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Abstract:

Purpose: A supply chain consists of  raw material suppliers, manufacturers and retailers where inventory
of  raw materials and finished goods are involved, respectively. Therefore, it is important to find optimal
solutions, which are beneficial for both supplier, manufacturer and retailer.

Design/methodology/approach: This research focuses on a semi-continuous manufacturing facility by
assuming that the production of  succeeding cycle starts immediately after the production of  preceding
cycle. In reality,  the inventory of  a supply chain system may not be completely empty. A number of
products may be left over after the deliveries are made. These leftover inventories are added to the next
shipment after the production of  required amount to make up a complete batch for shipment. Therefore,
it is extremely important to search for an optimal strategies for these types production facilities where
leftover finished goods inventory remains after the final shipment in a production cycle. Considering these
scenarios, an inventory model is developed for an imperfect matching condition where some finished
goods remains after the shipments. 

Findings: Based on the previous observation, this research also considers a single facility that follows JIT
delivery and produces multiple products to satisfy customers’ demand. For this problem a rotational cycle
model is developed to optimize the facility operations. Both problems are categorized as mixed integer
non-linear programming problems which are to be solved to find optimum number of  orders, shipments
and rotational cycle policy for multiple products. Also, this solution will lead to estimate the optimum
production quantity and minimum total system cost. 

Research limitations: This research considers the supply chain based on manufacturers point of  view
and it does not consider the transportation cost associated with supply chain. Next study will be focused
on issues with joint decision making, information sharing, and transportation decision.

Practical implications: This study will help the managers of  refinery and paper industries in making their
operation smooth by applying optimizing techniques and robust decision making.

Originality/value: Based on the literature,  no research was found on continuous production system
supply chain and its optimization with JIT delivery. This research will definitely provide a direction for such
problem to the researchers.

Keywords:  supply chain system, just-in-time delivery, initial inventory, minimum idle time and rotational cycle
policy
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1. Introduction
Generally, Just-in-time (JIT) production systems have zero inventory systems and no buffer. In 1992, Golhar and
Sarkers’ observation stated that participation in JIT delivery system is economically disadvantageous for suppliers
(Golhar & Sarker, 1992). In JIT system, the supplier has to coordinate his production with the buyer’s demand so as
to maintain zero inventory, but, in reality the supplier ends up with carrying large inventories to deliver limited
shipments. In their work, an iterative solution is proposed to minimize the generalized total inventory cost model
which  is  a  piecewise  convex  function.  Sarker  and  Parija  (1994)  developed  a  more  general  problem,  which
considered both supplier and buyer to determine optimal ordering policy for the raw material and manufacturing
batch size to minimize the total cost. They also considered that, at the end of  the delivery, a few finished goods are
left over which is less than the shipment amount. They solved the problem in semi-closed form and found that the
total cost function is piecewise convex. Figure 1 represents a typical supply chain operating under JIT delivery.

Figure 1. A typical JIT operated supply chain model with imperfect matching inventory

Hill (1996) modified the raw material ordering policy of  Sarker and Parija (1994) by allowing a single order for
multiple production cycles when the inventory cost for the raw material is much lower as compared to the ordering
costs in each production cycle. Sarker and Khan (1999) proposed an ordering policy for raw materials to meet the
requirements of  a production facility that must deliver finished goods according to customers’ demand at a fixed
point  of  time.  They  considered  that  the  products  were  supplied  after  processing  the  entire  lot  and  quality
certification of  the products. They also evaluated relationships between production batch size, raw material quantity
and delivery patterns. Biswas and Sarker (2005) studied a semi-continuous production system with JIT delivery and
supply, where they proposed a total cost function of  the system minimizing the downtime of  the production facility
and solved the problem with an integer approximation. 

