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Abstract:

Purpose: Existing productivity improvements activities such as inventory buffer, overall equipment
effectiveness  (OEE)  and  total  productive  maintenance  (TPM)  do  not  associate  the  throughput
shortage with the process parameters. The paper aims to develop and validate an integrated model to
recover  the  throughput  shortage  through  adjustment  of  process  parameters  in  a  semiconductor
assembly setting.

Design/methodology/approach: The mathematical  model of  planned throughput as a function of
process parameters in an integrated multiple-process line is developed. When the actual throughput does
not meet the planned throughput, throughput shortage occurs. The planned throughput for the next day is
summed with the throughput shortage from the previous day, and mathematical programming is used to
search the adjusted values of  the process parameters.

Findings: The throughput shortage can be restored at the following day with the reconfigured process
parameters. If  throughput shortage still exists, the additional throughput shortage will be carried forward
to the subsequent day of  planning where mathematical programming is repeated to search the adjusted
values of  the process parameters. The proposed optimisation model is essentially a parametric model,
where actual data of  process parameters are fitted into distribution and is translated into a range of
allowable values within the 95% confidence interval.

Research limitations/implications: The process parameters subject to adjustment in this model are the
cycle time of  Die Attach, Wire Bond and Pre-Cap Inspection. Downtime and setup time are not subjected
to adjustments because these parameters require more extensive efforts to be changed.

Practical implications: The mathematical programming computes adjusted values of  process parameters
to  restore  the  throughput  shortage,  where  it  quantitatively  correlates  the  process  parameters  and
throughput shortage, rather than the conventional method of  production improvement activities that do
not quantitatively correlate with the throughput shortage.

Originality/value: The  research  addresses  the  adjustment  of  process  parameters  to  recover  the
throughput shortage in integrated multiple-process line. 

Keywords: adjustment  of  process  parameters,  throughput  shortage,  semiconductor  assembly,  productivity
improvement, two-stage production planning
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1. Introduction
Nowadays, manufacturing industries are facing rising production cost, which creates an urgent need to manage
throughput shortage in manufacturing systems. The effectiveness in managing throughput shortage is essential in
reducing manufacturing cost (Tekin & Sıtkı, 2012). Throughput shortage manifests itself  as the actual throughput is
lower than the planned throughput (Gram, 2013). The potential causes of  throughput shortage are unplanned
machine breakdown, long setup, low production speed, high rework, and long start-up delay. Production control
will always attempt to salvage the throughput shortage with the available resources. 

There are various ways to recover throughput shortage. The first method is to create an inventory buffer. If  the
inventory buffer is not available to compensate for throughput deficiencies, the demand is lost or backordered at a
relevant cost  (Sana, 2012).  The allocation of  inventory buffer is needed to decouple processes with different
production rates, caused by varying cycle times, machine breakdown, short stoppages and material shortage (Sana,
2012). This allocation is vital to sustain the operations of  a manufacturing system. There are extensive studies
related to the allocation of  inventory buffer in production lines, such as by Enginarlar, Jingshan-Li and Zhang
(2002),  Miltenburg  (2000)  and  Salameh  and  Ghattas  (2001).  In  addition,  Zequeira,  Prida  and  Valdes  (2004)
developed a production-inventory model to search for optimal production periods between maintenance activities
and the corresponding inventory buffer size to meet demand. Sana and Chaudhuri (2010) built a model for the
production policy (resumption and non-resumption) to meet optimal safety stock, production rate and production
lot size. Although the method ensures the production line continues running smoothly by maintaining sufficient
work-in-process (WIP), there is the risk in inducing high holding cost and excessive WIP built-up due to excess
buffer (Chan, Tasmin, Aziati, Rasi, Ismail & Yaw, 2017; Nemtajela & Mbohwa, 2017). If  the buffer size is low, it
may cause machine idling and underutilization which will delay processing, and unable to meet the due date. If  the
buffer size is sufficient, the machine is well decoupled, and the productivity is maximised. 

