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Abstract:

Purpose: This  study  describes  the  trends  and  applications  of  machine  learning  systems  in  the
management of  water supply networks. Machine learning is a field in constant development, and it has a
great potential and capability to attain improvements in real industries. The recent tendency of  data storage
by companies  that  manage the  water  supply  networks  have created a  range of  possibilities  to  apply
machine learning. One particular case is the prediction of  pipe failures based on historical data, which can
help to optimally plan the renovation and maintenance tasks. The objective of  this work is to define the
stages and main characteristics of  machine learning systems, focusing on supervised learning methods.
Additionally, singularities that are usually found in data from water supply networks are highlighted. 

Design/methodology/approach: For  this  purpose,  thirteen  studies  which  contain  real  cases  from
around the world are discussed. From the data processing to the model validation, a tour of  the methods
used in each study is carried out. Moreover, the trendiest models are briefly defined together with the
mechanisms that best suit their performance. 

Findings: As a result of  the study, it was found that the imbalanced class problem is typical of  data from
water supply networks where only a small percentage of  pipes fail. Consequently, it is recommended to use
sampling methods to train classifiers, however, it is not necessary if  we are training a regression system.
Additionally,  scaling  and transformation  of  variables  has  generally  a  positive  impact  on  the  model’s
performance.  Currently,  cross-validation  is  almost  a  requirement  to  obtain  reliable  and representative
results. This technique is employed in most revised studies to train and validate their models. 

Originality/value: The use of  machine learning systems to predict pipe failures in water supply networks
is still a developing field. This study tries to define the advantages and disadvantages of  different methods
to process data from water supply networks, as well as to train and validate the models.
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1. Introduction

Within the integral water cycle there are many possible machine learning applications to optimise processes and
support decision-making. For instance, concerning sewer networks, there are currently emerging techniques to treat
and classify  images from inside  the pipes to detect  leaks and anomalies (Li,  Cong & Guo,  2019). Reviewing
thousands of  images in real time is a difficult task for humans; however, machine learning systems can do it in a
few seconds. Therefore, the integration of  these systems as a support tool can drastically decrease the number of
unexpected incidents and thus the emergency response time.

Regarding water supply networks, there is a global tendency of  management companies of  this service that is the
introduction of  machine learning to predict pipe failures and breakages. In the case of  Spain, its water supply
infrastructure is composed of  more than 256,984 km of  pipes and 39% of  them are over 30 years old (AEAS,
2016). There is an evident aging of  the infrastructures, and the occurrence of  unexpected leaks and breaks remains
a problem that concerns every management company. As previously said, this is not only a national problem, but a
global one. The solution lies in leveraging data and applying machine learning algorithms to reduce the number of
unexpected pipe failures.

This paper presents an introduction of  machine learning and its applications to water supply network management.
Specifically,  the main stages of  its implementation and its most critical  aspects are reviewed. Additionally,  the
mechanisms employed to address these critical aspects are described by thirteen researches that use supervised
machine learning systems to predict  pipe failures on water  supply  networks.  These papers have been chosen
because most of  them present real cases studies from around the world and include reliable data. Therefore, we can
analyse the singularities that are usually found in data from water networks. Furthermore, the selected researches
allow revising the most popular machine learning techniques in this field and they provide rich explanations of  their
applications to the case studies.

2. Machine Learning: Concepts and Stages
Machine learning is  a  field of  artificial  intelligence that  gathers algorithms and techniques that  allow creating
systems abled to learn from experience. These systems must generalise behaviours and recognise patterns from
data.  There  are  three  different  machine  learning  systems:  supervised  learning  systems,  unsupervised  learning
systems and reinforced learning systems. Depending on the data nature and the output variable to be predicted, a
type of  them must be chosen.

Supervised learning requires labelled data, i.e., the output variable must be identified and available. If  the output
variable is a real value, regression methods are the most appropriate. And, classification systems are suitable when
the output variable is a category or a class. In both cases, the final objective is predicting. 

