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Abstract:

Purpose: Managing the inventory of  spare parts is very difficult because of  the stochastic nature of  part’s
demand. Also, only controlling the inventory of  the spare part is not enough; instead, the supply chain of
the spare part needs to be managed efficiently. Moreover, every organization now aims to have a resilient
and sustainable supply chain to overcome the risk of  facility  disruption and to ensure environmental
sustainability.  This paper thus aims to establish a model of  inventory-location relating to the resilient
supply chain network of  spare parts. 

Design/methodology/approach: First, applying queuing theory, a location-inventory model for a spare
parts supply chain facing a facility disruption risk and has a restriction for CO2 emission, is developed. The
model is later formulated as a non-linear mixed-integer programming problem and is solved using MATLAB.

Findings: The model gives optimal decisions about the location of  the warehouse facility and the policy
of  inventory management  of  each location selected.  The sensitivity  analysis  shows that the very low
probability of  facility disruption does not influence controlling the average emission level. However, the
average emission level certainly decreases with the increment of  the disruption probability when the facility
disruption probability is significant. 

Practical implications: Using this model, based on the cost and emission parameters and the likelihood
of  facility disruption, the spare part’s manufacturer can optimize the total average cost of  the spare part’s
supply  chain  through  making  a  trade-off  between  productions,  warehouse  selection,  inventory
warehousing and demand allocation.

Originality/value: Previous research focuses only on developing a framework for designing an efficient
spare parts planning and control system. The inventory-location model for spare parts is not addressed in the
sense of  risk of  facilities disturbance and emission. This research first time jointly considered the probabilistic
facility disruption risk and carbon emission for modeling the spare part’s supply chain network.
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1. Introduction

Organizations have traditionally handled delivery and storage decisions separately, in part because of  the difficulty
of  combining them (Mak & Shen, 2009). Also, storage and distribution tactical and organizational decisions are
regarded separately from strategic decisions regarding the location of  facilities and network architecture (Mak &
Shen, 2009).  Shen, Coullard and Daskin (2003),  Daskin, Coullard and Shen (2002), and Candas and Kutanoglu
(2007) have revealed that disregarding inventory effects in facility location decisions can lead to suboptimal logistics
network designs. It is also a challenging task to combine facility location decisions with inventory management and
distribution  decisions,  particularly  taking  into  account  the  risk  of  facility  disruption  and  environmental
sustainability.

Inventory management and facility  location problems are the two most exceptional  problems in supply chain
optimization that have noticeable impacts on the well-organized design of  supply chain networks (Gunasekaran,
Patel & Tirtiroglu,  2001; Stevens, 1989). Problems about the location of  facilities, as strategic measures, involve
deciding the optimal number of  open plants and their locations (Dehghani & Taki, 2019). On the other hand,
issues with inventory management consider the responsiveness of  the systems in terms of  product availability as
tactical decisions (Dehghani & Taki, 2019). Now considering the integrated model of  both decisions can lead to
better solutions in the light of  previous speeches (Diabat, Battaïa & Nazzal, 2015; Ramezani & Naderi, 2018).

Most manufacturing or service industries depend on high-value capital assets available to deliver their services or
manufacture their goods (Driessen, Arts, van Houtum, Rustenburg & Huisman, 2015). Companies in these sectors
use capital assets in their main operations, and thus, downtime can among others result in (i) lost revenues (e.g., the
shutdown of  machines in a fabricating environment), (ii) customer frustration and potential related charges (e.g.,
interruption in airline service or public transportation service) or (iii) community security risk (e.g., interruption in
power plants and martial settings) (Driessen et al., 2015). The adverse consequences of  downtimes are typically very
costly (Driessen et al., 2015).

Since capital assets are important for the operational processes of  the businesses involved, there is a need to reduce
the lost time for the assets (Driessen et al., 2015). In general, system stoppage or downtime is divided into; (i)
diagnosis  and maintenance time, (ii)  maintenance interruption due to the lack of  the required diagnostic  and
maintenance resources (Driessen et  al., 2015).  High spare parts  accessibility  is  essential  because it  affects the
maintenance delay (Driessen et al., 2015). On the other hand, the demand for parts may be extremely rare and
difficult  to predict,  and specific  spare parts  costs can be very high (Huiskonen,  2001).  The above-mentioned
characteristics generate pressures for streamlining the spare part’s logistics system. 

Generally, a producer may think that if  demand levels are low, shipping directly from the plant to the consumer will
often be better rather than storing inventory in warehouses (Mak & Shen, 2009). However, as discussed above in
many applications (especially in spare parts systems), the customers are sensitive to response times (Mak & Shen,
2009). It is then advantageous to store inventories in warehouses located far from the factory, close to customers.
(Mak & Shen, 2009). Caglar, Li and Simchi-Levi (2004) note that such a system is ideal for spare parts system where
warehouses with the inventory of  spare parts and technicians are located near customers. For example, products are
shipped to customers from nearby storage locations as required in IBM’s multi-echelon service parts network
(Cohen, Kleindorfer & Lee, 1989; Kutanoglu, 2008).

Despite the effect that spare parts management has on companies’ global efficiency, the majority of  conventional
literature has not concentrated on the underlying supply chain network of  spare parts (Tapia-Ubeda, Miranda,
Roda, Macchi & Durán,  2020). Consequently, issues related to the supply chain and supply chain network are
assumed to be given and fixed for most of  the research analysis conducted in the spare parts management
literature  (Huiskonen, 2001;  Martin,  Syntetos,  Parodi,  Polychronakis  &  Pintelon,  2010;  Wagner,  Jönke  &
Eisingerich,  2012; Li, Cheng, Hu, Zhou, Ma & Lim, 2019;  Liu, Liu & Deng,  2020). However, the underlying
supply  chain network for spare parts,  which supports  the entire operation of  spare parts  (e.g.,  distribution,
inventories, warehousing), may have a substantial impact on the performance of  spare parts management and the
results of  the company (Cavalieri, Garetti, Macchi & Pinto, 2008; Hu, Boylan, Chen & Labib, 2018). Thus, the
main feature of  this paper is to establish an inventory-location model relating to the spare parts supply chain
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network. Past research focuses primarily on creating a structure for the creation of  an effective method of
preparation and management of  spare parts.

Nowadays, the criteria for sustainability and resiliency compel the manufacturing firm to develop an effective
spare part’s supply chain network to support the production or service operations. The spare part’s supply chain
network is vital for aircraft manufacturers (Wheatley, 2014), steel pipe product manufacturers (Tapia-Ubeda et al. ,
2020),  semiconductor  equipment  manufacturers  (Şen,  Bhatia  &  Doğan,  2010),  etc.  The  general  modeling
framework is  specified for three inventory control  policies,  i.e.  (s,  Q),  (R, s,  S),  (S-1, S),  commonly used in
industrial settings for the management of  spare parts (Tapia-Ubeda et al. , 2020). In this paper, continuous review
(s,  Q) policy is  considered for modeling the spare part’s supply chain network.  We consider a supply chain
network comprising of  manufacturing plants, warehouses, and demand centers. The manufacturing plants and
warehouses belong to a manufacturer of  spare parts, and the demand centers belong to a retailer who buys the
manufacturer’s  spare parts  frequently  to meet the end customer’s  demand. The classic  example would be a
producer  of  computer  semiconductor  who  regularly  supplies  his  product  to  a  manufacturer  of  computer
(located at different locations). The computer manufacturer receives the order of  semiconductor as spare parts
from computer users when users feel  the need for spare semiconductor during the maintenance time of  a
computer or due to the failure of  semiconductor equipment. Therefore, apart from the regular production work
order,  the  semiconductor  manufacturer  also  receives  random  orders  of  spare  parts  from  the  computer
manufacturer and delivers the required spare parts as soon as possible through the use of  his warehouses.  The
manufacturer is at risk for disruption of  the manufacturing facility. Due to a natural disaster or a man-made
action, the designated manufacturing plant may be interrupted at any time. If  the designated manufacturing plant
is disrupted, the alternative plant is utilized for production and delivery to the assigned warehouses. The spare
part’s demand and the delivery lead time from the manufacturing plant to the warehouse are uncertain. The
warehouse inventory level of  the manufacturer is modeled using queuing theory, and finally, the optimization
problem is  formulated  as  a  mixed-integer  nonlinear  programming  problem.  The  objective  is  to  develop  a
location-inventory  model  for  a  spare  part’s  manufacturer  that  minimizes  the  overall  system  expenses  by
optimizing the warehouse location, demand center assignments, and inventory control decisions.

