
problem and the trolley loading problem using different techniques depending on the problem size. The Endorse
Broker provides a messaging system to exchange information with the robotic fleet (model the environment and
send commands), while the controller implements the control rules to ensure the execution of  the work plan.
Finally,  the  Backend (Application Programming Interface  (API)  exposes  some FMS to external  systems.  The
frontend consumes these services and implements a user interface to manage the robotic fleet. The following
sections describe to some level of  detail the different building blocks of  the FMS architecture.

Figure 2. Fleet Management System Architecture
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4.1. Routing Engine
4.1.1. Environmental Modelling

The routing engine handles the first step to plan the optimal execution of  tasks, though creating a model of  the
environment that collects all possible routes in the floor-plant. This environment, in which the robots move, is
modelled  with  a  graph  traversal  problem where  nodes  V  in  the  graph G (V,  E)  represent  locations  in  the
floor-plant,  and edges E represent possible  routes between locations.  This model is  consistent  with the local
navigation model used by the robots. In the model of  the routing engine, each node V is characterised with a tuple
of  values in a 3-dimensional coordinate system (x, y, z), and a type. The z coordinate represents the floor-plant
number and the x, y coordinates represent Cartesian coordinates in each floor-plant. The type is used to learn the
coordinates of  some nodes that need to be treated differently by the routing engine, particularly elevators. This
model is consistent with the local navigation model used by the robots as described below.

There are different methods devised to obtain such network model. The first one is used before the robot fleet is
deployed and is based on CAD files. Through this method, CAD files containing the blueprint of  the floor plant
are converted to the GEOJSON format used in the database (MongoDB) of  the routing engine. This allows the
routing engine to efficiently query geo-reference data using geospatial queries, e.g. to fetch only parts of  the graph
to re-sequence a subset of  tasks when there is a problem at a specific location. In the current version, the user can
edit the navigation graph and the location of  the destination nodes (rooms, pharmacy, elevators) in separate layers
within the same CAD file which is later imported into the routing engine and converted to GEOJSON shapes. The
GEOJSON file is later processed to calculate the distances and generate the graph. Euclidean distances determine
the weight of  the edges between adjacent nodes in the same floor plant. Elevators, on the other hand, join the
sub-graphs of  the different floor-plants. In the second method, there is a master robot builds the graph based on
its navigation history using a specific ROS module (http://wiki.ros.org/voronoi_planner). The master robot shares the
generated graph with the FMS and the other robots using the Endorse protocol.

To validate the environmental modelling and benchmark the different candidate algorithms used in the FMS, the
authors have used different virtual floor-plants with combed and central courtyard layouts found in the targeted
scenarios. Figure 3. shows one of  the floor-plants used.

Figure 3. Floor-plant with combed and central courtyard 
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As explained in the next section, the graph created by the user will be used to calculate optimal paths to complete
the missions and to implement traffic control. This way, robots are routed through the graph and the edges created
by the user act as ‘virtual lanes’ that restricts the traffic of  the robot. This navigation strategy is beneficial in
crowded environments, or in certain situations, like emergencies, where a predictable behaviour of  the robots
facilitates the work of  human agents.

4.1.2. Cost Function

The routing engine uses the graph G(V, E) to implement the cost function of  the optimisation algorithms. First, the
current locations of  the robots and the destinations of  the logistic tasks are added to the graph, adjacent to the
closest nodes using the same distance function used to construct the graph in the first place. Edges (eij) have a
distance attribute that represents the distance between vertex i and vertex j and a weight attribute that indicates the
cost of  travelling from vertex i to vertex j. The FMS can use different data sources and apply different functions to
compute the cost based on the distance. Through the endorse protocol, robots are able to indicate that a path is
blocked, and the FMS can use this information to weight the edges accordingly so that they are not included in the
shortest paths. It is possible to calculate the weight based on historic navigation data (e.g. to avoid crowded paths at
specific times of  the day). 