Sarker and Khan (1999) proposed an ordering policy for raw materials to meet the requirements of  a production
facility that must deliver finished goods according to customers’ demand at a fixed point of  time. They considered
the finished products were supplied after processing the entire lot and quality certification and with just in time
delivery. They evaluated relationships between production batch size, raw material quantity and delivery patterns.
Few years later, Khan and Sarker (2002) developed another model for a manufacturing system which procures raw
material from the suppliers in a lot and processes them as finished products. They estimated production batch sizes
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for a  JIT delivery system and incorporated a JIT raw material  supply  system. Diponegoro and Sarker (2002)
developed a decision rule for the manufacturer to determine the delivery quantities, the production start time and
batch sizes with trend demands during increasing, level and declining phases of  the life cycle of  a product. Chiu
and Huang (2003)  proposed an integrated just-in-time (JIT) inventory model of  a multi-echelon with random
delivery lead times for a  serial  supply  chain with information exchange between members to make purchase,
production, and delivery decisions jointly. The authors proposed search method for finding the optimal solution.
Kim,  Hong  and  Lee (2005)  discussed  the  production  and  ordering  policies  of  a  single-manufacturer  and
single-retailer  supply  chain where  retailer  places  orders  based on the  EOQ-like  policy,  and the  manufacturer
procures raw materials and distributes them to the multiple plants in parallel to satisfy retailer’s demand. They
proposed an efficient and effective heuristic algorithm to determine the near-optimal production allocation ratios.
Diponegoro and Sarker (2006) developed an ordering policy for raw materials and determined an economic batch
size for a product in a manufacturing system that supplies finished products to customers for a finite planning
horizon. They considered the JIT delivery policy with lost sale problem due to shortage. Kim, Banerjee and Burton
(2008)  examined  the  relationship  benefits  of  buyer-supplier  over  lot-for-lot  with  single  setup  single  delivery
systems. Also, they suggested two policies so that the supplier can satisfy customers' demand with single setup
multiple delivery, multiple setup multiple delivery. Diponegoro and Sarker (2007) studied an operational policy for a
lean supply chain system consisting of  a manufacturer, multiple suppliers and multiple buyers. He dealt with three
interrelated problems in supply chain. They are (a) single supplier and single buyer with fixed delivery size, (b)
multiple suppliers and multiple buyers with individual delivery schedule and (c) time dependent delivery quantity
with  trend  demand.  He  formulated  these  problems as  mixed-integer,  nonlinear  programming problems  with
discrete, non-convex objective functions and constraints. Diponegoro and Sarker (2007) also developed a closed-
form heuristic which provided near optimal solutions and tight lower bounds. 

Hoque (2009) considered the single-vendor single-buyer integrated production inventory problem where the lot is
transferred by some researchers in shipments of  equal and/or unequal sizes. The author demonstrated that the
minimal number (m) of  unequal sized shipments selected might not be the minimal and developed a method for
obtaining the minimal m and total number (n) of  shipments. Mungan, Yu and Sarker (2010) developed an integrated
inventory model for high-tech industries in JIT environment under continuous price decrease over finite planning
horizon. They modelled an efficient algorithm to minimize the total cost of  the system by determining optimal lot
sizes for raw material procurement, and manufacturing batch under a finite planning horizon.  Jha and Shanker
(2009) presented a single-vendor single-buyer system-based production-inventory model for decaying items which
deplete with constant decay rate. They formulated the model to find the optimal order quantity, lead time and the
number of  shipments from the vendor to the buyer during one production cycle which minimizes the total system
cost. Sarker and Diponegoro (2009) addressed an optimal policy for production and procurement in a supply-chain
system with multiple non-competing suppliers, a manufacturer and multiple non-identical buyers where the demand
of  finished product is given by buyers and the shipment size to each buyer is fixed. Chen and Sarker (2010)
proposed  a  multi-vendor  optimal  model  for  deciding  the  batch  size  of  vendor’s  production,  and  delivery
frequencies of  different vendors to the manufacturer including shared transportation costs. 

Hoque (2011) developed a generalized single-vendor multi-buyer supply chain model by synchronizing both the
single-vendor single-buyer and the single-vendor multi-buyer integrated inventory supply chains by transferring the
lot either only with equal-sized or only with unequal-sized sub-lot (batches) and presented logical development of
their minimal cost solution techniques. Mansouri, Gallear and Askariazad (2012) aimed to identify the gaps in
decision-making  support  based  on  multiobjective  optimization  (MOO)  for  build-to-order  supply  chain
management available in the literature. Sana (2012) investigated an economic order quantity/ economic production
quantity model in three-layer (manufacturer, vendor and retailer) supply chain management with defective quality
items while production rate, order quantity, number of  shipments with equal sizes. Jonrinaldi and Zhang (2013)
proposed a model and solution method for coordinating integrated production and inventory cycles in a whole
manufacturing supply chain involving reverse logistics for multiple items with finite horizon period. The authors
considered just in time delivery at the distributor’s end to the retailers.
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Modak,  Panda and Sana (2015)  studied a  just-in-time based defective  manufacturing environment  including
preventive maintenance. They incorporated just-in-time buffers for both the perfect and imperfect quality items
to continue the normal operation during the shutdown period and optimized the just-in-time buffer to minimize
the  system running  cost.  Omar  and Sarker  (2015)  considered  a  just-in-time  (JIT)  manufacturing  system to
synchronize JIT purchasing and selling in small lot size as a means of  minimizing the total supply chain cost. The
authors proposed an optimal policy where the shipment intervals as well as the lot sizes are varied. Fandel and
Trockel  (2016)  focused  on  lot  size  planning  of  a  two-firm  supply  chain  expansion  to  include  investment
decisions and to coordinate the just-in-time-delivery with the lot size planning on the basis of  the Harris- or the
Wagner/Whitin-approach, which resulted the disposition benefits by Wagner/Whitin led to  dominant solutions.
Torkabadi and Mayorga (2017) considered on the implementation of  Just-In-Time (JIT) in a multi-stage, and
multi-product supply chain with Kanban, ConWIP, and a hybrid PCP. Considering the uncertainty, the authors
evaluated performances of  policies via a Fuzzy AHP method. 