The remainder of  the paper is structured as follows. A concise summary of  the literature is given in section 2. The
development of  the mathematical model, including assumptions, notations, analysis, etc., is written in section 3.
Section 4 addresses a numerical comparison with an examination of  the sensitivity. Lastly, there is a summary of
findings, managerial insights, and some directions for future research in section 5.

2. Literature Review
Nowadays, many business decisions are taken together instead of  independently to boost supply chain efficiency
and combining facility location,  inventory management, and routing problems, and solving them together is
standard practice (Melo, Nickel & Saldanha-Da-Gama, 2009). Location-inventory problems are first suggested in
the literature by Daskin et al. (2002) and Shen et al. (2003), and they are thoroughly explored in many directions
later.  Location-inventory models,  for  example,  are extended to take into account different inventory control
strategies (Berman, Krass & Tajbakhsh,  2012), product attributes (e.g., perishable products, seasonal products,
replaceable products, etc.) (Dai, Aqlan, Zheng & Gao, 2018; Farahani, Shavandi & Rahmani, 2017), third-party
logistics  (Arabzad,  Ghorbani  & Tavakkoli-Moghaddam,  2015),  lateral  transshipment  (Meissner  & Senicheva,
2018), and correlated or uncertain demands (Diabat, Dehghani & Jabbarzadeh,  2017;  Shahabi, Unnikrishnan,
Jafari-Shirazi & Boyles,  2014). The location-inventory problem has only attracted scholars’ attention in the last
few years.

Under uncertainty, in the design of  supply chain networks, consistent with a classification proposed by Tang (2006),
risks from the supply chain may be categorized into operational and disruptive risks depending on the source of
uncertainty. Operational risk refers to those recurring risks such as uncertainties of  supply and demand, which are
inherent in supply chains. The risk of  disruption usually involves external disruptions caused by natural disasters or
a man-made action (Ivanov, Pavlov, Dolgui, Pavlov & Sokolov, 2016). Large man-made or natural disasters such as
hurricanes,  terrorist  attacks,  earthquakes,  and economic  crises  may impact  supply  chain networks  (Govindan,
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Fattahi & Keyvanshokooh, 2017). These disturbances, however, typically have a low probability of  occurrence, but
their effect on the supply chain network is prominent (Govindan et al., 2017).

Another critical problem explored in the literature on the design of  the supply chain network is the disruption of
facilities  (Rayat,  Musavi  & Bozorgi-Amiri,  2017).  From a  traditional  standpoint,  it  is  assumed that  present
facilities are always available to use, but in practice, some facilities may not be accessible due to the risk of
disturbances (Rayat  et  al., 2017).  These operational  disturbances may occur due to different causes such as
recession and strikes, power disruptions, maintenance breaks, etc. (Rayat et al. , 2017). These risks can lead to
both negative financial and operational impacts like high travel costs, delays in orders, shortages in inventories,
etc. (Li,  Guo, Wang & Fu,  2013). Disruptions in the supply chain have a major effect on the organization’s
performance. Consequently, some effective supply chain strategies must be implemented to sketch a network
with minimal cost and risk. To minimize the costs of  failure and the risk of  disruption, the logistic system
provider should design a robust network (Rayat et al., 2017).

According  to  Cruz  (2013)  and  Gold,  Seuring  and  Beske  (2010),  growing  recognition  of  the  need  for
environmental  conservation  and  sustainability,  enables  the  government,  customers,  local  communities,  and
stakeholder organizations to put pressure on companies to efficiently integrate sustainability concerns into their
supply chain management practices. Now, one of  the most crucial criteria for determining a company’s integrity
is environmental sustainability at every point of  the supply chain (Kumar, Choudhary, Babu, Kumar, Goswami &
Tiwari, 2017).  As an example of  advocacy group public awareness campaigns, many companies like Texaco,
McDonald’s, Nestle, Shell, Monsanto, and Mitsubishi have suffered reputational and revenue losses (Svendsen,
Boutilier,  Abbott  &  Wheeler,  2001).  From this  necessity,  the researcher is  now incorporating environmental
emissions into the traditional location-inventory supply chain network model. For example, the carbon emission
constrained location-inventory models have been studied by Al Dhaheri and Diabat (2011), Diabat and Al-Salem
(2015), and Dai et al. (2018).

Disruption and environment sustainability both need to be addressed in the design of  a robust and efficient
supply chain. Disruption and environmental sustainability are interrelated. For instance, in the make-to-order
manufacturing  system,  spontaneous disturbance in  product  quality  induces  to manufacture  more than the
actual requirement to prevent deficit of  consumer demand, and this excessive output would generate more
carbon emissions.  Quite  surprisingly,  apart  from this  negative outcome, the  disruption also has a  positive
environmental impact. The latest example is operational disruption due to the COVID-19 outbreak, which has
a significant impact on factory shutdown and airline scheduling cancellation, in most parts of  the world. As a
result, the major collapse in factory production and the cancelation of  transportation on international routes
are helping to ensure environmental sustainability by reducing CO 2 emissions even though it ultimately causes
an economic crisis. 

A full literature review can be found in Farahani, Rashidi Bajgan, Fahimnia and Kaviani (2015) on the modeling of
a location-inventory problem in the supply chain. However, Table 1 shows a brief  review of  the literature relevant
to our research on the problem of  inventory-location. How our proposed study differs from the previous research
can be easily realized in Table 1.

Previously, most researchers consider storage or distribution center disruption risk only (Liu, Wang & Ouyang,
2017;  Rayat  et  al., 2017;  Fattahi  &  Govindan, 2018;  Azadeh  &  Arani  2016;  Rabbani,  Aliabadi,  Heidari  &
Farrokhi-Asl,  2017). Disruption may also occur in the manufacturing plant. For example, the deadly coronavirus
(COVID-19 epidemic) recently hits China’s Wuhan city. Many world-renowned automotive and automotive parts
companies in this city have their factory. The spread of  the virus among this city’s mass populations forced all
major manufacturing plants to be shut down.

The spare part’s supply chain system may confront facility disruption risk and may have an emission barrier.
Furthermore, the spare part’s inventory is expensive, and in terms of  financial worth, the spare part’s inventory
reduction can generate high business value. But at the same time, the reduction in inventory could create a
stock-out situation of  the spare parts, which ultimately makes a bad market image for the manufacturer of  the
spare parts. Since failure to get the required spare parts on time can result in a significant financial loss for the
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spare part’s user. Disruption, CO2 emission, etc., are explicitly discussed for a Bio-mass supply chain model (Liu
et al., 2017; Fattahi  & Govindan, 2018; Azadeh & Arani, 2016; Ahranjani et al., 2020). Also, the source of
emissions in a network is considered either from production and transportation (Kumar et al. , 2017; Fattahi &
Govindan, 2018; Ahranjani et al., 2020) or from transportation and warehousing (Peng et al., 2016; Al Dhaheri &
Diabat, 2011).

Paper

Assumption
regarding the

customer
demand

Consideration
of  unsatisfied

customer
demand

Disruption
risk type

Source of
emission

Modeling
approach Decision variables

Peng Ablanedo-
Rosas & Fu 
(2016)

Fixed and 
decided based on
demand forecast

Lost sales – Transportation
and 
warehousing 
operations

Mixed integer 
linear 
programming 
model

The procurement 
quantity from 
factories to the points
of  sales and the 
transportation cost 
from the factories to 
the point of  sales.

Liu et al.(2017) Fixed All demands are 
satisfied and no 
unsatisfied 
demand

Collection 
facility 
disruption

– Reliable 
incapacitated fixed
charge location 
model

Biomass shipment 
and inventory 
holding quantity, and 
facility location 
decisions.

Rayat et
al.(2017)

Stochastic Partial 
backordering with
lost sales

Distribution 
center
disruption

– Reliable 
incapacitated fixed
charge location 
model

Facility location, 
ordering, and routing 
decisions.

Fattahi & 
Govindan (2018)

Fixed Lost sales Storage facility
disruption

Biofuel 
production 
and
Biomass & 
biofuel 

A bi-objective 
mixed-integer 
nonlinear 
programming 
(MINLP) 
model

Facility location, 
production, 
transportation, and 
inventory decisions.