Once the weights are calculated, the Dijkstra algorithm is used to calculate the minimum cost path between nodes
in the graph. The routing engine stores the edge sequence (v1, v2, v3, vn) of  each path and the cost in a matrix that
represents the minimum cost paths between every robot and every destination. The cost values are later used by the
task scheduler to find the optimal (minimum cost) allocation of  tasks to robots. Basically, the task scheduler uses
indexes  in  this  matrix  to  indicate  the  optimal  allocation  of  tasks  to  robots.  With  this  information,  the  fleet
management system is able to control the routing of  robots through optimal paths, taking into account distances
and other factors that determine the costs of  the different paths, as well as the objectives and constraints specified
in the task allocation problem. 

Based on the shortest paths, the task scheduler implements two different techniques to solve the task assignment
problem, a mathematical programming model used when the size of  the problem is small and a genetic algorithm
to compute the solution for large problems.

4.2. Task Scheduler
4.2.1. Robot Path Planning Using an Integer Linear Programming (ILP) Model

An integer linear programming formulation is used for the multiple traveling salesmen problem (mTSP) problem. In
the FMS task scheduler we adapt the ILP developed by (Kara & Bektas, 2006) to deal with the robot path planning
problem. In this regard, (Kara & Bektas, 2006) determines a graph G = (V, A), where V is the set of  n nodes (rooms),
A is the set of  arcs, and C = (cij) is the distance matrix that associates each arc (i, j) belonging to A. There are m robots
at the base where they receive the load. Kara and Bektas (2006) propose two ILP models: the single depot and
multiple depot mTSP. We employ the single mTSP depot model that consists of  finding routes for m robots in such a
way that all of  them start and end in the same depot. Each of  the nodes (rooms) are exactly on a route, the number of
nodes visited by a robot is predetermined within an interval, and the total cost of  visiting all nodes is minimized. The
restrictions described in this model ensure that exactly m robots leave and return to the warehouse, in addition, the
maximum and minimum number of  nodes visited by each robot is limited, which prohibits a robot from visiting only
one node and restricting the formation of  subtours between nodes. The ILP model is described next, considering the
nomenclature (Table 4) and the mathematical notation (Kara & Bektas, 2006). 
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Sets and Index

V set of  n nodes (vertices)

i origin node

j destination node

A set of  arcs arc (i, j)

Parameters

cij cost (distance) matrix associated with each arc (i, j) Є A 

m robot located at the depot 1

L maximum number of  nodes a robot may visit

K minimum number of  nodes a robot must visit

Decision Variables

xij 
1 if  arc (i, j) is in the optimal solution 
0 otherwise

ui

number of  nodes visited on that robot path from the origin up to node i
• 1 ≤ ui ≤ L for all i ≥ 2 
• if  xi1 = 1, then K ≤ ui ≤ L

Table 4. ILP nomenclature for the multiple traveling salesmen problem (mTSP) (Kara & Bektas, 2006)

Minimize

∑
(i , j)∈A

cij x ij (1)

s.t

∑
j=2

n

x1 j=m, (2)

∑
j=2

n

x j 1=m, (3)

∑
i=1

n

x ij=1, j=2, ... , n , (4)

∑
j=1

n

x ij=1, i=2,... , n , (5)

ui+(L−2) x i1≤L−1, i=2, ..., n , (6)

ui+x i1+(2−K ) xi1≥2, i=2,... , n , (7)

x1i+x i 1≤1, i=2, ... ,n , (8)

ui−u j+Lx ij+(L−2)x ji≤L−1, 2≤i ≠≤n (9)
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x ji∈{0,1}, ∀(i , j)∈A (10)