Wang and Ye (2018) studied the  Just in time (JIT) and Economic order quantity (EOQ) models with carbon
emissions in a two-echelon supply chain with single manufacturer and n retailers. In their model, they proposed that
the manufacturer and retailers could adopt either a JIT mode or an EOQ mode in which every retailer could decide
its  own optimal lot  size.  Kim and Shin (2019) proposed that the third-party logistics  service provider would
determine  the  optimal  order  quantity,  considering  defective  items  under  the  VMI  and  JIT  conditions.  They
designed a mathematical decision-making problem based on the EPQ /EOQ with defective items, which provides
the optimal order quantity  for TPL service providers under VMI and JIT.  Mardani,  Kannan, Hooker, Ozkul,
Alrasheedi and Tirkolaee (2020) presented a comprehensive review of  the application of  the Structural Equation
Modelling (SEM) in the assessment of  sustainable and green supply chain management (SCM) where these were
systematically  identified,  reviewed,  and  categorized  the  SEM in  the  field  of  green  SCM.  Nobil,  Sedigh  and
Cárdenas-Barrón (2020) developed a multiproduct economic production quantity inventory model for a vendor–
buyer system in which several products are manufactured on a single machine and vendor delivers the products to
customer in small batches. The aim of  this study was to determine the optimal cycle length and the number of
delivered batches for each product so that the total inventory cost is minimized.

During the model development, all of  the researchers  (Chen & Sarker, 2010; Mungan et al.,  2010; Hoque,  2009;
Diponegoro & Sarker, 2002, 2006, 2007; Sarker & Diponegoro, 2006, 2009; Sarker & Parija, 1994; Parija & Sarker,
1999; Khan & Sarker, 2002; Wang & Ye, 2018; Kim & Shin, 2019; Mardani et al., 2020) considered that the system
remains idle until the shipments are made. Figure 2 shows the production with just-in-time (JIT) delivery.

In reality, the inventory of  a supply chain system never becomes empty. A number of  products are always left-over
after the deliveries are made. These left-over amounts are added to the next shipment after the production of
required amount to make-up a complete batch. An illustration may be observed in car manufacturing company
such as Toyota, Honda, etc. where the new model cars go in production before the old model cars inventory runs
out. Large industries (refineries, paper mills, etc.) also start their production before the finished product inventories
fall to zero. Therefore, it is important to search for an optimal supply chain system for these kinds production
facilities with left-over finished goods inventory. This research also focuses on the issue of  minimizing the idle time
of  the production system. Based on the inventory decisions, the supply chain system of  the production facility with
JIT operation is discussed in the current research.  A production facility (such as refinery, aluminium conversion
industry) produces multiple products from a single type raw material (crude oil, large aluminium sheets, among
others) and shipped to customers according to their demand. In the  supply chain system of  these categories of
production facilities, the raw materials are ordered from the suppliers, and process the raw material into multiple
finished products and deliver to the buyers or retailers. A single facility supply chain system is represented in Figure 1.
For the last few decades, just-in-time (JIT) philosophy has played an important role in supply chain systems such as the
manufacturing sectors. The successful implementations of  JIT phenomena are frequent shipment of  high-quality
parts to the buyers and ordering raw materials in small batches whenever required to process finished products.
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2. Problem Identification

When the production run stops, the on-hand inventory stops building up. Finished goods may be adequate for
shipments after the production run is over as represented in Figure 1. In reality, the last shipment size may be less
than the required amount. This situation leads to an imperfect matching. In this part of  the research, the function is
developed to find economic order quantity (EOQ) for the raw materials and an economic manufacturing quantity
(EMQ) for the production facility with imperfect matching and minimal idle time. Here, raw material ordering cost,
raw material inventory cost, manufacturing setup cost and finished goods inventory carrying cost are considered. In
this section, an expression for the generalized cost function is developed that may be used to determine an optimal
batch quantity for the production run.

2.1. Notation

To develop  the  model  for  determining  the  interactions  between  raw materials  and  finished  goods  demand,
following definitions and notation are used:

CO = ordering cost of  raw material, $/order;
CS = manufacturing setup cost, $/batch;
hM = holding cost of  finished goods, $/unit/year;
hS = holding cost of  raw material, $/unit/year;
DM = demand for finished goods, units/year;
DS = demand for raw materials, units/year;
f  = conversion factor of  the raw materials; f  = DM / DS = Q'M / Q'S;
L = interval between deliveries, in years; L = y/DM;
m = number of  full shipments of  finished goods per cycle time;
n = number of  orders for raw materials; m ≥ n ≥ 1;
PM = production rate, units/year;
Q'M = quantity of  finished goods manufactured per setup, units/batch;
Q'S = quantity of  raw materials required for each batch; Q'S = Q'M / f;
IIM = total finished goods inventory for imperfect matching, units;
IIS = total raw materials inventory, units;
I0 = quantity remained after the m number of  shipments, or initial inventory, units;
T' = total cycle time, years;
T1 = production time (uptime), years; T1 = Q'M /PM = (my+I0)/PM;
T2 = pure consumption time, years (downtime);
TS = setup time, years; TS < L;
TCIM = total cost of  finished goods, $/year;
TCIS = total cost of  raw materials, $/year;
TCI (Q'M, n) = total cost function for imperfect matching, $/year;
y = amount of  finished goods shipped per time L, units/shipment.