Azadeh & Arani 
(2016)

Biodiesel price, 
fossil fuel price, 
fuel 
consumption of
bio-automobile, 
social effect of  
air pollution, 
and government
policy 
dependent 
demand

Lost sales 1.Disruption 
in connection 
between 
biomass field, 
bio-refineries, 
and demand 
center
2.Disruption 
in biomass 
field

– A hybrid system 
dynamics-
stochastic 
mathematical 
Programming
approach

Facility location, 
technology, 
production, inventory, 
and transportation 
decisions.

Ahranjani, 
Ghaderi, Azadeh
& Babazadeh, 
(2020)

Deterministic Demands are 
satisfied

Disruption in 
biomass 
feedstock yield

Biomass 
production 
and 
transportation

A hybrid robust 
stochastic-
possibilistic 
programming 
approach

Facility location, 
capacity and 
technology of  bio 
refineries, 
transportation 
modes, Biomass 
shipments, inventory 
levels, production, 
and import amounts 
decisions.
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Paper

Assumption
regarding the

customer
demand

Consideration
of  unsatisfied

customer
demand

Disruption
risk type

Source of
emission

Modeling
approach Decision variables

Kumar et al. 
(2017)

Selling price 
dependent 
demand

No lost sales Supply 
disruption

Production 
and 
transportation

A Pareto-based 
multi objective 
evolutionary 
algorithm–non-
dominated sorting
genetic algorithm-
II(NSGA-II)

Production, inventory 
holding, and delivery 
quantity of  the 
supplier and the 
manufacturer. 
Inventory holding and
selling quantity of  the 
retailer. Level of  social
relationship between 
supplier, manufacturer,
and the retailer.

Al Dhaheri & 
Diabat (2011)

Stochastic No lost sales – Transportation
and 
warehousing 
operations

A multiple 
product 
capacitated 
inventory-location
supply chain 
model

Re-order time, re-
order quantity, safety 
stock quantity in each 
selected facility, and 
facility location 
decisions.

Dehghani & 
Taki (2019)

Stochastic Back order – – A mixed integer 
nonlinear 
programming 
model (MINLP) 
and Queuing 
theory

Facility location and 
inventory control 
decisions.

Sadjadi, Makui 
Dehghani & 
Pourmohammad
(2016)

Stochastic Lost sales – – A mixed integer 
nonlinear 
programming 
model (MINLP) 
and Queuing 
theory

Facility location and 
inventory control 
decisions.

Rabbani et al. 
(2017)

Stochastic Lost sales Distribution 
center 
disruption

– A mixed integer 
nonlinear 
programming 
model (MINLP) 
and Queuing 
theory

Facility location and 
inventory control 
decisions.

Tapia-Ubeda et 
al. (2020)

Stochastic Demands are 
satisfied

– – A generic network
optimization 
modelling 
structure

Facility location and 
inventory control 
decisions.

Diabat et al. 
(2017)

Stochastic Lost sales – – A hybrid solution 
algorithm based 
on simulated 
annealing and 
direct search 
method and 
Queuing theory

Facility location and 
inventory control 
decisions.

This study Stochastic Lost sales due to 
empty ware house

Manufacturing
plant 
disruption

Production, 
transportation 
and 
warehousing 
operations of  
spare parts

A mixed integer 
nonlinear
programming 
model (MINLP) 
and Queuing 
theory

Facility location and 
inventory control 
decisions.

Table 1. Literature review summary
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However, the supply chain location-inventory model of  the spare parts in the context of  a facility (manufacturing
plant) disruption risk and environmental sustainability in terms of  carbon emission is not investigated. Moreover,
the interaction between the probabilistic facility disruption risk and environmental emission is not being discussed.
That’s why by considering all possible sources of  emission, such as production, transportation, and warehousing, a
new location-inventory model of  the spare part’s supply chain is formulated to fill the existing gap of  spare part’s
supply chain literature. The key contribution of  this paper is the joint consideration of  the manufacturing facility
disruption risk and environmental emission for modeling a spare part’s supply chain network where both spare
part’s demand and delivery lead time are uncertain. The impact of  probabilistic facility disruption risk in controlling
the average emission level is also shown.

3. Model Descriptions

A spare parts supply chain network is considered where consumers seek for spare parts to the demand center. We
focus only on non-repairable maintenance spare parts. Demand for a spare part is generated during the preventive
maintenance  period  (when  the  old  component  is  worn  out  and  not  at  all  usable)  or  during  the  corrective
maintenance period (the working component is unexpectedly failed during operation).

The demand center places an order at its closest (warehouse) distribution center. The demand centers belong to a
seller  or  a  retailer  who sells  the  manufacturer’s  product.  A manufacturer  operates  the  production  plants  and
warehouses. The manufacturer operates two manufacturing plants at different locations. The manufacturer also has
an environmental restriction in terms of  CO2 emissions.

The designated production site, which is close to the warehouse facilities, also fulfills all warehouses’ demands. Any
natural  disaster  or  man-made  action  or  machine  malfunction  may  interrupt  the  operation  of  the  designated
manufacturing plant. If  the designated plant is disrupted, the manufacturer selects the alternative plant which is
reliable and is located very far from the warehouse facilities. For example, recently, every major manufacturing plant
in China’s city of  Wuhan is shut down due to the operational disruption caused by the spread of  the coronavirus.
As a result, the manufacturer makes sourcing from the other manufacturing plant outside China to address the
crisis of  demand shortages.

There is a set of  fixed locations of  demand center denoted by I , and each demand center i{1, 2 … I} is only
allocated to one opened warehouse. The demands of  every demand center i  arrive according to a Poisson process
with a parameter λi, and the demands of  the demand centers are independent. On the other hand, there is a set of
candidate locations denoted by  K, where warehouses will be constructed. The notation  λk  denotes the demand
arrival rate in the Poisson distribution for every opened warehouse k , where k{1, 2 … K} .That is λk is a function
of  λi, and λk is a decision variable (See Figure 2).

Every warehouse manager controls his inventory system by using (sk, Qk) inventory policy where Qk > sk. Based on
this policy, each opened warehouse  k  places an order of  Qk at the designated manufacturing plant when the
inventory  level  declines  to  sk.  Here, Qk and  sk are  decision variables.  The maximum inventory  capacity  of  a
warehouse located in  k  is  Ik

max.  Moreover,  each opened warehouse follows First in,  First  out (FIFO) policy.
According to this policy, an order that comes first is delivered first. If  the designated manufacturing plant disrupts
with probability  q, the order immediately places at the alternative plant. So, the probability of  receiving an order
from the alternative manufacturing plant is q. Oppositely, the probability of  receiving an order from the designated
manufacturing plant is 1 -  q . The order arrives after a random lead time. This order delivery time follows an
exponential distribution with parameter μ1  for the designated plant and μ2  for the alternative plant where μ1 > μ2.
So the exponential delivery rate from the manufacturing plant to the opened warehouse k  can be denoted as μ 
where  μ = (1 –  q)μ1  + qμ2. If  the inventory level of  any warehouse  k is empty while demand arrives from the
demand center, all the unmet demands are considered as lost sales for that assigned warehouse k.

The research objective is to design a three-echelon supply chain network that consists of  manufacturing plants,
warehouses, and demand centers. The proposed supply chain network of  a spare parts manufacturer is illustrated in
Figure 1. Using queuing theory to model the on-hand inventory levels in warehouses, the proposed model provides
the following decisions:
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1. Optimum number and location of  warehouses;
2. The optimum allocation of  demand centers to the opened warehouses and
3. The optimum (sk, Qk) inventory control policy for each opened warehouse k.

Figure 1. Spare parts supply chain network 

A spare parts supply chain network subject to probabilistic facility disruption risk is considered in this research.
The objective is to optimize the total supply chain cost of  a spare parts manufacturer consisting of  the spare
parts  manufacturing  cost,  the  warehouse  setup  cost,  the  transportation  cost,  the  emission  cost  (due  to
production, transportation and warehousing), the lost sales cost and the inventory holding cost. In this regard,
the manager of  a warehouse (k) must make a tradeoff  between λk , sk , and Qk in such a way that minimizes the
cost (see Figure 2).