Unsupervised learning is used when there are not data labels, or they are not clearly identified. The main objective
of  these systems is to extract knowledge and discover hidden patterns in data. Clustering is the most representative
unsupervised  learning  technique.  Finally,  reinforced  learning  systems  interact  with  the  environment,  receiving
feedback. Therefore, its performance improves over time. Autonomous vehicles are the most famous example of
this kind of  systems.

This study focuses on supervised learning applications as predictive systems in supply water networks.  These
techniques are the most common in this industry because of  its easy integration with support decision system tools.
Figure 1 shows the stages of  supervised learning system’s implementation. Firstly, data is divided into training and
validation sets; secondly, the training data is used to estimate the parameters that define the machine learning model;
and then the performance of  the model is measured through certain quality metrics over the validation set. These
three first stages, data processing, training, and validation of  the model, are discussed in the subsections below. The
last stage, prediction, is basically the use of  the system to forecast future behaviours based on new data.

In order to show the main problems and solutions that can arise from the implementation of  a supervised learning
system with data from water supply networks, thirteen studies are analysed. Table 1 presents the references together
with the models they apply, the predicted output variables and some details about the real case studies they use to
evaluate the performance of  these models. The acronym N.M. means Non-Mentioned in the article.
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Figure 1. Implementation stages of  a supervised machine learning system

On the one hand, networks have been stratified in three categories according to their length as: (1) large, greater
than 3,000km; (2) medium, between 1,000 and 3,000 km; and (3) small, lower than 1,000km. Moreover, the number
of  recorded pipe failures has been added as it is linked with the robustness of  the conclusions and the scope of  the
study. On the other hand, the country of  each case study has been included to demonstrate that these techniques
are being applied all around the world. Concretely, the country which is producing more scientific literature about
this topic is Canada. Therefore, four studies from this country has been included. In general, there are obstacles to
access data in this industry because of  two main reasons: firstly, companies privacy policies; and secondly, the lack
of  robust data storage plans. Nevertheless, the second one has experienced a notable improvement in the last
decade. Nowadays, companies are more aware of  the enormous potential of  data and this is encouraging the arise
of  new and more elaborated predictive models in this field. For more information on the case studies, readers are
invited to consult the references.

Finally, models and output variables are discussed on sections 2.2 because they deserve a more detailed explanation.

References Model Output

Real case study

Network
length

No. pipe
failures

Country

1 (Kabir, Tesfamariam & Sadiq, 2015).) SM Time to failure Large 4949 Canada

2 (Sattar, Gharabaghi & McBean, 2016) GP Time to failure Medium 9500 Canada

3 (Sattar, Ertuğrul, Gharabaghi, McBean 
& Cao, 2019) ANN Time to failure Medium 9500 Canada

4 (Kutyłowska, 2018) SVR; ANN Failure rate Small 88 Poland

5 (Shirzad, Tabesh & Farmani, 2014) SVR; ANN Failure rate Small 686 Iran

6 (Birek, Petrovic & Boylan, 2014) EFS Pipe leakages N.M. N.M. UK

7 (Almheiri, Meguid & Zayed, 2020) ANN; SM; DT Time to failure Small N.M. Canada

8 (Royce, Seth & Henneman, 2014) BBNs Number of  pipe
failures in a zone

Large 3686 USA

9 (Robles-Velasco, Cortés, Muñuzuri & 
Onieva, 2020) LR; SVC Failure probability Large 4393 Spain

10 (Tang, Parsons & Jude, 2019) BBNs Failure probability N.M. N.M. UK

11 (Wang, Dong, Wang, Tang & Yao, 2013) RankBoost Risk index Large 11603 China

12 (Winkler, Haltmeier, Kleidorfer, Rauch 
& Tscheikner-Gratl, 2018)

DT Failure Small 3743 Austria

13 (Tavakoli, Sharifara & Najafi, 2020) RF Failure Large N.M. USA

Table 1. References, models, output variables and their case studies
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2.1. Models: Characteristics and Applications