2.2. Assumptions

To develop the mathematical model few important assumptions are:

1. Production rate is constant and finite and is greater than the demand rate.

2. Supply  chain  of  the  system considers  JIT delivery  and  supply  of  finished  goods  and raw materials,
respectively.

3. There is only one manufacturer and one raw material supplier.

4. A fixed quantity is left-over after required shipments and carried over to the succeeding cycle.

5. Production run of  following cycle starts after the uptime of  previous cycle and setup time.
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2.3. Formulation of  Cost Function Based on Average Inventory 

In this case, the production rate, P, is assumed to be greater than the demand rate, DM, so that there should be an
inventory build-up during the production. Figure 2 shows the inventory build-up, where Figure 2(a) represents the
inventory of  the raw material supply and Figure 2(b) denotes the on-hand inventory of  finished goods. Also, Figure
2(b) has an initial inventory, I0 units, remaining at the end of  m full shipments. That amount remained in cycle 1 is
carried over to the start of  the production uptime of  cycle 2, and amount remaining at cycle 2 is carried over till the
end of  cycle 3, and so forth. Here, production starts after TS time units and produces exactly Q'F (= my + I0) amount
to deliver y/2 after L time units. Hence, during time L – TS time the quantity produced is y/2 – I0 at the rate of  P, so
that I0 + (y/2 – I0)PM ≥ y/2. Figure 1 is used to calculate the average on-hand inventory of  the finished goods. 

Figure 2. (a) Raw material inventory; (b) Finished goods inventory 

ÎIM,  ÎIP,  and  ÎID are the total inventory, uptime inventory and downtime inventory for the imperfect matching,
respectively. Therefore, the total inventory can be calculated as

. (1)

From Figure 1, it can be found that

, (2)

Therefore, the total produced inventory can be found as

. (3)

Again, the total inventory shipped can be calculated from Figure 2(a) as

, (4)

where L = y/DM.

Hence, the total inventory for time period, T', can be calculated by combining Equations (3) and (4) as
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, (5)

where T' = Q'M / DM and Q'M = my + I0.

Again, the total cycle time for imperfect matching case can be calculated as

. (6)

Hence, the average inventory for imperfect matching case is

(7)

Therefore, the total cost function for the finished products can be written as

.
(8)

During the production time or uptime,  T1,  the raw materials are ordered to produce finished products, which
require Q'S units of  raw materials to produce Q'M units of  finished goods and they are instantaneously replenished
by the outside supplier in n batches. Also, f  units of  raw materials required to produce one unit of  finished product,
i.e., fQS = QM. As a result, raw materials inventory of  entire cycles can be expressed as

, (9)

where Q'S = Q'M / f, and T1 = Q'M / PM.

Therefore, the total cost for the raw material can be expressed as

, (10)

Where .

Therefore, the total cost for this imperfect matching case can be found as

,
(11)

which yields

.
(12)

Replacing the constant term with appropriate notation and simplifying Equation (12), it can be re-written as

, (13)
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where .

The total cost function for this part of  research is a non-linear integer programming problem with two integer
variables Q'F and n. Let, the problem is defined as IM (imperfect matching). Again, the production quantity Q'F and
the number of  raw material shipment cannot be less than or equal to 1. Hence, the Problem IM can be expressed
with two constraints as

Problem IM: Find m, and n so as to

Minimize:

, (14)

Subject to:

, (14a)

, (14b)

. (14c)

In the following section, the solution procedures for Problem IM are described in details.

Figure 3. Flow chart of  the Modified Hook and Jeeves algorithm
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2.4. Solution Technique

The total cost function developed for imperfect matching problem is also a nonlinear integer programming (NLIP)
problem and a non-convex function. To find the starting basic solution it is observed that one of  the variables have
roots of  4th degree polynomial Equation and also the variables are inter depended. Considering these situations, it is
found that the Hook and Jeeves (1961) search algorithm is appropriate to solve the problem. The pattern of  Hook
and Jeeves search technique is a sequential method consisting of  two kinds of  moves in every step: (a) exploratory
and (b) pattern move. The exploratory move is to explore the local behavior of  the objective function and the
pattern move is taking advantage of  the pattern direction. This algorithm is used to solve unconstrained nonlinear
programming problem, but the imperfect matching problem is a nonlinear integer programming problem (NLIP)
with linear constraints. Therefore, the Hook and Jeeves search algorithm is modified to solve the NLIP with linear
constraint as follows:

2.4.1. Modified Hook and Jeeves Algorithm: Determine the number of  orders and shipments

Step 0: Given P, DF, x, I0, HR, K0, KS, TS and f.