Figure 2. Qk, sk , λk dependent inventory accumulation, and stochastic demand 
arrival and delivery process in a warehouse (k)
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Sets:

K Set of  opened warehouses; k{1, 2 … K} 

I Set of  demand centers; i{1, 2 … I}

Parameters:

q The disruption probability of  the designated plant

μ1 Average delivery rate (exponential) of  the designated plant (average lots per unit time)

μ2 Average delivery rate (exponential) of  the alternative plant (average lots per unit time)

λi 
Average demand rate (lots) of  demand center i (Poisson) iI

Ok Expected number of  reorders per unit time by warehouse k 

Bk Expected number of  lost sales (lots) per unit time by warehouse k 

Yk The expected amount of  production quantity (lots) per unit time by the manufacturing plant.

Lk The mean inventory level (lots) of  warehouse k 

Gk The expected shipment quantity (lots) per unit time from the warehouse k to the demand centers (i)

ωk The average emission level per unit time of  warehouse k (ton CO2)

max The permissible limit of  emission per unit time(ton CO2)

Ik
max The maximum capacity of  inventory of  warehouse k 

φ1k The amount of  CO2 emissions generated by the shipment of  one unit of  spare parts from the designated plant to
the warehouse k (ton CO2)

φ2k The amount of  CO2 emissions generated by the shipment of  one unit of  spare parts from the alternative plant to
the warehouse k (ton CO2)

φki The amount of  CO2 emissions generated by the shipment of  one unit of  spare parts from the warehouse k to the
demand center i (ton CO2)

k The amount of  CO2 emissions generated by holding one unit of  inventory in warehouse k (ton CO2)

∂1 The amount of  CO2 produced by the production of  a single unit of  spare parts from the designated manufacturing
plant (ton CO2)

∂2 The amount of  CO2 produced by the production of  a single unit of  spare parts from the alternative manufacturing
plant (ton CO2)

Cost parameters

CT The total supply chain cost of  the manufacturer

Ω The warehouse setup cost per unit time

yo Per unit (ton) CO2 emission cost

y1 Per unit manufacturing cost

y2 Per unit lost sales cost

y3 Per unit inventory holding cost

y1k The cost of  transporting one unit of  spare parts from the designated plant to the warehouse k 

y2k The cost of  transporting one unit of  spare parts from the alternative plant to the warehouse k 

yki The cost of  transporting one unit of  spare parts from the warehouse k to the demand center i.

Decision variables

1. Binary decision variables

Uk 1 if  a warehouse is built in k ,0 otherwise; kK

Vki 1 if  demand center i is allocated to opened warehouse k,0 otherwise; iI, kK
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2. Other decision variables

λk Average demand rate for opened warehouse k; kK

sk Reorder level at opened warehouse k; kK

Qk Reorder quantity at opened warehouse k; kK

Table 2. Notations

It should be noted here that the study is limited only to the manufacturer of  spare parts, and thus, all costs,
including the penalty costs due to the demand center’s lost sales, are excluded. The notation used in the model is
shown in Table 2 above.

3.1. Warehouse Inventory Level Formulation

Let Ik(t ) denotes the on-hand inventory level in warehouse k at time t where the minimum and maximum values of
on-hand inventory are 0 and Qk + sk , respectively. According to the Poisson process, demand arrivals at warehouses
occur at a rate λk, and thus, the inter-arrival times of  demand at warehouses are distributed exponentially. Ultimately,
due to the finite range of  inventory level (0 to  Qk + sk) at each warehouse, and the memoryless property of
exponential distribution, warehouse inventory levels can be defined as states of  a Markov chain. Now the inventory
level process {Ik(t); t ≥ 0} with the state space of  Ek = {0, 1, 2, …, Qk + sk}  is a continuous time Markov chain.
Now if  z and j represent the values (states) of  Ik(t ) then the probability of  transition from state z to j (from time 0
to t) can be defined as follows 

.

As Ik(t)  denotes the on hand inventory level in warehouse k at time t and hence, the steady state probability of
getting inventory level j in warehouse k can be defined as follows

The inventory level process can be defined as a birth-death process because the birth-death process is a continuous
time Markov chain. According to the birth-death process, in the long run, the rate at which the inventory level
process enters state j equals the rate at which the inventory level process leaves state j.

Figure 3. The rate transition diagram for on-hand inventory

From the definition of  the birth-death process or a continuous time Markov chain, the balance equations for the
steady-state condition are derived as follows. Figure 3 illustrates the rate transition diagram for on-hand inventory
for the warehouse located at site k.
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which implies .

Here 

(1)

(2)

which implies 
(3)

(4)

(5)

which implies 
(6)

Now if  1 ≤ j ≤ sk, then by solving Equation (2) or (3) recursively, we have

(7)

Again replacing the value of  Pk(1) from Equation (1) and by letting μ = (1 – q)μ1 + qμ2 we have

(8)

From Equation (4), if  sk + 1 ≤ j ≤ Qk – 1, then we have Pk(sk + 1) = Pk(sk + 2) = ··· = Pk(Qk). After solving
Equation (5) recursively for  j =  Qk  and putting the value of  Pk(Qk +  sk)  of  Equation (6) to this recursive

equation,  we  finally  have   (see  Appendix  A). As  a  result,

. Finally, we have the following equation.

(9)

Again after solving Equations (5) recursively for j = Qk, Qk + 1, Qk + 2, ···, Qk + sk – 1 and by putting the value of  

, we have the following recursive relations (See Appendix A)

,
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,

.

From the above recursive relations, the final expression of  Pk( j ) can be expressed as follows

.

(10)

Since  from Equations (8) to (10), we have the following equation (See Appendix A for details).

(11)

Using the queuing approach, the mean re-order rate in each opened warehouse can be derived. According to
PASTA (Poisson arrivals see time averages) property, the probability of  having an on-hand inventory level sk + 1 in
the long run, i.e., Pk(sk + 1) equals the proportion of  demand arrivals that finds an inventory level of  sk + 1 while
arrives.

The average number of  demand arrivals per unit time is λk, and hence, the average number of  demand arrivals that
finds an inventory level of  sk + 1 per unit time is Pk(sk + 1)λk. The number Pk(sk + 1)λk also denotes the average
number of  demand arrivals that left behind an inventory level of  sk per unit time while departs. As a result, the
mean number of  times a warehouse has state  sk or the mean number of  times a warehouse manager finds an
on-hand inventory position of  sk is Pk(sk + 1)λk. From this, the mean re-order rate in each opened warehouse k can
be derived by the following equation.

(12)

Again using the queuing approach, the average inventory level in each opened warehouse k can be derived by the
following equation (see Appendix A for details).

Here 

(13)

Like the mean re-order rate, the mean lost sales rate in each opened warehouse k can be derived by the following
equation.
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(14)

3.2. Manufacturer’s Production, Shipment, and Emission Level Formulation

Since each opened warehouse k  places an order of  Qk to the manufacturing plant when the inventory level declines
to sk. So the mean production rate of  the manufacturing plant for warehouse k  is derived by the following equation.

(15)

The expected transportation quantity per unit time from the manufacturing plant to the opened warehouse k is Yk.
On the other hand, the expected transportation quantity per unit time from the warehouse  k to the assigned
demand centers i can now be derived by the following equation.

Here 
(16)

The manufacturer produces a significant level of  emission from production, transportation, and warehousing of
the spare parts. The amount of  CO2 emitted by shipping one unit (lot) of  spare parts from the designated plant to
the warehouse k  is denoted as φ1k (Nouira, Hammami, Frein & Temponi,  2016). Similarly, the amount of  CO2

emitted by shipping one unit of  spare parts from the alternative plant to the warehouse k  is denoted as φ2k. Again
the amount of  CO2 emitted by shipping one unit (lot) of  spare parts from the warehouse k  to the demand center i
 is denoted as  φki.  On the other hand, the amount of  CO2 emitted by holding one unit (lot) of  inventory in
warehouse k  is denoted as k (Tang, Ji & Jiang, 2016). The emission also generates from the production of  spare
parts. ∂1 and ∂2 denote the emission index and are defined as the amount of  CO2 produced by the production of  a
single unit (lot) of  spare parts (Ben-Salem, Gharbi & Hajji, 2015; Chen and Monahan, 2010) from the designated
and the alternative manufacturing plant, respectively. The maximum limit of  emission per unit time set by the
environmental emission regulation policy is max.  If  the manufacturer exceeds this limit while managing its supply
chain operation, then the manufacturer incurs a cost known as emission cost. The average emission level per unit
time of  the manufacturer for warehouse k can now be derived as follows.