Previous  studies  have  extensively  implemented  physical  and  statistical  models  to  describe  the  water  network
behaviour and to analyse the pipes failures in order to find patterns and weaknesses. On the one hand, physical
models try to determine pipes failures through the simulation of  different external and internal conditions that have
a negative effect in the pipe structure. Its main advantage is that they do not require large amount of  data (Wilson,
Filion & Moore, 2017). On the other hand, statistical models create statements based on observed data. These
models are used with descriptive purposes which means, they do not predict any output variable. Its main limitation
is that they cannot discover complex relationships between variables. In Scheidegger, Leitão and Scholten (2015), an
extensive review of  statistical models and its application to water supply networks can be found. It needs to be
mentioned that statistical models are the base of  many machine learning algorithms. Nevertheless, machine learning
systems do require considerable amount of  data, but they have a wider scope: They can be used both as descriptive
models and as predictive ones and can discover complex hidden patterns. 

There are references on the use of  many different supervised learning models in the water network industry. In this
study, eleven of  the most common and trendy ones are selected (view Table 1). The main characteristics of  these
models and its acronyms are briefly defined below.

Artificial Neural Networks (ANNs) are famous because of  its accuracy and talent to extract patterns from data
(Kutyłowska, 2018; Sattar et al., 2019; Shirzad et al., 2014). These models try to emulate the functioning of  the
human brain where neurons are represented by nodes and the nerve impulses by a weighted sum of  input variables.
The learning process consist in the adjustment of  its parameters, while the network structure does not usually vary.
They have excellent generalisation capabilities. However, these models do not allow interpreting the role of  each
variable in the process of  prediction and need large amount of  data to be trained. Support vector machines can be
used for regression (SVR) and classification (SVC) purposes. This method maps the explanatory variables through
non-linear structures into a high dimensional space and then, the hyperplane that optimally adjusts to the data or
separates the classes is generated (Kutyłowska, 2018; Robles-Velasco, Cortés, Muñuzuri & Onieva, 2020; Shirzad et
al., 2014). Both ANNs and SVMs are informally known as ‘black-box’ systems. In contrast, survival models (SMs)
and logistic regression (LR) provide a precise interpretability of  results but they have more limitations to extract
patterns from data. While SMs predict the life or time to failure of  the instances (Kabir et al., 2015), LR is typically
used for classification tasks (Robles-Velasco et al., 2020). 

Genetic Programming (GP) is an evolutionary methodology that uses an iterative process to find the equation that
best fits the relationship between several previously stated variables (Sattat et al. 2016). This method gives a detailed
description of  the system behaviour. However, if  the equation is too complex, conclusion extraction is difficult,
and the training process becomes computationally inefficient.

Fuzzy  logic  uses  fuzzy  sets  and  rule  matrices  to  classify  or  categorise  samples.  This  technique  has  been
implemented in many water supplies studies to group pipes or regions of  the networks according to their risk of
failure (Al-Zahrani, Abo-Monasar & Sadiq, 2016; Islam, Sadiq, Rodriguez, Najjaran, Francisque & Hoorfar, 2013;
Salehi, Jalili Ghazizadeh & Tabesh, 2018).  Nevertheless, in all these studies the rules are generated based on expert
opinions. Recently, a new application of  fuzzy logic that include evolutionary algorithms to estimate the rules and
parameters of  the systems have appeared. They are referred as Evolutionary Fuzzy Systems (EFS) and are more
independent  and  accurate  that  the  traditional  ones.  The  main  advantage  of  EFS  is  the  straightforward
interpretability of  results in the form of  simple rules. As a disadvantage, its training is computationally expensive,
and the design of  these systems has a substantial dependency on the case study since many parameters must be
decided in advance. In Birek et al. (2014), it is proposed an EFS together with a clustering strategy of  data whose
final goal is to predict leakages in water supply systems. It needs to be mentioned that this method has not been
sufficiently explored nor applied in the water field yet.

Bayesian Belief  Networks (BBNs)  are graphical representations as direct acyclic graphs where nodes represent
parameters and arcs the probabilistic relationship between them (Royce et al., 2014; Tang et al., 2019). They give a
global vision of  the relationship between every pair of  variables. For this reason, it is convenient to include in the
model all the available variables. This technique allows accomplishing a diagnostic and prognostic analysis. 