Another method to recover throughput shortage is through improvement activities such as Overall Equipment
Effectiveness (OEE), Total Productive Maintenance (TPM) and lean methodology. OEE and TPM are closely
related to the gap between the actual  and ideal performance of  a manufacturing system. It  focuses on three
components which are availability, productivity, and quality. Most researches address the reduction of  throughput
shortage by improving efficiency in a manufacturing system. Tekin and Sıtkı (2012), Gram (2013) and Hassani and
Hashemzadeh (2015) find and minimise the throughput shortage by adopting Overall Equipment Effectiveness
(OEE)  and  Balance  Score  Card  approach.  The  reduction  of  throughput  shortage  is  examined  through  the
identification of  the root causes and specific measures to reduce the throughput shortage. Another method is the
reduction of  manufacturing wastes by adopting lean tools (Prajapati & Deshpande, 2015; Siva, Patan, Kumar,
Purusothaman, Pitchai & Jegathish, 2017). Although the ideal cycle time represents the maximum theoretical speed
of  the equipment, the equipment may slow down and affect productivity despite high OEE (Anantharaman &
Nachiappan, 2006). The cycle time inefficiencies can be reduced through 5S, Jidoka, Muda, visual management and
poka-yoke. Prajapati and Deshpande (2015) reviewed cycle time reduction using lean tools such as Kaizen and
‘Takt’ time analysis. Siva et al. (2017) utilised process improvement by cycle time reduction using lean tools such as
visual management tool, poka-yoke, Kaizen and Jidoka. 

The existing improvement in productivities and inventory buffer activities has no quantitative correlation between
the  improvement  activities  and  throughput  shortage.  Such  activities  convert  productivity  gain  on  the  output
performance to recover the throughput shortage without linking effectively with the manufacturing parameters
such as cycle time and machine downtime. In addition,  the allowable cycle time of  the equipment should be
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balanced with the product quality, as higher speed may cause more defects and affect the yield. It will also impact
the  equipment  wear  and  tear,  which  will  result  in  higher  maintenance  cost.  Experience  in  inventory  buffer
management is particularly influenced by subjective judgement, as it is complex to establish a balanced buffer size
between successive processes. In contrast, adjustment of  process parameters is more objective and has a direct
influence on the throughput. 

In this paper, a model to recover the throughput shortage in a two-stage production planning system is proposed.
The model links the throughput shortage with process parameters where these parameters can be adjusted within
the feasible range. The rationale behind the adjustment of  process parameters is to provide satisfactory throughput
gain (Wuest, Weimer, Irgens & Thoben, 2016). The cycle time of  each process is adjusted to meet the planned
throughput, which includes the throughput shortage. This is because the cycle time can be controlled while other
process parameters such as downtime and setup time are stochastic, hence impractical to be adjusted (Sharma &
Jain, 2015; Xu, Zhao, Wu, Zhou, Ma & Liu, 2016). Setup time on a machine is stochastic when there is variability in
the length of  setup time due to inconsistency in adjacent product types (Xu et al., 2016). In practice, the machine
cycle time can be adjusted within an allowable range by adjusting the machine setting such as indexing time, delay in
pick-up, delay in bonding, and bond time. The proposed model can create a relationship between throughput
shortage and process parameters where these parameters are subject to changes in the manufacturing system. The
parametric model uses input data of  process parameters based on distributions that are translated into a range of
allowable values within the 95% confidence interval. The extension of  this benefit leads to effective production
planning to recover the throughput shortage through better computation between improvement activities and
manufacturing parameters. The proposed model is established to accommodate existing practise in production
planning, throughput shortage recovery, and productivity improvement. 

Section 1 reviews existing methods to recover the throughput shortage and their limitations. Section 2 presents the
outline of  the model used in this study. Section 3 describes the development of  the proposed model. Section 4
validates the  proposed model.  Section 5 discusses the impact of  the throughput  shortage recovery using the
proposed model. The conclusion drawn from the result is presented in Section 6.