According to (Kara & Bektas, 2006) the ILP model formulation is valid when 2 ≤ K ≤ [(n - 1)/m] and L ≥ K. When
K ≥ 4, constraints (6) and (7) do not allow the situation x1i = xi1 = 1, i.e., constraint (8) becomes redundant when
K ≥ 4. Thus, we need constraint (8) only for the cases K=3 or  K=2. In this formulation, constraints (2) and (3)
ensure that exactly m robots leave from and return to the depot. Constraints (4) and (5) are the degree constraints,
the inequalities given in (6) and (7) serve as upper and lower bound constraints on the number of  nodes visited by
each robot, and initialize the value of  ui to 1 if  and only if  i is the first node on the tour for any robot. Inequality (8)
forbids a robot from visiting only a single node. The inequalities given in (9) ensure that uj = ui + 1 if  and only if
xij = 1.  Thus,  they prohibit  the  formation of  any subtour between nodes  in  V\{1},  so they are the subtour
elimination constraints (SECs) of  the formulation.

4.2.2. Genetic Algorithm

The problem to be solved in the mTSP considers that m robots must visit n points, which are not initially assigned
to any particular robot. When the calculation time of  the exact method (ILP model) is computationally inefficient,
due to the high number of  destinations and robots, a genetic algorithm (GA) is proposed. The proposed GA,
based on Valero-Gomez et al. (2011) with some modifications, is built under the following characteristics:

Individuals notation:
• m: robot index ∈ [0, m-1]
• n: target points index ∈ [m, m+n-1]

Chromosome: The chromosome has the following characteristics

• The chromosome individuals can refer to a robot index or a target point index
• Individuals cannot be repeated in the chromosome
• The sequence of  points assigned to each robot starts on the target points beginning after robots’ index and

finishes when the next robot index is found (when the end of  the chromosome is reached, the sequence
corresponding to the last robot continues with the first individual of  the chromosome).

Initial Population: A random population is generated guaranteeing the non-repetition of  chromosomes.

Crossover: A order crossover is used. two parents are selected, and from one of  them the crossover operator
selects  a  succession  of  individuals  (the  number  of  individuals  to  select  is  randomly  generated).  The  child
chromosome is produced by copying the selected succession of  individuals (substring) into the same location as it
was  in  the  first  parent  chromosome.  Then  the  crossover  operator  fills  the  empty  individuals  of  the  child
chromosome starting from the first non-used individual of  the second parent chromosome.

Selection: a selection procedure is considering a probabilistic function used as a fitness function equation based on
the proposal of  (Valero-Gomez et al., 2011):

Fitness(indi)=∑i=0

m−1
(Ri)+0.9 x max(Ri)−0.9 x (Ri) (11)

where, Ri is the total length of  the route assigned to robot i. This function seeks to minimize the total length but
also to maximize the length of  the shortest individual path and to minimize the longest individual path, therefore all
robots will be assigned a path of  similar length.

Mutation: Individuals to mutate are chosen randomly among the whole offspring with a uniform probability. The
mutation probability is set to 1.
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Insertion: Both,  the  normal  child  chromosome  and  the  mutated  one  are  candidates  to  be  inserted  in  the
population. A previous check is done in order to avoid the insertion of  an already existing chromosome in the
population. Each new member of  the population is inserted by replacing the worst one.

Termination rule: GA calculation ends when there is not improvement in the best fitness of  the population after
a number of  generations.

4.3. Endorse Broker

The Endorse Broker provides a message bus to exchange information between the robotic fleet and the FMS in a
secure way. The Endorse Broker is a Message Queuing Telemetry Transport (MQTT) (Banks & Gupta, 2014)
broker used to exchange messages defined according to a proprietary message protocol (Endorse Protocol). 

The Endorse Protocol defines a messaging pattern where the robots and modules can receive commands (e.g. to
tell a robot to start or cancel a mission) from the FMS, provide feedback information on their environment (e.g.
update the navigation map, the battery status and current position), as well as to report errors. 

Robots and modules publish messages in the message broker and subscribe to the topics they are interested in.
Therefore,  all  communications  are  initiated  in  the  field  level  of  the  robotic  fleet.  This  facilitates  network
management and security, because all the robots and modules can be grouped into separate network segments
behind a firewall with no incoming communications.