-48-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.3280

Decision Trees (DT) are simple and computationally  efficient methods that can be used with regression and
classification purposes. The predictor space is stratified into a finite number of  regions using splitting rules which
are hierarchically combined into a tree (Winkler et al., 2018). Its major advantage lies in the direct visualisation of
the relationship between variables which allows detecting the most vulnerable points of  water networks. As a
disadvantage, DT easily leads to overfitting of  data. In Almheiri et al. (2020), it is suggested a boosting technique to
reduce the prediction errors of  single decision trees. Another option is to use Random Forests (RF) which combine
a huge number of  decision trees and aggregate their predictions (Wu & Baker, 2020). In Tavakoli, Sharifara and
Najafi (2020), this technique is used to predict the pipe condition of  sewer pipes in order to optimally plan the
inspections according to the risk of  failure of  each area. Although this reference does not predict failures in water
supply networks, it is included in the study because the use of  variables and the processing of  data is similar to the
rest of  revised studies. Moreover, the RF algorithm is exhaustive explained.

Finally, RankBoost is a boosting-type algorithm that makes bipartite ranking (Wang et al., 2013). The final demand
of  most companies is a ranking of  the pipes according to their risk or probability of  failure. Therefore, this kind of
methods is really suited to face this problem.

Prior to the election of  the model, the priority between the accuracy of  results or the interpretability and the role
of  variables must be defined. ANNs and SVMs are recommended when the priority is the accuracy of  results. If
the objective is to analyse and interpret the results and the role of  the variables, statistical models, decision trees or
BBNs are greater alternatives.

2.2. Data Processing

Data processing may be the most important stage to construct a robust and accurate predictive system. Most data
from water supply networks share similar characteristics, so they can be processed using the same techniques. As
previous experience is helpful, Table 2 gathers the responses that the cited studies have given to different aspects
related to data processing. The reference numbers correspond to the ones presented in Table 1.

Ref. Missing values Outliers Feature selection Scaling or transformation

1 N.M. N.M. Covariate selection process Log

2 N.M. Removed Genetic Algorithm None

3 N.M. N.M. Sensitivity analysis None

4 Maintained Maintained None None

5 N.M. N.M. Sensitivity analysis Normalisation

6 N.M. N.M Experts criterion Normalisation

7 N.M. Removed Availability N.M.

8 Maintained Maintained Estimation per area Standardisation

9 Median Median Experts criterion Log and standardisation

10 Proxies Removed None Discretisation

11 Removed N.M. Assessment  by  Sliding
Thresholds

None

12 N.M. N.M Curation None

13 Removed Removed Experts criterion None

Table 2. Techniques applied in the data processing stage of  each study

Both missing values and outliers are common in most databases and they are generally  due to errors in data
collection, or to some unusual circumstance. While the former are gaps of  information, the latter are atypical values
that a variable takes which are far from the main trend of  the rest of  data. Generally,  it  is recommended to
eliminate the observations which contain these anomalies if  they are not considered representative (Tang et al.,
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2019; Wang et al., 2013). Nevertheless, it implies information losses, thus it is sometimes preferable to use the
mean, the median or a proxy of  the variable to fill or replace these values (Robles-Velasco et al., 2020). Other
option is to use truncated distributions from available datasets to determine these data as it is done in the reference
2 from Table 2 (Sattar et al., 2016).

A  high  number  of  input  variables  might  imply  negative  consequences  as  slowness  in  the  training  phase  or
difficulties in the results interpretation. Although this situation is not common with data from water networks
whose variables are usually scarce, not all variables influence breakage. Therefore, it is recommended to seek the
optimal set of  variables based on certain quality metrics. Sometimes, they are chosen based on expert opinions.
Nevertheless, a more technical option is to use some feature selection technique as filters or brute force. Filters are
applied before the training of  the model (Sattar et al., 2019; Shirzad et al., 2014) and they are based on statistical
parameters or even graphics. ‘Brute force’ is the term used to define the process of  training the model iteratively
with different groups of  variables until the most significant one is found (Kabir et al., 2015; Wang et al., 2013). This
technique is more accurate, but it is also much more computationally expensive.