2. The Two-Stage Integrated Production Planning Model
The proposed production planning model is  used to plan daily  throughput  and recover throughput  shortage
concurrently in a real-time manufacturing scenario. The model is divided into two stages: daily throughput planning
in the 1st stage and throughput shortage recovery in the 2nd stage. The 1st stage estimates throughput using the
mathematical model of  planned throughput and is compared with the corresponding actual throughput. When
there is throughput shortage (actual throughput less than planned throughput), the throughput shortage (difference
in actual and planned throughput) is included in the subsequent day planning at the 2nd stage. In the 2nd stage,
mathematical  programming  searches  the  optimum values  of  process  parameters  to  meet  the  new projected
throughput. However, if  there is throughput shortage even after adjustment of  process parameters, the throughput
shortage will be included in subsequent day planning at the 2nd stage for mathematical programming analysis until
no further throughput shortage is encountered.

Figure 1 shows the flowchart of  the approach adopted in the two-stage production planning model, expressed for a
single period of  seven days. The planned throughput is a function of  process parameters and is based on data
mining of  the simulated data. The range of  values of  the process parameters is based on real-time data, fitted into
distributions and translated into a range of  allowable values within a 95% confidence interval. The data collection
of  relevant performance measures is based on full factorial runs of  a simulation model, and the mathematical
model of  throughput as a function of  process parameters is formulated using regression. 

For day i (i = 1,2,…..,7), the planned throughput, OM(i) is compared with actual throughput, ORT(i). If  ORT(i) is less
than OM(i), the next step is to proceed to the 2nd stage since there is throughput shortage, La(i). 

On the next day (i+1), the mathematical programming adjusts the process parameters to estimate the attained
throughput, OC(i+1) that meet the projected throughput, OB(i+1) which is the summation of  planned throughput
of  day i+1, OM(i+1) and the actual throughput shortage from day i, La(i). If  OC(i+1) is less than OB(i+1), there is
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still throughput shortage, Lp(i+1). Thus, the next step is to repeat the mathematical programming procedure for
next day (i+2). The predicted throughput shortage, Lp(i+1) is carried forward for the subsequent day (i+2) for the
mathematical programming to estimate OC(i+2) that can meet OB(i+2) + Lp(i+1) within the range of  values of
process parameters. This step is repeated as long as the predicted throughput shortage occurs. If  there is no
predicted throughput  shortage,  the  2nd stage  production planning is  terminated,  and the  1st stage  production
planning is repeated for the subsequent day. The rationale of  the methodology is to adjust values of  process
parameters only when there is throughput shortage or predicted throughput shortage.

The  proposed  production  planning  model  is  made  up  of  the  mathematical  model  of  makespan,  TB(i),  the
formulation of  a mathematical model of  planned throughput, OM (i), and mathematical programming of  attained
throughput, OC(i). 

Figure 1. The two-stage production planning model for a single period
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3. Model Development through a Case Study

The case study was carried out in a semiconductor assembly line which consisted of  three die attach machines, four
oven cure machines, nine wire bond machines, and three pre-cap inspection machines. Figure 2 shows the process
flow and the corresponding parameters in each process.
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Figure 2. The process parameters for a semiconductor assembly line

Referring to Figure 2, the first process is Die Attach, where the machine processes the wafer into unit form. Each
Die  Attach machine processes  one wafer  at  a  time.  The completed units  are  accumulated in  batches  before
transferred to the next process, Oven Cure, where batches are placed in an oven for curing. Then, the batches are
transferred to the next process, Wire Bond, where a wire was placed starting from the die to the lead frame of  each
unit. The Wire Bond machine processes one unit at one time. The completed units are accumulated in batches
before it is sent to the next process, Pre-Cap Inspection, where the quality of  each physical unit is inspected. The
Pre-Cap Inspection machine inspects one unit at a time, and completed units are accumulated in batches before
sent to the next process. In this study, the system ends when the batch completes the Pre-Cap Inspection. Setup is
performed  once  during  Die  Attach  and  Wire  Bond  at  the  start  of  each  day.  An  Oven  Cure  machine  can
accommodate up to eight batches at a time. No set up is required in Oven Cure and Pre-Cap Inspection.