Step 1: Find the starting base point Q(0) = (Q'F(0), n(0)) using constraint given by Equations (14a) & (14b) and define
an integer perturbation vector P = Δi = (ΔQ'F, Δn) where i = Q'F & n (as the variables are integer) in each
of  the coordinate directions.

Step 2: Compute TCIM = TC(Q(0)). 

Step 3: Choosing each variable in turn an objective function evaluation is made at Qi
(1)  =  {(Q'F(0) + ΔQ'F(0), n(0))

or (Q'F(0), n(0) + Δn))} (to satisfy the constraint  given in Equation (14a).  If  TC(Qi
(1)) < TC(Q(0)),  set

TC(Qi
(1)) < TC(Qi

(0)).

Step 4: Using Qi
(1) as current temporary base point to obtain new temporary base point as follows:

. (15)

If  (Qi
(v) – Δi) < Equation (14a), terminate that search direction for constraint violation. This process of

searching for new temporary base point is continued for v = 1, 2, …, u  (m, n) is perturbed to find Qi
(u), call

this point as Q1 label this point as Base 1.

Step 5: If  the point  Qi
(u) =  Qi

(0). The pattern move phase is implemented by reducing the  integer perturbation
vector P = Δi = (ΔQ'F, Δn) by P = Δi / 2 = (ΔQ'F / 2, Δn / 2) where i = Q'F and n and go to Step 3. 

Step 6:  If  Qi
(u) is different from Qi

(0), find a new base point as Q1 = Qi
(0) + 2(Qi

(u) – Qi
(0)) = 2(Qi

(1) – Qi
(0). Indicate

this point as Base 2, and go to Step 3.

Step 7:  If  at the end of  Step 4 TC(Q2
i
(u)) < TC(Q2

i
(0)), take the new base point as Q2 = Q2

i
(u) and go to Step 6. If

TC(Q2
i
(u)) > TC(Q2

i
(0)), set Q3 ≡ Q2 and go to Step 5.

Step 8: If  solution does not improve, stop; that is the optimal solution; otherwise go to Step 5 and continue until
 < ε = 0.025.

Step 9: Compute  m* =  Q'*F /  x –  I0.  If  m* <  m* and n* <  n* or  m* > m* and n* > n*,  and compute
TC(m*, n*), TC(m*, n*), TC(m*, n*) and TC(m*, n*) and take the smallest TC for optimal
solution of  integer variables.

The following  section  represents  the  numerical  computation for  six  data  sets  to  assess  the  efficiency  of  the
algorithm described in this section. Otherwise, a random search procedure may be applied to find the local optimal
solutions. 
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2.5. Computational Results

The modified Hook and Jeeves search algorithm is used to solve the imperfect matching problem. Using the same
sets of  data used in Section 3.5 and the Modified Hook and Jeeves algorithm, the computational results are given
below in Table 1:

Parameters Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

P (units/year) 3,600 3,600 6,000 7,000 8,000 11,000

DM (units/year) 2,400 2,400 3,000 5,200 5,200 7,200

C0 ($/order) 150 100 150 200 200 300

CS ($/setup) 50 100 60 70 200 250

hS ($/unit/year) 1 10 3.5 4 4 10.5

hM ($/unit/year) 2 10 5 15 25 45

f 2 3 3 2.5 3 4

y(units/shipment) 100 100 150 200 300 350

I0 25 30 50 80 90 100

L (year/shipment) 0.04167 0.04167 0.0500 0.03846 0.05769 0.04861

Ts (years) 0.001 0.002 0.002 0.003 0.005 0.006

Table 1. Data set for computation of  Problem IM

Parameters Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

Q* 660.94 295.73 483.24 405.00 364.68 367.15

m* 6.61 2.96 3.22 2.02 1.22 1.05

m* 6 2 3 2 1 1

m* 7 3 4 3 2 2

n* 1 1 1 1 1 1

TCI
*(Q'M*, n* ) $1,610.48 $4,154.74 $3,344.32 $9,914.21 $17,075.31 $32,472.76 

TC{m*, n*} $1,612.82 $4,255.80 $3,345.81 $10,003.83 $19,010.69 $32,818.16 

TC{m*, n*} $1,616.94 $4,174.05 $3,458.00 $10,767.26 $17,096.01 $37,785.24 

TCI
*(m*, n* ) $1,612.82 $4,174.05 $3,345.81 $10,003.83 $17,096.01 $32,818.16 

Table 2. Results obtained by using modified Hook and Jeeves Algorithm

Using both GAMS and LINGO, the same results (given in Table 2) are found. Hence the solutions for this data set
are optimal.