Finally, scaling and transformation of  variables has more relation with the machine learning model, because some
of  them  exhibit  a  high  sensitivity  to  variable  scale.  Firstly,  the  normalisation  of  the  variables  (Eq.  1)  has
demonstrated to be useful for training ANNs. Secondly, the standardisation (Eq. 2) reduces the effect of  outliers
which are typical in databases. Finally, the logarithmic transformation is recommended if  some variable extends
into higher orders of  magnitude, which it usually happens with the diameter or the length of  pipes comparing with
other variables such as the age or the pressures inside pipes.  This transformation is especially  useful to train
statistical models. In (Winkler et al., 2018), it is stated that decision trees do not require data to be transformed
before training.

Xi = (xi-xmin)/(xmax-xmin) (1)

xi = (xi-xmean)/xstd (2)

2.3. Training and Validation

Training and validation stages are strongly linked. In the training phase, the parameters that govern the model are
estimated. The objective is to find the parameters that optimise some quality metric using a set of  data, usually
referred as training set. Most times, the same metrics are employed to train and validate the model. Table 3 includes
information about the use of  two techniques that appear in most studies. On the one hand, cross-validation is an
iterative training-validation process that allows obtaining more accurate results and avoiding overfitting. It consists
in dividing the data into several sets and training the model with a part of  them, and then validates it with the rest.
Figure 2 shows a diagram of  a 3-fold cross-validation process. As can be seen in Table 3, almost all studies have
employed this  technique.  In the studies 5 and 10,  the dataset  is  divided into three groups:  training,  test  and
validation. Validation data do not participate in the training process and results are purely obtained from this unseen
data. In this case, cross-validation is implemented using the training and test sets in order to estimate the parameters
of  the final model.

Figure 2. 3-fold cross-validation
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Ref. Cross-validation Imbalanced class Quality metrics

1 5-fold (80-20%) Different consideration Error measures

2 4-fold (75-25%) Installation year bunch Error measures and R2

3 4-fold (75-25%) Not considered a problem Error measures and R2

4 4-fold (75-25%) N.M. Error measures

5 Training (60%), test (20%) and 
validation (20%) N.M. Error measures and R2

6 No. Training and test (80-20%) N.M. Error measures and R2

7 5-fold (80-20%) and validation (10%) N.M. Error measures and R2

8 No Different consideration R2 and significance

9 5-fold (80-20%) Under-sampling Confusion matrix, ROC

10 Training (60%), test (20%) and 
validation (20%)

N.M. Confusion matrix, ROC

11 5-fold (80-20%) Under and over sampling ROC

12 2-fold (50%-50%) Under-sampling Confusion matrix, ROC

13 No. Training and test (70-30%) Bootstrap Confusion matrix, ROC

Table 3. Aspects of  the training and validation phases of  each study

On the other hand, there is a necessity to deal with the imbalanced class problem, which is present in all databases
of  historical pipe failures from water supply networks. There are more pipes which do not fail than pipes which do.
If  the ratio exceeds 1:10, the learning task is considered as an imbalanced learning problem. This situation may
imply negative repercussions on the behaviour of  the model, especially if  it is a classifier. However, some studies
argue that the presence of  imbalanced classes has not always worsen the performance of  predictive models since it
depends on the model and the data structure (Wang et al., 2013). Most of  the presented classification studies
address this problem by sampling the data (see Figure 3). This consists in eliminating samples (under-sampling) or
generating new and artificial ones (over-sampling) in order to reduce the unbalance between the two classes in the
dataset. Under-sampling has the disadvantage of  losing valuable data while over-sampling can generate erroneous
patterns so the training set is not representative. The choice of  one technique or the other must be based on the
number  of  recorded  pipe  failures  in  the  dataset.  Provided  that  the  amount  of  recorded  pipe  failures  is
representative, it is preferable to use under-sampling. Meanwhile, over-sampling is the best option if  the number of
pipe failures in the dataset is scarce. 