(17)

3.3. Supply Chain Cost Functions

The manufacturer’s overall supply chain costs can be broken down into two parts. The fixed setup cost of  the
warehouse, and the other variable cost. The variable cost includes the spare part’s average manufacturing cost per unit
time, the average transportation cost per unit time, the long-run average inventory holding cost, the average lost sales
cost per unit time, and the average emission cost per unit time. The total supply chain cost can be defined as follows.
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Here 

(18)

3.4. Integrated Optimization Model

The proposed optimization model can now be derived by the following expressions.

Minimize Cost: CT (19)

Subject to

(20)

(21)

(22)

(23)

(24)

(25)

  Integer  
(26)

The Objective function (19) minimizes the total supply chain cost. The Equality constraint (20) ensures that each
demand center is assigned to exactly one warehouse located at location  k.  The Constraint (21) ensures that a
demand center can only be assigned to an opened warehouse located at location k. The Constraint (22) guarantees
that the demand rate allocated to each opened warehouse k is equal to the sum of  demand rates of  its assigned
demand centers i . The Constraint (23) confirms that the re-order point is always less than the reorder quantity at
each opened warehouse to avoid any perpetual shortages. The Constraint (24) confirms that the summation of  the
reorder level and the reorder quantity for warehouse  k never exceeds the maximum inventory capacity of  this
warehouse. Constraint (25) and (26) define the domain of  the decision variables Vki and Uk, respectively.
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3.5. Solution Approach

The optimization problem is a mixed-integer programming problem, and therefore, it is solved using the Genetic
algorithm solver of  the global optimization toolbox of  MATLAB. Since the Genetic algorithm is a heuristic search
algorithm, and thus it always gives a near-optimal solution.

4. Numerical Experiment and Sensitivity Analysis
4.1. Numerical Examples

The  following  numerical  values  (Table  3)  of  the  input  parameters  are  assumed  for  conducting  a  numerical
experiment for the derived model. We assumed that the maximum inventory level for all possible warehouses  
k{1, 2 … K} is 9 lots, and each lot contains 100 units of  spare parts.

q 0.10 k=1 0.045

μ1 1.03 k=2 0.045

μ2 0.73 Ω $5

max 4 yo $8

∂1 0.077 y1 $10

∂2 0.077 y2 $36

Ik
max 9 y3 $2

Table 3. Common input parameters

Based on Table 4, three numerical experiments are performed, which are described as follows.

Example 1. 
3 demand center, 
2 possible location 
of  warehouse

K k{1, 2, … K} φk=2i=2 0.25

I i{1, 2, 3 … I} φk=2i=3 0.20

λ1 1.5 y1k=1 $2.10

λ2 1.7 y1k=2 $2.50

λ3 1.2 y2k=1 $2.75

φ1k=1 1.1 y2k=2 $2.80

φ1k=2 1.3 yk=1i=1 $0.12

φ2k=1 1.4 yk=1i=2 $0.32

φ2k=2 1.5 yk=1i=3 $0.50

φk=1i=1 0.15 yk=2i=1 $0.60

φk=1i=2 0.19 yk=2i=2 $0.58

φk=1i=3 0.23 yk=2i=3 $0.33

φk=2i=1 0.29

Example 2. 
4 demand center, 
2 possible location 
of  warehouse 

φk=1i=4 0.25 yk=1i=4 $0.58

φk=2i=4 0.31 yk=2i=4 $0.62

λ4 = 2

Example 3. 
5 demand center, 
2 possible location 
of  warehouse

φk=1i=5 0.29 yk=1i=5 $0.60

φk=2i=5 0.23 yk=2i=5 $0.50

λ5 = 2.1

Table 4. Examples: demand centers and possible location of  warehouse
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First, using the data of  Table 3 and Table 4, the optimization problem is solved. The findings are shown in Table 5.
First, in example 1, the near-optimal solution is obtained by considering both warehouse 1 (k = 1) and warehouse 2
(k = 2).  Second, the near-optimal solution is  obtained by considering only warehouse 1  (k = 1).  Finally,  the
near-optimal solution is obtained by considering only warehouse 2 (k = 2). By considering the total average cost
functions, the obtained near-optimal solutions are then evaluated to obtain the ultimate near-optimal solution (see
Table 5). The same approach is implemented, for example 2 and example 3 as well. When only a single warehouse
k is evaluated for an optimal solution, the optimal values of  the decision variables Vki,  Uk, and λk are known by
default in advance, and thus we only need to obtain the near-optimal solutions of  Qk and  sk.  So for a single
warehouse evaluation, the optimization problem turns into a two variables problem.

Based on Table 5, the optimal location of  a warehouse for example 1, and example 2 are the same, and it is only the
warehouse 1, i.e., the warehouse located in location k = 1. Figure 4 shows the total average cost function regarding
example 1 for various Q1, and s1. In example 3, the optimal number of  warehouses is 2, i.e., both warehouse 1 and
2, i.e., k = 1 and 2. Regarding the three examples mentioned above, the following findings are observed.

Figure 4. Total average cost function for warehouse 1(Example 1)

Example 1

For a single warehouse scenario, based on the designed parameters, the obtained Q*
2 is 5 lots and s*

2 is 4 lots, for a
warehouse located in location 2. Similarly, the obtained Q*

1 is 5 lots and s*
1 is 4 lots, for a warehouse located in 1. As

a result, the average lost sales cost is the same for the warehouse located in both locations 1 and location 2. The
same results can be observed for the average inventory holding and the average manufacturing cost. On the other
hand, in the case of  a warehouse located in location 2, the unit transportation cost and the per-unit emission level
are higher than a warehouse located in location 1. That’s why the average transportation cost and the average
emission cost for warehouse 2 (k = 2) are higher than the warehouse 1 (k = 1), to minimize the total average cost. 

Example 2

For a single warehouse scenario, based on the designed parameters, the obtained Q*
2 is 6 lots and s*

2 is 3 lots, for a
warehouse located in location 2. Similarly, the obtained Q*

1 is 6 lots and s*
1 is 3 lots, for a warehouse located in 1. As

a result, like Example 1, the average lost sales cost, the average inventory holding, and the average manufacturing
cost is the same for both warehouses located in location 2 and location 1, and it is expected. Similarly, like Example
1, the unit transportation cost for a warehouse located in location 2 is higher than the warehouse located in location
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1.That’s why the average transportation cost for warehouse 2 (k = 2) is higher than the warehouse 1 (k = 1). Again
the per unit emission level for warehouse 2 (k = 2) is higher than the warehouse 1 (k = 1). That’s why the average
emission cost for a warehouse located in location 2 is higher than the warehouse located in location 1 to minimize
the total average cost.

Example 3

For a two-warehouse scenario, based on the designed parameters, the obtained Q*
2 is 5 lots and s*

2 is 3 lots, for a
warehouse located in location 2. The obtained Q*

1 is 6 lots and s*
1 is 3 lots, for a warehouse located in 1. In the end,

for a two warehouse scenario, although the average lost sales cost is lower than any single warehouse scenario
(either k = 1 or 2), the average inventory holding cost, the average manufacturing cost, the average emission cost,
the average transportation cost, and the warehouse setup cost are higher than any single warehouse scenario. Finally,
for a two-warehouse scenario, the total average cost is the ultimate near-optimal. That is, when the demand center
number is 5, it is better to select both warehouse 1 and warehouse 2.