The following stage is to identify the range of  values of  the process parameters. Table 1 shows the classification of
process parameters and their values. The raw data is collected from the manufacturing system database throughout
30 days. The raw data are fitted into normal distribution (for cycle time) and exponential distribution (for downtime
duration, downtime frequency and setup time) (Gandhi & Harchol-Balter, 2009). 95% confidence interval of  the
distribution determines the two levels of  the process parameters which are the minimum and maximum. The two
levels are further used in setting the range of  allowable values during mathematical programming at the 2nd stage.

Input Parameters Unit

Value

Low Middle High

Cycle Time Die Attach (CTDA) seconds 2.8072 - 2.9460

Cycle Time Wire Bond (CTWB) seconds 6.0902 - 6.4609

Cycle Time Pre-Cap Inspection (CTPC) seconds 0.9882 - 1.0498

Downtime Duration Die Attach (DDDA) seconds 2141 - 4391

Downtime Duration Wire Bond (DDWB) seconds 1364 - 2797

Downtime Frequency Die Attach (DFDA) minutes 1066 - 2187

Downtime Frequency Wire Bond (DFWB) minutes 1421 - 2193

Setup Time Die Attach (STDA) seconds 2957 - 6063

Setup Time Wire Bond (STWB) seconds 1324 - 2714

Batch size (Q) unit 2200 3080 11264

Cycle Time Oven Cure (CTOC) seconds 7200

Table 1. Values of  Process Parameters Classification
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The next step is to develop a mathematical model of  makespan, TB and planned throughput, OM using regression.
The planned throughput, OM is defined as the total time available in the system divided by the processing time of  a
unit in the system (Salvendry, 2007; Khan, 2007; Telsang, 2010). The planned throughput, OM can be written as
shown in Equation (1).

OM=
TTOTAL

TUNIT

(1)

Where:

OM = planned throughput per day

TTOTAL = total time available per day

TUNIT = processing time per unit

The processing time per unit is the makespan, TB divided by the batch size Q. The makespan, TB is the total length
of  processing time when all jobs of  batch size Q have finished processing. TB is obtained through data collection
of  1536 experiment runs (29 × 31 × 11 = 1536) collected from Pro-Model simulation model. The simulation model
is built to represent the integrated processes of  the semiconductor assembly line, and the process parameters from
Table 1 are inserted into the model to obtain Tb for each run. OM can now be calculated using Equation (2). 

OM=
TTOTAL x Q

TR

(2)

Where:

OM = planned throughput per day

TTOTAL = total time available per day

Q = batch size

TB = makespan

The full factorial runs of  TB is inserted into statistical JMP software to formulate a regression model. TB as a
function of  process parameters is shown in Equation (3).

TB = 7187.5725 + 387.1239 
[CTDA−2.8766 ]

0.0694
+ 1008.0011 

[CTWB−6.2756 ]

0.1854
+ 157.9690

[CTPC−1.019 ]

0.0308
+

9.5167
[DDDA−3266 ]

1125
+ 3.9325

[DDWB−2080.5]
716.5

+ 2.4477
[DFDA−1626.5 ]

560.5
- 0.1807

[DFWB−1807]
386

-

2.6148
[STDA−4510 ]

1553
+ 24.3713

[STWB−2019 ]

695
+ 10.1729Q

(3)

Where:

TB = makespan

CTDA = cycle time Die Attach

CTWB = cycle time Wire Bond

CTPC = cycle time Pre-Cap Inspection

DDDA = downtime duration Die Attach

DDWB = downtime duration Wire Bond

DFDA = downtime frequency Die Attach

DFWB = downtime frequency Wire Bond
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STDA = setup time Die Attach

STWB = setup time Wire Bond

Q = batch size

TTOTAL is defined as the total time available per day in the system (Salvendry, 2007; Khan, 2007; Telsang, 2010).
TTOTAL is the summation of  the individual process time available minus the setup time for each day. M is defined as
the number of  machines available at each process based on the process with the least capacity in the system. TD is
defined as the maximum time per day. ADA is defined as machine availability for Die Attach, and AWB is defined as
machine availability for a Wire Bond. 