2.6. Special Case 

As discussed in Section 3, when plant is idle during the downtime period only (Figure 4), the inventory model
transforms to the imperfect matching model with idle time.

Therefore, when TS → TS + TD = TS + TS + TP = 2TS + my / P = 2TS + (Q'M – I0) / PM , the total cost function
expressed in Equation (12) transforms to

.
(16)

which is the modified Sarkers and Parija (1994) model.
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Figure 4. (a) Finished products inventory with idle time; (b) Raw material inventory.

3. Single Facility Lot Sizing Model

In a single facility lot  sizing model,  multiple products are produced in a time span where completion of  the
production of  any product can meet the customers demand during that time span. After the time span the product
goes to production again to meet the next time span. This time span is referred as rotational cycle. This section
considers a single production facility that produces K products with a constant demand of  DMk units per year for
product k (where k = 1, 2, …,K), and k product is produced at a constant rate of  Pk units per year to satisfy the
demand DMk. All products are delivered at a fixed amount of  yk units after every Lk time units. According to the

assumption, production of  all k items must meet customers’ demand and .

Figure 5. Single-supplier, multi-product and Single-buyer supply chain system

Also, due to rotational cycle policy, all products with the same production cycle time, TC, and a lot of  each product
is produced during this time period. Due to the rotational, the products are produced in a fixed order, which is
repeated from cycle to cycle. Without permitting any shortages, it is a problem to determine the time of  production
and optimum number of  units to produce for each item which was defined as rotational cycle by Johnson and
Montgomery (1974). In their research they considered a single facility lot sizing model based on classical inventory
model.  In real life,  the single production facility,  a number of  products are always left-over after the possible
deliveries are made. These left-over amounts are added to the next shipment after the production of  required
amount to make-up a complete batch. An illustration may be observed in retail stores such as Albertson’s, Target,
Wal-Mart, etc. This research incorporates the inventory model with JIT delivery and imperfect matching inventory
situation.
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3.1. Notation and Assumptions

The notation used to develop this  model are described where used.  To develop the  mathematical  model  the
assumptions considered are 

1. Production rates are constant and finite and greater than the demand rates, P1 > DM1, 

2. Production of  all K items must meet customers’ demand, 

3. Production  facility  considers  as  just-in-time  (JIT)  delivery  and  supply  of  finished  products  and  raw
materials, respectively, 

4. Production run of  a product starts immediately after the uptime or production run of  previous product
and setup time, 

5. Multiple products are produced in each rotational cycle, and 

6. A fixed quantity is left-over after required shipments and carried over to the succeeding cycle.

3.2. Raw Material Inventory and Cost Function

To develop the mathematical model the assumptions considered are (a) production rates are constant and finite and
greater  than the  demand rates,  P1 >  DM1,  (b)  production of  all  K  items must  meet  customers’  demand,  (c)
production facility  considers as just-in-time (JIT) delivery and supply of  finished products and raw materials,
respectively, (d) production run of  a product starts immediately after the uptime or production run of  previous
product and setup time, (e) multiple products are produced in each rotational cycle, and (f) a fixed quantity is
left-over after required shipments and carried over to the succeeding cycle.

An inventory diagram of  a single facility lot sizing model is presented in Figure 6. The pattern of  raw material
inventory is shown in Figure 6(a) where QS is the raw materials required from the supplier during TP1 time period.
These QS units are ordered in n1 batches in instantaneous replenishments of  QS/n1 units. It is assumed that each
unit of  product 1 produced requires f1 units of  raw material, so that Q′M1 = f1QS. Again, in this research the raw
materials are ordered and converted to finished goods during the production time or uptime, TP1. Thus, the time
weighted inventory, ĪR of  raw material held in a cycle of  product 1 is given by

, (17)

Where Q′Mk / Q′S = DMk / DMk = fk, Tpk = Q′Fk / Pk and k = 1, …, K.

Therefore, the total cost for the raw material k can be expressed using Equation (17) as

. (18)

3.3. Finished Goods Inventory and Cost Function

According to the JIT delivery schedule, fixed amount of  yk units of  product k will be delivered after every Lk time
units. The lot size for product k must be equal to the demand during the rotational cycle, TC, without permitting
shortages as

. (19)

According to Figure 6(b),  at point A1 production of  product 1 starts  with P1 units/year after  TS1 time units and
produces exactly Q'M1 (= n1y1 + I01) amount to deliver y1 after L1 time units. Hence, during time L1 – TS1 time the
quantity produced is x1–I01 at the rate of  P1, so that I01 + (y1–I01)P1 ≥ y1. The first shipment of  y1 units of  product 1
can be delivered at point B1 after L1 time units combining with the left over inventory of  I01 from the previous cycle.
Again, production continues and the inventory builds up as P1 > DF1 and another shipment of  x1 amount is made
at point C1 after L1 time units.
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Figure 6. Rotational cycle inventory formation