Example 1: 
3 demand center,
2 possible location 
of  warehouse

V*
ki

V*
11 = 1, V*

12 = 1,
V*

13 = 0, V*
21 = 0,

V*
22 = 0, V*

23 = 1

V*
11 = 1, V*

12 = 1,
V*

13 = 1, V*
21 = 0,

V*
22 = 0, V*

23 = 0

V*
11 = 0, V*

12 = 0,
V*

13 = 0, V*
21 = 1,

V*
22 = 1, V*

23 = 1

V*
11 = 1, V*

12 = 1,
V*

13 = 1, V*
21 = 0,

V*
22 = 0, V*

23 = 0,
U*

1 = 1, U*
2 = 0

λ*
k

λ*
1 = 3.2,

λ*
2 = 1.2

λ*
1 = 4.4,
λ*

2 = 0
λ*

1 = 0,
λ*

2 = 4.4
λ*

1 = 4.4,
λ*

2 = 0

s*
k

s*
1 = 4,

s*
2 = 1

s*
1 = 4,

s*
2 = 0

s*
1 = 0,

s*
2 = 4

s*
1 = 4,

s*
2 = 0

Q*
k

Q*
1 = 5,

Q*
2 = 2

Q*
1 = 5,

Q*
2 = 0

Q*
1 = 0,

Q*
2 = 5

Q*
1 = 5,

Q*
2 = 0

CT* 106.85 99.87 108.13 99.87

Transportation cost 8.88 7.82 9.67 1 warehouse (k = 1)

Manufacturing cost 35.36 31.70 31.70

Ultimate near
optimal solution

Inventory holding cost 10.97 6.54 6.54

Lost sales cost 31.09 44.27 44.27

Emission cost 10.55 4.54 10.95

Setup cost 10 5 5

Decision variables
Combination

2 warehouse (k = 1, 2) 1 warehouse (k = 1) 1 warehouse (k = 2)

Example 2: 
4 demand center, 
2 possible location 
of  warehouse

V*
ki

V*
11 = 1, V*

12 = 1,
V*

13 = 0, V*
14 = 1,

V*
21 = 0, V*

22 = 0,
V*

23 = 1, V*
24 = 0

V*
11 = 1, V*

12 = 1,
V*

13 = 1, V*
14 = 1,

V*
21 = 0, V*

22 = 0,
V*

23 = 0, V*
24 = 0

V*
11 = 0, V*

12 = 0,
V*

13 = 0, V*
14 = 0,

V*
21 = 1, V*

22 = 1,
V*

23 = 1, V*
24 = 1

U*
1 = 1, U*

2 = 0,
V*

11 = 1, V*
12 = 1,

V*
13 = 1, V*

14 = 1,
V*

21 = 0, V*
22 = 0,

V*
23 = 0, V*

24 = 0

λ*
k

λ*
1 = 5.2,

λ*
2 = 1.2

λ*
1 = 6.4,
λ*

2 = 0
λ*

1 = 0,
λ*

2 = 6.4
λ*

1 = 6.4,
λ*

2 = 0

s*
k

s*
1 = 3,

s*
2 = 1

s*
1 = 3,

s*
2 = 0

s*
1 = 0,

s*
2 = 3

s*
1 = 3,

s*
2 = 0

Q*
k

Q*
1 = 6,

Q*
2 = 2

Q*
1 = 6,

Q*
2 = 0

Q*
1 = 0,

Q*
2 = 6

Q*
1 = 6,

Q*
2 = 0

CT* 167.33 163.37 173 163.37

Transportation cost 11.28 9.67 11.67 1 warehouse (k = 1)

Manufacturing cost 43.45 37.87 37.87

Ultimate near
optimal solution

Inventory holding cost 8.72 5.02 5.02

Lost sales cost 73.98 94.07 94.07

Emission cost 19.90 11.74 19.37

Setup cost 10 5 5

Decision variables
Combination

2 warehouse (k = 1,2) 1 warehouse (k = 1) 1 warehouse (k = 2)
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Example 3: 
5 demand center, 
2 possible location 
of  warehouse

V*
ki

V*
11 = 1, V*

12 = 1,
V*

13 = 0, V*
14 = 1,

V*
15 = 0, V*

21 = 0,
V*

22 = 0, V*
23 = 1,

V*
24 = 0, V*

25 = 1

V*
11 = 1, V*

12 = 1,
V*

13 = 1, V*
14 = 1,

V*
15 = 1, V*

21 = 0,
V*

22 = 0, V*
23 = 0,

V*
24 = 0, V*

25 = 0

V*
11 = 0, V*

12 = 0,
V*

13 = 0, V*
14 = 0,

V*
15 = 0, V*

21 = 1,
V*

22 = 1, V*
23 = 1,

V*
24 = 1, V*

25 = 1

U*
1 = 1, U*

2 = 1,
V*

11 = 1, V*
12 = 1,

V*
13 = 0, V*

14 = 1,
V*

15 = 0, V*
21 = 0,

V*
22 = 0, V*

23 = 1,
V*

24 = 0, V*
25 = 1

λ*
k

λ*
1 = 5.2,

λ*
2 = 3.3

λ*
1 = 8.5,
λ*

2 = 0
λ*

1 = 0,
λ*

2 = 8.5
λ*

1 = 5.2,
λ*

2 = 3.3

s*
k

s*
1 = 3,

s*
2 = 3

s*
1 = 1,

s*
2 = 0

s*
1 = 0,

s*
2 = 1

s*
1 = 3,

s*
2 = 3

Q*
k

Q*
1 = 6,

Q*
2 = 5

Q*
1 = 8,

Q*
2 = 0

Q*
1 = 0,

Q*
2 = 8

Q*
1 = 6,

Q*
2 = 5

CT* 230.76 232.63 242.37 230.76

Transportation cost 16.24 11.35 13.37 2 warehouse (k = 1, 2)

Manufacturing cost 59.82 43.57 43.57

Ultimate near optimal
solution

Inventory holding cost 12.24 4.72 4.72

Lost sales cost 90.63 149.13 149.13

Emission cost 41.83 18.86 26.58

Setup cost 10 5 5

Decision variables
Combination

2 warehouse (k = 1, 2) 1 warehouse (k = 1) 1 warehouse (k = 2)

Table 5. Solutions of  example 1, 2, and 3: Near optimal solution

4.2. Sensitivity Analysis with Respect to the Facility Disruption Probability 

Sensitivity analysis is performed by changing the disruption probability from its base value of  0.1. See Table 6 for
results. From Table 6, it is evident that both the mean production rate and the mean inventory level are linearly
decreasing functions of  the disruption probability, and the mean lost sales rate is a linearly increasing function of
the disruption probability of  q.

On the other side, the average emission level is a non-linear function with respect to the disruption probability.
From Table 6, it is also evident that for the designed parameters when the disruption probability increases from
0.01 to 0.1, there is a very small increment in the average emission level, a very small decrement in the mean
production rate, and the mean inventory level. Here, the mean production rate, the mean inventory level, and the
average emission level are more or less the same. However, when the disruption probability increases further
from 0.5 to 0.95, like the mean production rate and the mean inventory level, the average emission level also
declines with the increment of  the disruption probability.  Moreover, the facility disruption probability has a
certain effect on Q*

1 and s*
1. For example, in example 1, when the disruption probability increases from 0.1 to

0.5, Q*
1 increases from 5 lots to 6 lots, and s*

1 decreases from 4 lots to 3 lots and after that Q*
1 and s*

1 does not
change with respect to the increment of  the disruption probability. Similarly, in example 2, when the disruption
probability increases from 0.1 to 0.5, Q*

1 increases from 6 lots to 7 lots, and s*
1 decreases from 3 lots to 2 lots and

after that Q*
1 and s*

1 does not change with respect to the increment of  the disruption probability. This is logical
because when the disruption probability increases from 0.1 to 0.5, s*

1 (for both examples 1 and 2) decreases. As a
result, the frequency of  reordering decreases, although the quantity in each reorders increases. The decrease in
the number of  re-ordering decreases the average transportation and emission cost due to transportation from
the alternative manufacturing plant to the assigned warehouses.  This decrease in average transportation and
emission costs helps to minimize the total average cost. When the disruption probability increases further from
0.5 to 0.7, and so on, Q*

1 and s*
1 do not change because, for example, in example 1, Q*

1 equals 6 lots is sufficient
to meet the average demand of  4.4 lots.On the other side, if  s*

1 decreases, then this decrease helps to increase the
total average cost due to the increase in the average shortage cost. Here the average transportation and emission
costs decrease is not so significant in comparison to the average shortage cost increase. In example 3,  Q*

1 +
Q*

2(= 11) and s*
1 + s*

2(= 6) are large as the average demand rate is 8.5 lots. Furthermore, to minimize the total
average cost, Q*

1 + Q*
2(= 11) and s*

1 + s*
2(= 6) do not change (increase/decrease) further when the probability
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of  disruption  is  high  because  the  average  demand rate  is  always  confined  to  8.5  lots.  However,  based  on
Equation (15) and Equation (17), as q increases (from 0.5 to 0.95), that’s why the average emission level (w*

1 +
w*

2) decreases (9.26 to 9.07).