The total time available per day in the system, TTOTAL is written as shown in Equation (4):

TTOTAL = ((TD – STDA)(ADA) + (TD)(1) + (TD – STWB)(AWB)) + (TD)(1)) x (M) (4)

Where: 

TD = maximum time per day

STDA = setup time Die Attach

STWB = setup time Wire Bond

ADA = Die Attach availability

AWB = Wire Bond availability

M = number of  machine available based on the process with least capacity in the system

The availability at Oven Cure and Pre-Cap Inspection is one because there is no downtime defined for these two
processes. Besides,  no setup is required during Oven Cure and Pre-Cap Inspection.  Machine availability,  A is
defined in Equation (5) (Salvendry, 2007; Khan, 2007; Telsang, 2010).

A=
MTBF

MTBF+MTTR
(5)

MTTR is defined in Equation (6): 

MTTR=
Machine Downtime Duration

Machine Downtime Frequency
=

DDP

(
DFP

1440
)

(6)

1440 minutes = 24 hours × 60 minutes; p = WB (Wire Bond) or DA (Die Attach); 

MTBF is defined in Equation (7): 

MTBF=
86400−Machine Downtime Duration

Machine Downtime Frequency
=

86400−DDP

(
DFP

1440
)

(7)

86400 seconds = 24 hours × 60 minutes × 60 seconds; p = WB (Wire Bond) or DA (Die Attach);

Equation (6) and Equation (7) are substituted in Equation (5) and is written as shown in Equation (8).

A=
86400−DDP

86400
(8)

Equation (3), Equation (4) and Equation (8) are incorporated into Equation (2) where the planned throughput, OM

as a function of  input parameters is written as shown in Equation (9): 
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OM=

((TD−STDA)(
86400−DDDA

86400
)+(TD)(1)+(TD−STWB)(

86400−DD WB

86400
)+(TD)(1))

x(M)x Q

7187.5725+3871239
[CT DA−2.8766 ]

0.0694
+10+080011

[CTWB−6.2756 ]

0.1854
+157.9690

[CTPC−1.019 ]

0.0308

+9.5167
[DDDA−3266]

1125
+3.9325

[DDWB−2080.5]
716.5

+2.4477
[DFDA−31626.5]

560.5
−0.1807

[DF WB−1807 ]

386

2.6148
[STDA−4510 ]

1553
+24.3713

[STWB−2019 ]

695
+10.1729Q

(9)

Step 1: 1st Stage of  Production Planning

The validity of  the model is tested in three different periods. A single period of  the model is defined as seven days
(n = 7) where day i (i = 1,2,3,…..,7). For day 1 (i=1), OM(1) is estimated based on Equation (9) as a function of
process parameters of  day 1. The planned throughput, OM(1) is compared with actual throughput, ORT(1), to assess
if  there is actual throughput shortage, La(1). If  ORT(1) > OM(1), there is no actual throughput shortage and the
planned throughput, for day 2, OM(2) is estimated using Equation (9). If  there is actual throughput shortage in day
1, where ORT(1) < OM(1), La(1) will be carried forward to the 2nd stage of  production planning for day 2. Generally,
if  the actual throughput shortage for day i, La(i) is zero or negative, the planned throughput for day (i+1), OM(i+1)
is estimated using Equation (9). On the other hand, if  the actual throughput shortage of  day i, La(i) is positive, the
throughput shortage will be carried forward to the 2nd stage of  production planning for day i+1. 