4.4. Backend API

The backend API provides a REST interface to manage the master data of  the FMS, to calculate an optimal
assignment of  a set of  tasks to a group of  robots to be executed on a specific date and time, and to add a new task
to be executed in the current shift. 

Master data includes user information (user roles), robotic fleet master data (e.g. types of  robots, robot groups and
robot members), navigation information (navigation map, location markers, etc), and task information (types of  task,
task command execution plans, etc). Backend API consumers (i.e. users via the frontend interface or other systems or
applications integrated with the FMS) can apply CRUD (Create Request Update or Delete) to manage master data. 

The REST backend API provides an endpoint to calculate a new work plan. A work plan consists of  a set of  tasks
to be executed by a group of  robots during a shift at a specific date. To process calls to this endpoint, the FMS
solves the planning problem as described above and returns the results: Task allocated to each robot and estimated
completion time. Consumers can edit and validate the work plan so that it is later processed by the Controller. 

The REST backend API also provides an endpoint to add a new task to the current plan. When a consumer uses
this endpoint, the FMS first solves again the planning problem adding the new task to the list of  pending tasks. 

4.5. Controller

The Controller implements the rules to ensure the execution of  the work plan, that is, ensure that the robots
execute the tasks that have been assigned by the task scheduler. The controller implements a control loop between
the task scheduler and the robotic fleet via the message broker. First, the controller loads the current plan that has
been validated by the user and builds a model of  the execution of  the work plan by robots. The controller sends
the commands to start the work plan to the robotic fleet via the message bus. Periodically, the robots report their
respective status (current location, current command, percentage of  completion of  current command, current
battery level). Upon reception of  the reports, the controller uses the backend to calculate a new work plan with
updated status information, compares the result to the previous setup and if  need be, sends the (delta) commands
to the robots to re-schedule the tasks. This control loop somewhat resembles a Model Predictive Control (MPC)
(Kim, Necsulescu & Sasiadek, 2007) control loop using the path planning solution as optimizer.

Note that in this process the task scheduler, the FMS controller, and the robot control work at different levels of
granularity. The task scheduler manages tasks for the entire robotic fleet. The controller processes low level commands
that together compose a task. For instance, moving a robot through the map may imply several GOTO commands to
ensure that the robot follows the optimal path according to the cost function. Robots on the other hand are able to take
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local decisions to avoid obstacles and avoid blocking situations. Robots are better at taking local decisions, but they can
also benefit from the global perspective and coordination capabilities of  the FMS. Clearly, there is a trade-off  between
both and therefore the level of  granularity used at the controller to control the robot path planning can be configured to
achieve optimal results. It is important however to bound the time consumed by the task scheduler to generate the
optimal plan, because it determines the control loop cycle time and in consequence, the level of  granularity of  the FMS
controller. Next sections present the results of  some computational experiments to better manage this trade-off. 

5. Computational Experiments
In order to validate the proposed algorithm, a set of  experiments have been carried out obtaining a numerical
comparison between the IPL (Kara & Bektas, 2006) and the GA (Valero-Gomez et al., 2011). We perform a set of
experiments with different values were the number of  robots m = {5, 10, 15, 20} and the number of  destination
locations n = {20, 40, 60, 80}. The parameters of  the genetic algorithm were: termination condition was to reach a
Gap less than 1% in regard to the objective function value obtained from the ILP model, and the population size
for all tests was 50. The variables measured were the cost of  the solution (calculated with equation 11), the path
length  of  each  robot,  the  number  of  generations  to  find  the  solution,  and  CPU time.  The  algorithm was
implemented in Python 3.8.2 and the ILP model was tested using Gurobi 9.0, running on a PC equipped with an
Intel (R) Core (TM) I5-8500 @ 3.00 GHz Processor and 8 GB RAM.