Example 1 (3 demand center, 2 possible location of  warehouse)

Disruption probability q

Near optimal solution

1 warehouse (k = 1)

0.01 0.05 0.1
(Base value)

0.5 0.7 0.8 0.9 0.95

Y*
1(q) 3.21 3.19 3.17 2.97 2.87 2.81 2.75 2.72

L*
1(q) 3.33 3.30 3.27 2.96 2.83 2.76 2.69 2.65

B*
1(q) 1.19 1.21 1.23 1.43 1.53 1.59 1.65 1.68

w*
1(q, Y*

1, L*
1) 4.54 4.55 4.57 4.63 4.64 4.63 4.62 4.61

Q*
1 5 5 5 6 6 6 6 6

s*
1 4 4 4 3 3 3 3 3

Example 2 (4 demand center, 2 possible location of  warehouse)

Disruption probability q

Near optimal solution

1 warehouse (k = 1)

0.01 0.05 0.1
(Base value)

0.5 0.7 0.8 0.9 0.95

Y*
1(q) 3.85 3.82 3.79 3.55 3.41 3.34 3.26 3.22

L*
1(q) 2.56 2.53 2.51 2.41 2.31 2.25 2.19 2.17

B*
1(q) 2.55 2.58 2.61 2.85 2.99 3.06 3.14 3.18

w*
1(q, Y*

1, L*
1) 5.45 5.46 5.47 5.55 5.54 5.52 5.50 5.48

Q*
1 6 6 6 7 7 7 7 7

s*
1 3 3 3 2 2 2 2 2

Example 3 (5 demand center, 2 possible location of  warehouse)

Disruption probability q

Near optimal solution

2 warehouse (k = 1, 2)

0.01 0.05 0.1
(Base value)

0.5 0.7 0.8 0.9 0.95

Y*
1(q) + Y*

2(q) 6.06 6.03 5.98 5.63 5.43 5.33 5.21 5.15

L*
1(q) + L*

2(q) 6.22 6.18 6.12 5.65 5.39 5.26 5.12 5.04

B*
1(q) + B*

2(q) 2.44 2.47 2.52 2.87 3.07 3.17 3.29 3.35

w*
1(q, Y*

1, L*
1) + w*

2(q, Y*
2, L*

2) 9.20 9.21 9.22 9.26 9.21 9.16 9.11 9.07

Q*
1 6 6 6 6 6 6 6 6

s*
1 3 3 3 3 3 3 3 3

Q*
2 5 5 5 5 5 5 5 5

s*
2 3 3 3 3 3 3 3 3

Table 6. Impact of  the facility disruption probability

Finally, from Table 6, we can conclude that when the disruption probability decreases from 0.95 to 0.5, the mean
production rate and the mean inventory level increase, and as a result, the average emission level also increases.
However, when the disruption probability decreases further from 0.1 to 0.01, there are no significant changes in
production,  inventory  level,  and  emission  level.  In  conclusion,  even  though  the  high  probability  of  facility
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disruption has an impact on the average emission level, but the low disruption probability has no influence on the
average emission level.

4.3. Sensitivity Analysis with Respect to the Emission Limits

Sensitivity analysis is performed by changing the emission limits from its base value of  4. See Table 7 for results.
From Table 7, it is obvious that for the designed parameters, the emission limit has no influence on the mean
production rate, the mean inventory level, the mean lost sales rate, the mean emission level, Q*

1 and s*
1. Since the

mean production rate and the mean inventory level remain the same and therefore, the expected emission cost per
unit time increases with the emission limit decrease. Thus, the emission limit does not influence controlling the
average emission level.

Example 1 (3 demand center, 2 possible location of  warehouse)

max

Near optimal solution

1 warehouse (k = 1)

1 2 3 4
(Base value)

5 6 7

Emission cost($)* 28.54 20.54 12.54 4.54 0 0 0

Y*
1 3.17 3.17 3.17 3.17 3.17 3.17 3.17

L*
1 3.27 3.27 3.27 3.27 3.27 3.27 3.27

B*
1 1.23 1.23 1.23 1.23 1.23 1.23 1.23

w*
1(Y*

1, L*
1) 4.57 4.57 4.57 4.57 4.57 4.57 4.57

Q*
1 5 5 5 5 5 5 5

s*
1 4 4 4 4 4 4 4

Example 3 (5 demand center, 2 possible location of  warehouse)

max

Near optimal solution

2 warehouse (k = 1, 2)

1 2 3 4
(Base value)

5 6 7

Emission cost($)* 65.83 57.83 49.83 41.83 33.83 25.83 17.83

Y*
1 + Y*

2 5.98 5.98 5.98 5.98 5.98 5.98 5.98

L*
1 + L*

2 6.12 6.12 6.12 6.12 6.12 6.12 6.12

B*
1 + B*

2 2.52 2.52 2.52 2.52 2.52 2.52 2.52

w*
1(Y*

1, L*
1) + w*

2(Y*
2, L*

2) 9.22 9.22 9.22 9.22 9.22 9.22 9.22

Q*
1 6 6 6 6 6 6 6

s*
1 3 3 3 3 3 3 3

Q*
2 5 5 5 5 5 5 5

s*
2 3 3 3 3 3 3 3

Table 7. Impact of  the emission limit

4.4. Sensitivity Analysis With Respect to the Unit Lost Sales Cost

Sensitivity analysis is performed by changing the unit lost sales cost from its base value of  36. See Table 8 for
results. From Table 8, it is apparent that for the designed parameters, the mean production rate, mean inventory
level, mean lost sales rate and average emission level are influenced by the unit lost sales cost, having values between
$26 to $36 (see example 1) or $26 to $40 (see example 3). Under this range, the mean production rate, the mean
inventory level, and the average emission level are linearly increasing functions of  the unit lost sales cost, and the
mean lost  sales rate is  a linearly decreasing function of  the unit lost  sales cost.  The unit lost  sales cost  also
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influences Q*
1 and s*

1.  For example, in numerical example 1, s*
1 decreases from 4 to 3, and from 3 to 2 when the

unit lost sales cost decreases from $36 to $30 and from $30 to $26, respectively. Again in numerical example 3, Q*
1,

Q*
2, s*

1, s*
2 all are changed for the change in the unit lost sales cost. 

Example 1 (3 demand center, 2 possible location of  warehouse)

y2($)

Near optimal solution

1 warehouse (k = 1)

26 30 36
(Base value)

40 46

Y*
1 2.78 2.98 3.17 3.17 3.17

L*
1 2.22 2.70 3.27 3.27 3.27

B*
1 1.62 1.42 1.23 1.23 1.23

w*
1(Y*

1, L*
1) 3.97 4.28 4.57 4.57 4.57

Q*
1 5 5 5 5 5

s*
1 2 3 4 4 4

Example 3 (5 demand center, 2 possible location of  warehouse)

y2($)

Near optimal solution

2 warehouse (k = 1, 2)

26 30 36
(Base value)

40 46

Y*
1 + Y*

2 3.36 5.01 5.98 6.22 6.22

L*
1 + L*

2 1.43 3.57 6.12 6.70 6.70

B*
1 + B*

2 5.14 3.49 2.52 2.28 2.28

w*
1(Y*

1, L*
1) + w*

2(Y*
2, L*

2) 4.96 7.51 9.22 9.81 9.81

Q*
1 4 6 6 5 5

s*
1 1 3 3 4 4

Q*
2 1 2 5 5 5

s*
2 0 1 3 4 4

Table 8. Impact of  the unit lost sales cost

When the unit lost sales cost increases further from $36 to $46 (example 1) or $40 to $46 (example 3), it does not
has any impact on the mean production rate, the mean inventory level,  the mean lost  sales rate,  the average
emission levels, Q* and s*. It is expected, as the total average demand rate from all the demand centers are 4.4 lots
for numerical example 1, or 8.5 lots for numerical example 3. From Table 8, it is also observed that the unit lost sale
cost has little influence on Q* and s* when the average demand rate is low (see example 1) but has a significant
influence on Q* and s* when the average demand rate is high (see example 3). 