Thus, after the uptime  TP1 and point E1,  production of  product 1 stops and the inventory forms a saw-tooth
pattern. After point E1, y1 amount is shipped in every L1 time units to the customer from built-up inventory during
downtime  TD1. During downtime  TD1, the inventory forms as stair case pattern. At the end of  TD1 time and all
possible shipments I01 amount of  inventory left out in the warehouse as y1 > I01, which is carried over to the next
production cycle of  product 1. At the end of  TP1 and after TS2, the production of  product 2 starts and delivers y2

units of  product 2 after  L2  time units [Figure 6(c)]. The production of  product 2 continues until  TP2  time units
followed by the downtime of  TD2. Thus, the process continues for product  K from point Ak to Ek according to
Figure 6(d).  It should be noted that during  TP2 and  TPK,  the amount of  product 2 and product  K produced,
respectively, must satisfy customers’ demand of  these products throughout rotational  cycle,  TC.  After  TPK,  the
production of  product 1 starts again. Figure 6(b) is used to calculate the average on-hand inventory of  the finished
goods. IT1, IP1, and ID1 are the total inventory, uptime inventory and downtime inventory for product 1, respectively.
Therefore, the total inventory can be calculated as

. (20)

From Figure 6(b), it can be found that

. (21)
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Using Equation (21) upon simplification and the inventory can be found as

(22)

Again, the total inventory shipped can be calculated from Figure 6(b) as

, (23)

Where L1 = y1 /DM1.

Hence,  the  average  inventory  for  product  1,  ÎT1, and  time  period,  TC,  can  be  calculated  by  combining  and
simplifying Equations (21), (22) and (23) as

.
(24)

Using Equation (24), the total cost function of  product k can be expressed as

.
(25)

Now, replacing Q′Mk from Equations (18) and (25) by using the relationship presented in equation (19), the new
equations can be expressed as

, and (26)

.
(27)

Using Equations (26) and (27) and simplifying, the total cost function of  finished product k can be expressed as

.
(28)

3.4. Objective Functions and its Constraints

Combining all costs for all K products and using Equation (28), the objective function can be written as

.
(29)
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Before minimizing the problem, it is necessary to study the constraints related to the rotational cycle policy, such as
the setup times the number of  raw material deliveries for each product. If  the setup time for product k is TSk, then
the total setup time per cycle and the total production time per cycle must be smaller or equal to the rotational cycle
length. Therefore, the following constraint on TC will be

. (30)

Replacing Q′Mk, by using Equation (19), it can be re-written as

(31)

Also, the number of  raw material delivery, nk for product k cannot be less than 1 and should be an integer variable.
Hence, the constraint on nk is

(32)

Using these two constraints defined in Equations (31) and (32), the objective function can be formulated as 

Minimize: 

,
(33)

Subject to:

, (33a)

. (33b)

Therefore, the problem becomes a mixed integer non-linear programming problem and the solution procedure to
this problem is discussed in the next section.

3.5. Solution Technique of  Rotational Cycle Problem

The formulation of  the single facility lot-sizing problem for imperfect matching system can be categorized as a
mixed-integer non linear programming problem where mk’s are integer and TC is a real variable and the number of
variables are (K + 1). Due to formulation of  the problem, it cannot be solved using derivatives and a closed form
solution cannot be determined. Using the Divide and Conquer rule, the objective function is divided into two parts
(a) rotational cycle for finished products, and (b) number of  raw material orders. The rotational cycle for the
finished products (TC) is the same for the raw material delivery, because the raw materials are delivered from the
supplier by instantaneous replenishments. Again, the raw material for a product  k is ordered when the finished
product k goes in production. The solution procedures are shown as follows:

(a) Rotational Cycle for Finished Products

To solve the rotational cycle policy for the part finished product supply, the cost function from Equation (27) can
be written as 

Minimize:
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,

(34)

Subject to:

. (34a)

It can be shown that the Equation (34) is a convex function for TC; therefore, it can be solved by differentiation
with respect to TC and equate it to zero, which yields

, (35)

where k = 1, …, K.

Equation (35) has to satisfy the constraint given in Equation (34a). Using the optimal rotational cycle  T*
C, the

number of  shipments for different finished product can be obtained from Equation (19). The optimal rotational
cycle, T*

C is used to solve the optimal number of  orders for raw materials in following section.