The  results  presented  in  Table  5  depict  the  CPU time  and the  gap  considering  different  instances  that  are
characterised by the number of  robots and the number of  target points. The gap (in %) between the ILP and the
GA solutions is calculated using the following formula:

Gap=
GA (best solution)−ILP solution

ILP solution
(12)

For small instances (5 robots and 20 locations), the GA required a CPU time of  fewer than 10 seconds with a GAP
of  less than 1%, but the ILP model computation time is better and reach an optimal result, however, for large cases
consisting of  15 robots and 60 locations, or 20 robots and 80 locations, the ILP consumed the defined set time of
7,200 seconds. The genetic algorithm in these cases reached almost optimal solutions in less time (188 and 354
seconds respectively), which shows that it is useful for real cases.

Figure 4 shows the speed of  the GA model and the ILP model. It can be observed that the ILP model achieve
optimal results for small and medium instances but, for large instances, the computation time is not efficient. As in
real  applications,  such  as  hospital  spaces  or  dynamic  environments,  the  computation  time  is  a  significantly
important parameter, the GA can be used to obtain near-optimal or good solutions with less computation efforts.

Instances Gurobi (ILP model) Genetic Algorithm Gap (%)

INS_m_n OBJ CPU Time Status Best-obj. CPU Time

INS_5_20 686 0.12 Optimal solution 692 9.56 0.875%

INS_10_40 1844 256.58 Optimal solution 1856 21.02 0.651%

INS_15_60 3038 7201.08 Time limit exceeded 3052 188.18 0.461%

INS_20_80 4574 7201.65 Time limit exceeded 4614 354.15 0.875%

Table 5. Detailed comparison between GA and ILP model
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Figure 4. CPU Time comparison between the ILP model and the GA

6. Conclusions
This paper outlines the state of  the art performed within the topic under review, the mobile robot path planning
problem in interior spaces. A taxonomy of  algorithms is used to classify the solution approaches proposed to
address the aforementioned problem. From the review we can conclude that there are several algorithms that
address the dynamic path planning problem of  mobile robots in healthcare environments. The most used is the
A * algorithm, providing good solutions in short calculation times. The review was carried out considering the real
applications not only in the healthcare environment but also in other interesting contexts, due to its potential to
adapt to healthcare environment. In this regard, choosing an algorithm for route planning will allow the planner to
design routing policies that can be useful and flexible in a dynamic environment, like hospitals, in which people or
objects that are constantly moving and changing positions. 

In addition, this paper describes the implementation of  a Fleet Management System (FMS) that plans and controls
the execution of  logistic tasks by a set of  mobile robots, as a result of  the work carried out in ENDORSE project.
ENDORSE focuses on mobile robots in healthcare and commercial spaces environments. As a result of  the FMS,
five tools have been developed: the routing engine and the task scheduler, the FMS Endorse broker, the backend
API and the controller. 

The  routing  engine  integrates  the  environment  modelling,  though  the  interpretation  of  geo-referenced  data.
Moreover, it computes the costs of  moving from one point to another in the floor-plants. With regards the routing
engine, the main drawback of  the current approach is that the user needs to edit the map manually using a CAD
tool,  which might be time consuming and not very user  friendly.  In next  releases,  the routing engine will  be
integrated with a navigation system (Anyplace) (Zeinalipour-Yazti & Laoudias, 2017) which is also part of  the
solution. With this integration, users will be able to create the map using a mobile phone application that allows to
tag locations just using the phone. 

The task executor contains a mTSP  ILP that minimizes largest routes. Moreover, the task executor also has a
genetic algorithm to deal with mTSP when a greater number of  robots and locations is given, making the problem
computationally efficient. In the scope of  the task executor, two future research lines are identified. Firstly, future
work should be aimed at proposing algorithms to address the problem of  path planning with multiple robots in
dynamic environments, paying special attention to the simulation and application in real cases in healthcare sector.
Second research line leds to balance the routes considering a minimum and maximum of  places to visit for each
robot, minimizing the longest routes.
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