4.5. Sensitivity Analysis With Respect to the Unit Emission Cost

Sensitivity analysis is performed by changing the unit emission cost from its base value of  $8. See Table 9 for
results. From Table 9, it is apparent that for the designed parameters, the mean production rate, mean inventory
level, mean lost sales rate and average emission level are influenced by the unit emission cost, having values between
$10 to $14(see example 1) or $6 to $14 (see example 3).Under this range, the mean production rate, the mean
inventory level, and the average emission level are linearly decreasing functions of  the unit emission cost, and the
mean lost sales rate is a linearly increasing function of  the emission cost. The unit emission cost also influences s*

1.
For example, in numerical example 1, to minimize the total average cost, like the mean production rate, the mean
inventory level, and the average emission level,  s*

1 also decreases with the specific range of  unit emission cost
increments. 
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Example 1 (3 demand center, 2 possible location of  warehouse)

Unit emission cost yo

Near optimal solution

1 warehouse (k = 1)

4 6 8
(Base value)

10 12 14

Total average cost($) 97.60 98.74 99.87 101.00 101.97 102.48

Y*
1 3.17 3.17 3.17 3.17 2.98 2.78

L*
1 3.27 3.27 3.27 3.27 2.70 2.23

B*
1 1.23 1.23 1.23 1.23 1.42 1.62

w*
1(Y*

1, L*
1) 4.57 4.57 4.57 4.57 4.28 3.97

Q*
1 5 5 5 5 5 5

s*
1 4 4 4 4 3 2

Example 3 (5 demand center, 2 possible location of  warehouse)

Unit emission cost yo

Near optimal solution

2 warehouse (k = 1, 2)

4 6 8
(Base value)

10 12 14

Total average cost($) 208.07 219.69 230.76 240.70 248.16 253.31

Y*
1 + Y*

2 6.22 6.22 5.98 5.66 4.81 4.18

L*
1 + L*

2 6.71 6.71 6.12 5.00 3.24 2.37

B*
1 + B*

2 2.28 2.28 2.52 2.84 3.69 4.32

w*
1(Y*

1, L*
1) + w*

2(Y*
2, L*

2) 9.81 9.81 9.22 8.66 7.17 6.16

Q*
1 5 5 6 6 6 5

s*
1 4 4 3 3 3 3

Q*
2 5 5 5 4 2 1

s*
2 4 4 3 2 0 0

Table 9. Impact of  the unit emission cost

Here s*
1 decreases from 4 lots to 3 lots, and from 3 lots to 2 lots when the unit emission cost increases from $10 to

$12 and $12 to $14, respectively.  For  these  decrements  of  s*
1 the  optimal  total  average  supply  chain cost

becomes $ 101.97 and $ 102.48, respectively.  If  s*
1 does not change and remains the same (s*

1 = 4) for the
increment of  the unit emission cost to $12 and $14 from $10, then the total average cost would be $102.14
and $ 103.27, respectively. On the other hand,  Q*

1(=5) does not decrease further when the unit emission cost
increases because Q*

1 equals 5 lots is sufficient to meet the average demand of  4.4 lots. If  Q*
1 decreases from 5 lots,

it eventually increases the total average cost due to the increase in the average shortage cost.

Again in numerical example 3,  Q*
1, Q*

2,  s*
1,  s*

2 all are changed for the change in the unit emission cost. From
example 3, it can be observed that when the unit emission cost increases from $8 to $10, Q*

1 + Q*
2 decreases from

11 lots to 10 lots and  s*
1 +  s*

2 decreases from 6 lots to 5 lots (Table 9). This result indicates that for the unit
emission cost increase, the frequency of  reordering, and the quantity in each reorders decrease. The decrease in the
number of  re-ordering and the decrease in the quantity of  each reorder, decrease the mean production rate from
5.98 lots to 5.66 lots. Conversely, when the unit emission cost decreases from $8 to $6, Q*

1 + Q*
2 decreases from 11

lots to 10 lots and s*
1 + s*

2 increases from 6 lots to 8 lots (Table 9).This result indicates that for the unit emission
cost decrease, the frequency of  reordering increases, although the quantity in each reorders decrease. The increase
in the number of  re-ordering increases the mean production rate from 5.98 lots to 6.22 lots. Moreover, when the
unit emission cost decreases from $6 to $4 (example 3), it does not has any impact on the mean production rate, the
mean inventory level, the mean lost sales rate, the average emission levels, Q*

1, Q*
2, s*

1 and s*
2. To minimize the total

average cost,  Q*
1 +  Q*

2(=10) and  s*
1 +  s*

2(=8) do not change (increase/decrease) further because the average
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demand rate is always confined to 8.5 lots. Similarly, in example1, when the unit emission cost decreases from $10
to $4, Q*

1(=5) and s*
1(=4) do not change (increase/decrease) further, as the average demand rate is always confined

to 4.4 lots (Table 9).

5. Conclusions
We analyzed a supply chain network of  spare parts and then optimized the spare part’s manufacturer’s total average
cost. The findings obtained from the numerical analysis (based on the designed parameters) show that if  there is a
small number of  demand centers, then the manufacturer needs to pick a few locations for the warehouse setup.
Conversely, when the number of  demand centers is large, the large number of  warehouses is desirable for the storage
and distribution of  spare parts. Sensitivity analysis shows that if  the number of  demand centers is small, and the
probability of  facility disruption is high, the optimal re-order quantity is large, and the optimal re-order level is low.
The opposite results are observed, i.e., the optimal re-order quantity is small, and the optimal re-order level is high, if
the number of  demand centers is small, and the probability of  facility disruption is low. However, when the number
of  demand centers is large, i.e., the spare part’s demand is high; the probability of  facility disruption does not influence
controlling the warehouse inventory (re-order quantity and the re-order level) system of  the spare parts. Also, if  the
number of  demand centers is large, the optimal number of  selected warehouses is large, the combined optimal re-
order quantity of  the selected warehouses is large, and the combined optimal re-order level is also high. 

Regarding the environmental sustainability issue, when the probability of  facility disruption is significant, it has a
positive effect on the environment as the average level of  emission decreases (mean production rate decreases) with
the increment of  the disruption probability. However, the average emission level does not depend on the emission
limit. On the other side, although unit lost sales cost has a significant impact on the optimal re-order quantity and the
optimal re-order level of  the spare parts when the number of  demand center is large, but this cost has a very small
effect on the optimal re-order quantity and the optimal re-order level when the number of  demand center is small.

Nowadays, all industries realize the necessity of  a resilient and sustainable supply chain network. A resilient and
sustainable supply chain network can only ensure sustainability in the environment, and at the same time, provides
economic stability even in the presence of  sudden disruption risk. However, the current COVID-19 outbreak
clearly shows us that confirming stability in a country’s economy is very difficult and more daunting when a natural
disaster such as coronavirus spreading occurs because both demand and supply in a supply chain are seriously
affected by the assault of  this deadly virus although it helps to minimize environmental pollution through the mass
lockdown. COVID-19 outbreak also shows that a disaster not only affects an individual organization’s supply chain
but also affects the whole economy of  a country, or in an extreme situation, it affects the whole economy of  the
world. When someone is planning to develop a green and reliable supply chain network, he or she must consider
not only each entity in the network but also all potential other supply chain network variables that are directly /
indirectly connected to the network or have an impact on the network. An external variable such as the magnitude
of  the COVID-19 epidemic, for example, significantly influences the demand and supply rate of  the supply chain
for a commodity. Now, it is a growing concern whether and how long the supply chain reacts positively to the
COVID-19 outbreak so that a product’s demand and supply sustain its normal pace throughout this epidemic
period. A sustainable and robust supply chain network is desirable. The demanding future research in this regard
could be modeling a comprehensive green and robust supply chain network that confirm economic stability while
ensuring a less polluted environment. In addition, the limitation of  this research is that if  the warehouse and
demand center number is high, then it takes a long time to solve the problem using the existing solution approach.
So to solve the model within a short time, an efficient solution approach can be developed in future.
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Appendix A 

Recursive solution of  equation (5) for Pk(Qk)

From Eq. (5) we have

which implies 

Let  which yield

Again from Eq. (6) we have

Putting the value of   in the above recursive equation we have

which implies 
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Now replacing the value of  by using Eq. (7) and the value of   from Eq. (1) we have

Recursive solution of  equation (5) for Pk(Qk + 1), Pk(Qk + 2), …, Pk(Qk + sk)

Again from Eq. (5) we have

which implies 

Let  which yields

Now putting the value of   in the above equation we have

Again let  which yields

Replacing the value of   and  from Eq. (1)

to the above equation we have
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Again from the recursive equation mentioned above we have

Computation of  Pk(0) from the relation of  

We have

Here
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Again

Now replacing the expressions to the below equation

we finally have

which yields
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After rearranging the above equation, we have

Computation of  mean inventory level Lk 

From queuing system, the mean inventory level in the long run can be derived as

which yields

Here

Let,  we have

Again

And
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So finally we have
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Here
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