(b) Number of  Raw Material Orders

As the raw materials order policy is instantaneous, the production rate for the raw material is ∞; therefore, this also
satisfies  the  condition  for  rotational  cycle.  Now,  applying  the  value  of  T*

C from  Equation  (35),  the  total
cost/objective function for raw material k can be written as [from Equation (26)]

Minimize:

, (36)

Subject to:

. (36a)

This objective function [Equation (36)] is convex in  nk  and the objective function is a discrete function, which
cannot be solved using differentiation.  Hence, the induction method is used to solve  nk.  Using the induction
method in Equation (36), the boundary condition for n*

k is can be evaluated as

, (37)

Where  and k = 1, 2, …, K. In addition, Equation (37) has to satisfy the constraint given in Equation

(36a). Applying the boundary condition in Equation (37) the optimal objective function can be evaluated as well as
the optimum number of  orders m*

k for raw material k, where k = 1, …, K. Hence, optimum total cost for all raw
materials can be expressed as

(38)
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As discussed before, both  n*
k and  T*

C is  may not be globally  optimal.  Therefore,  another forward search is
conducted using Equation (33), starting from the constraints for T*

C and n*
k [given in Equations (33a) and (33b)]

and with step sizes 0.01 and 1, respectively, to evaluate the optimal Topt
C and nopt

k that will minimize the CT(Topt
C,

nopt
1, …, nopt

k).

3.6. Numerical Computation of  Optimum Rotational Cycle

Six products, presented in Table 3, are being produced in a single facility manufacturing system with JIT delivery. 

Parameters Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

P (units/year) 14,000 10,500 15,000 10,000 9,000 20,000

DF (units/year) 2,000 1,500 3,000 1,800 1,200 2,200

K0 ($/order) 150 100 150 200 200 300

KS ($/setup) 50 100 120 130 200 150

HR ($/unit/year) 1 10 3.5 4 4 10.5

HF ($/unit/year) 2 10 5 15 25 45

f 2 3 3 2.5 3 4

x (units) 100 100 150 200 300 350

I0 (units) 25 30 50 40 60 55

Ts (years) 0.001 0.002 0.002 0.003 0.005 0.006

Table 3. Data set for single facility lot-sizing model

Using these data from Table 3 and Equation (35), the T*
C can be found as T*

C = 0.56 years. Now using the value of
T*

C in Equation (37) the boundary conditions for n*
k can be found as n*

1 = 1, n*
2 = 1, n*

3 = 1, n*
4 = 1, n*

5 = 1, and
n*

6 = 1 Using these values the total costs can be found as CT(T*
C, n*

1,…, n*
6) = (0.56, 1, 1, 1, 1, 1, 1) =$33,928.26 per

year, and this is local optimum solution. Therefore, a forward search is conducted starting from T*
C= 0.21 (with

step size 0.01), and m*
k = 1 (with step size 1) and the optimum solution is obtained in CT(Topt

C, nopt
1, nopt

2, nopt
3, nopt

4,
nopt

5, nopt
6) = 0.32,1,1,1,1,1,1) = $32,373.85 per year. The detailed results of  rotational cycle policy are presented with

numerical values in Table 2. In this case, it is considered that all six products are produced in a single facility in a
sequence and they will be delivered using just-in-time (JIT) policy. Also, the raw materials for each product will be
ordered  following  multiple  ordering  policies.  According  to  the  constraint  given in  Equations  (35a)  it  can  be

determined by using the data given in Table 3 that TC ≥ 0.019/0.09 = 0.21. Also, it is observed that (DMk / Pk) =

0.91  ≤ 1 which satisfies the assumption for rotational cycle policy. The results for the single facility lot sizing
models for imperfect matching case presented in Table 2.

Parameters Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

TC
*, years 0.32

mk
* 1 2 2 1 1 1

n* 6 4 6 2 1 1

Q′*Fk , units/year 600 400 900 400 300 350

Q*
Rk, units/year 300 133 300 160 100 88

CT
*( TC

*, m1
*, …, mk

* ) $32,373.85

Table 4. Optimum results for raw materials of  imperfect matching case
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Thus, this section concludes the research for rotational cycle policy of  an imperfect matching situation when the
system idle time is negligible. 

4. Conclusion
In the past, researchers tried to develop the proper supply chain management with ideal conditions. This research
more focused on real life situations where the production facility does not remain idle for longer period of  time and
does not become empty at the end of  full shipments. In many industries, the production facilities stay idle only
during the routine maintenance because of  high costs to shut down and restarts the production facilities, such as
refineries. This research will have a significant impact on the real life production facilities where the idle time of  the
facility is negligible. Also, this will help to develop a better supply chain management to any industry. 

Also, the research extended incorporating an operation policy of  a supply chain of  a single facility lot-sizing model
with just-in-time (JIT) deliveries with imperfect matching situations. Also, the current research considered a supply
chain system that operates under a reduced idle time, where the production of  a cycle of  one product starts
immediately after the end of  production cycle of  previous product. A set of  problems are categorized as a serial
system with a fixed quantity and a fixed delivery interval. The problem is solved for the optimum rotational cycle,
optimum number of  orders, optimum batch sizes, and optimum numbers of  shipment evaluated to minimize the
total system cost. 

The operation policies prescribe the number of  orders and the ordered quantities of  raw materials from suppliers,
production quantities, and number of  shipments to the customers for an infinite planning horizon. Prospective
research issues that can be pursued further concerning the supply chain system addressed in this  research by
incorporating time varying demand, variable production capacity and rate, transportation costs, and multi-stage
systems.
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