Step 2: 2nd Stage of  Production Planning

2nd stage  of  production planning  is  involved when there  is  throughput  shortage  incurred at  the  1st stage  of
production planning. In the 2nd stage of  production planning, the projected throughput of  the day i+1, OB(i+1) is
the sum of  actual throughput shortage from previous day i, La(i) and planned throughput of  the day i+1, OM(i+1).
The cycle time of  the processes (CTDA, CTWB and CTPC) need to be adjusted to ensure OB(i) is met. The attained
throughput for day i+1, OC(i+1) is a function of  the adjusted cycle time values (CTDA, CTWB and CTPC) obtained by
mathematical programming. This is because the cycle time can be controlled while the downtime and setup time are
stochastic, hence impractical to be manipulated. The cycle time can be controlled by the machine settings, such as
by changing the delay time or by adjusting the movement mechanism of  the machine parts. OB(i+1) is obtained
using Equation (10).

If  OM(i) - ORT (i) > 0, then OB(i+1) = OM(i+1) + OM(i) - ORT(i) (10)

In the mathematical  programming development,  the objective function is  to minimize the difference between
attained throughput of  day i+1, OC(i+1) and projected throughput of  day i+1, OB(i+1). 

The mathematical programming model in the 2nd stage of  the model is formulated as follows in Equation (11) to
Equation (20): 

Objective function: 

Minimize OM(i+1) + (OM(i) – ORT(i)) -
TTOTAL x Q

TB

(11)

Constraints: 

CTDA(i+1) ≥ 2.8072 (12)

CTDA(i+1) ≤ 2.9460 (13)

CTWB(i+1) ≥ 6.0902 (14)

-347-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2742

CTWB(i+1) ≤ 6.4609 (15)

CTPC(i+1) ≥ 0.9882 (16)

CTPC(i+1) ≤ 1.0498 (17)

[
[(86400−STDA( i+1)) x(86400 x(86400−DDDA( i+1)))]

CTDA( i+1)
]x 3≥OB( i+1) (18)

[
[(86400−STWB( i+1))x(86400 x (86400−DDWB(i+1)))]

CTWB( i+1)
]x9≥OB( i+1) (19)

[
(86400 x1)
CTPC( i+1)

]x 3≥OB( i+1) (20)

Equation (11) states that the objective function is to minimise the difference between the attained throughput of
day i+1, OC(i+1) and the projected throughput of  day i+1, OB(i+1). Equation (12) to Equation (17) ensures that
the cycle times fall within the boundary of  the allowable values defined in Table 1. Equation (18) to Equation (20)
ensures that the throughput for each process is at least equal or higher than OB(i+1). Equation (18) to Equation
(20) is important to validate whether OC(i+1) can meet OB(i+1).

If  there is no additional predicted throughput shortage, the planned throughput for subsequent day i+2, OM(i+2) is
estimated using 1st stage of  production planning. If  (OB(i+1) – OC(i+1)) for day i+1 is positive, there is additional
predicted throughput shortage at the 2nd stage of  production planning.  The predicted throughput shortage is
carried forward to the subsequent day, and the 2nd stage of  production planning is repeated for day i+2 where
OC(i+2) is estimated to meet OB(i+2) using mathematical programming. The model is valid for multiple-period as
long as the process parameters in each period fall within the range of  values shown in Table 1. Three different
periods of  real-time data are collected to validate the model in a real-time scenario. Each period consists of  seven
days.

4. Validation of  the Proposed Production Planning Model
Case Study 1: Period 1

Table 2 shows the production planning data obtained for the 1st period of  7 days. For day 1 in the 1st stage of
production planning, OM(1) is estimated at 81412 units. ORT(1) is 77982 units. Since OM(1) is higher than ORT(1),
there is throughput shortage; thus the throughput shortage of  day 1, (La(1)=3430 units) is carried forward to the 2nd

stage of  production planning. For day 2, OM(2) is estimated at 72110 units. The throughput shortage from day 1,
La(1) is added to the planned throughput of  day 2, OM(2). OB(2) is calculated as OM(2) + La(1) where it is equal to
75539 units. In the 2nd stage, the mathematical programming assessed the adjusted cycle time within the boundary
shown in Table  1 and estimated OC(2)  as  75539 units.  Since  OC(2)  is  equal  to  OB(2),  there  is  no predicted
throughput shortage that is required to be carried forward to the next day (i=3).