The studies that use regression models usually give a different treatment to pipes that fail and to the ones that do
not fail, or simply do not mention this fact.

Figure 3. Under-sampling and over-sampling techniques

In general,  the  results  of  these  studies  must  be  interpreted by  workers  of  water  companies  that  are  usually
non-experts  on machine learning.  Therefore,  quality  metrics  should be carefully  chosen in  order to faithfully
represent  the  behaviours  of  the  model  and to  make them easier  to  interpret.  Quality  metrics  are  numerical
measures that represent the performance of  a model and each model suggests a specific one.
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Regressive methods are validated with error measurements as Mean Squared Error (MSE), Mean Absolute Error
(MAE) or determination coefficient (R2). Their formulas are presented in Equations 3, 4 and 5. These metrics
quantify the differences or deviations between predicted and real system outputs. It is important to consider that
not all metrics represent the same scale as variables. The relative error is perfect to compare different measures
since it is a percentage (Kutyłowska, 2018).

(3)

(4)

(5)

The  confusion  matrix  and  the  Receiver  Operating  Characteristic  (ROC)  curve  are  specific  tools  to  evaluate
classification models.  On the one hand, the confusion matrix quantifies the number of  correct  and incorrect
predictions for each class. It is an easy interpretable metric which allows extracting a lot of  information. On the
other hand, the ROC curve represents graphically the true positive rate against the false positive rate for different
thresholds (see Figure 4). The Area Under the Curve (AUC) is a numerical measure between 0 and 1 that allows
comparing different models. The closer to one is the AUC, the more accurate is the model.

Figure 4. ROC curve 

As can be seen in Table 3, the references 1-7 obtain a real value as output variable, while references 9-13 obtain a
classification of  the pipes. Reference 8 is a special case since it estimates all the variables per area. Although it is a
classification system, its quality metrics are more typical of  regression systems.

3. Conclusions

This paper presents an analysis of  the application of  machine learning techniques to the management of  water
supply networks. For this  purpose, the main stages of  the implementation of  supervised learning models are
reviewed, as well as some characteristics and critical aspects that appear when working with data from water supply
networks. Moreover, the mechanisms used in thirteen studies to solve these difficulties are described.

Firstly, it is observed that there are many studies around the world that apply machine learning to enhance water
supply networks management.  Seven of  the reviewed studies show medium or large networks with historical
databases that exceed 3,500 pipe failures. Thus, the conclusions of  these studies are representative.

Secondly, eleven different models and its applications, such as supervised learning systems, are briefly described in
this study. Their main characteristics and the differences between them are highlighted, discovering the importance
of  initially establishing the aim of  the system in order to choose the most suitable model. If  accuracy of  results
prevails, it is recommended to use ANNs or SVMs. Nevertheless, if  the objective is to analyse and interpret the
results and the role of  the variables, statistical models or BBNs are a better option. In the revised studies, several
types of  output variables have been found, as ranking, failure rate or time to failure of  each pipe. Consequently, in a
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real  case  application,  this  should be  discussed with the  company managing the  water  supply  network before
designing the machine learning system because it must be integrated with its decision-making tools.

Regarding data processing, it is important to mention the tendency of  applying feature selection techniques instead
of  expert opinions. Additionally, scaling and transformation of  variables have demonstrated to be positive.

Finally, this work wants to encourage the use of  machine learning systems in the water network industry because of
their independency and accuracy. Although many studies have recently emerged, there is still a gap in the real
application of  these techniques, and they have demonstrated to be useful and robust. Furthermore, it is noticed that
the access to data is generally scarce. Therefore, water companies should consider enhancing their data collection
system as well as facilitating researchers access to them.

In future research, the variables employed in each study and their influence on the pipe failures could be analysed.
Plans  for  replacement  and  maintenance  of  pipes  in  water  networks  usually  include  supply  and  sewer  pipes.
Therefore, a similar analysis on machine learning models applied to sewer networks would complement this paper.
Data from these networks usually include images, so image processing techniques should also be revised. 
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