For day 3 in the 1st stage of  production planning, OM(3) is estimated at 90693 units. ORT(1) is 86452 units. Since
OM(3) is higher than ORT(3), there is throughput shortage; thus the throughput shortage of  day 3, (La(3)=4241
units) is carried forward to the 2nd stage of  production planning. For day 4, OM(4) is estimated at 70974 units. The
throughput shortage from day 3, La(3) is added to the planned throughput of  day 4, OM(4). OB(4) is calculated as
OM(4) + La(3)  where it  is equal to 75215 units.  In the 2nd stage, the mathematical programming assessed the
adjusted cycle time within the boundary shown in Table 1 and estimated OC(4) as 75215 units. Since OC(4) is equal
to OB(4), there is no predicted throughput shortage that is required to be carried forward to the next day (i=5).

OM(5) is estimated at 72538 units, and ORT(5) is 59321 units. Since OM(5) is higher than ORT(5), there is throughput
shortage;  thus  the  throughput  shortage  of  day  5,  (La(5)=13217 units)  is  carried forward to the  2nd stage  of
production planning. For day 6, OM(6) is estimated at 78620 units. The throughput shortage from day 5, La(5) is
added to the planned throughput of  day 6, OM(6). OB(6) is calculated as OM(6) + La(5) where it is equal to 91837
units. In the 2nd stage, the mathematical programming assessed the adjusted cycle time within the boundary shown
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in Table 1 and estimated OC(6) as 91837 units. Since OC(6) is equal to OB(6), there is no predicted throughput
shortage that is required to be carried forward to the next day (i=7).

For day 7, OM(7) is estimated at 92051 units, and ORT(7) is 73100. Since OM(7) is higher than ORT(7), there is
throughput shortage; thus the throughput shortage of  day 7, (La(7)=18951 units) is carried forward to the 2nd stage
of  production planning for day 8. Since the case study is limited to seven days period, the analysis stops at this
point.

 
Process

Variables

Day

1 2 3 4 5 6 7

1st stage

CTDA 2.8346 2.907 2.9342 2.8936 2.9046 2.8971 2.8378

CTOC 7200 7200 7200 7200 7200 7200 7200

CTWB 6.1796 6.3721 6.1890 6.3850 6.2920 6.2297 6.2860

CTPC 0.9973 1.0256 1.0200 1.0450 1.0123 1.0150 1.0190

DDDA 2241 3190 2845 3986 4097 3967 2988

DDWB 1599 1987 2366 1822 1769 2544 1479

DFDA 1601 2067 1339 1845 1937 2080 2065

DFWB 1790 1544 1988 1756 2147 2079 1655

STDA 3867 3099 5427 4635 4906 3782 3056

STWB 1436 1788 1867 2090 1645 2654 2017

M 3 3 3 3 3 3 3

TTOTAL 994433 992858 979236 980697 981625 980148 993847

Q 3080 2200 11264 2200 2200 3080 11264

OM 81412 72110 90693 70974 72538 78620 92051

ORT 77982 59124 86452 58429 59321 72128 73100

La 3430 12986 4241 12545 13217 6492 18951

2nd

stage

OB - 75539 - 75215 - 91837 -

OC - 75539 - 75215 - 91837 -

Lp - 0 - 0 - 0 -

Adjusted CTDA - 2.8072 - 2.8693 - 2.0670 -

Adjusted CTWB - 6.2568 - 6.0902 - 6.0902 -

Adjusted CTPC - 0.9882 - 1.0498 - 0.9882 -

Table 2. 1st Stage and 2nd Stage of  Production Planning for 1st Period

Case Study 2: Period 2

Table 3 shows the production planning data obtained for the 2 nd period for 7 days. For day 1 in the 1 st stage of
production planning,  OM(1)  is estimated at  90772 units.  ORT(1)  is 85756 units.  Since OM(1)  is higher than
ORT(1),  there is throughput shortage; thus the throughput shortage of  day 1, (L a(1)=5016 units)  is carried
forward to the 2nd stage of  production planning. For day 2, OM(2) is estimated at 78789 units. The throughput
shortage from day 1, La(1) is added to the planned throughput of  day 2, OM(2). OB(2) is calculated as OM(2) +
La(1) where it is equal to 83805 units. In the 2nd stage, the mathematical programming assessed the adjusted
cycle time within the boundary shown in Table 1 and estimated O C(2) as 81257 units. Since OC(2) is lower than
OB(2), there is a predicted throughput shortage that is required to be carried forward to the next day (i=3).
Lp(2) is 2548 units. 
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OM(3) is estimated at 80136 units. The predicted throughput shortage from day 2, Lp(2) is added to the planned
throughput of  day 3, OM(3). OB(3) is calculated as OM(4) + Lp(3) where it is equal to 82684 units. In the 2nd stage,
the  mathematical  programming assessed  the  adjusted cycle  time  within  the  boundary  shown in  Table  1  and
estimated OC(3) as 81980 units. Since OC(3) is lower than OB(3), there is a predicted throughput shortage that is
required to be carried forward to the next day (i=4). Lp(3) is 704 units.

 
Process

Variables

Day

1 2 3 4 5 6 7

1st stage

CTDA 2.8432 2.8342 2.9032 2.9178 2.8190 2.8772 2.8100

CTOC 7200 7200 7200 7200 7200 7200 7200

CTWB 6.1901 6.2720 6.1126 6.3301 6.1450 6.3021 6.2378

CTPC 1.0079 0.9220 1.0260 1.0348 0.9972 1.0152 1.020

DDDA 3990 4010 3720 2899 2690 2477 3320

DDWB 2265 2740 1608 1790 2011 2390 2700

DFDA 1205 1580 1945 1540 1766 2010 2087

DFWB 1742 1823 2009 1990 2080 1590 1630

STDA 4932 5109 3550 5742 5230 4480 5020

STWB 2430 2054 2689 2090 2190 1988 1420

M 3 3 3 3 3 3 3

TTOTAL 975787 975532 984679 977745 979935 984775 981757

Q 11264 3080 3080 11264 2200 2200 3080

OM 90772 78789 80136 89995 75844 72967 79716

ORT 85756 73278 67341 68945 72677 60832 75200

La 5016 5511 12795 21050 3167 12135 4516

2nd stage

OB - 83805 82684 90699 - 76134 -

OC - 81257 81980 90789 - 76134 -

Lp - 2548 704 -90 - 0 -

Adjusted CTDA - 2.8072 2.8072 2.9460 - 2.8072 -

Adjusted CTWB - 6.0902 6.0902 6.0902 - 6.1722 -

Adjusted CTPC - 0.9882 0.9882 1.0498 - 0.9882 -

Table 3. 1st Stage and 2nd Stage of  Production Planning for 2nd Period

OM(4) is estimated at 89995 units. The predicted throughput shortage from day 3, Lp(3) are added to the planned
throughput of  day 4, OM(4). OB(4) is calculated as OM(4)+Lp(3) where it is equal to 90699 units. In the 2nd stage, the
mathematical programming assessed the adjusted cycle time within the boundary shown in Table 1 and estimated
OC(4) as 90789 units. Since OC(4) is higher than OB(4), there is no predicted throughput shortage that is required to
be carried forward to the next day (i=5). 

OM(5) is estimated at 75844 units, and ORT(5) is 72677 units. Since OM(5) is higher than ORT(5), there is throughput
shortage;  thus  the  throughput  shortage  of  day  5,  (La(5)=3167  units)  is  carried  forward  to  the  2nd stage  of
production planning. For day 6, OM(6) is estimated at 72967 units. The throughput shortage from day 5, La(5) is
added to the planned throughput of  day 6, OM(6). OB(6) is calculated as OM(6) + La(5) where it is equal to 76134
units. In the 2nd stage, the mathematical programming assessed the adjusted cycle time within the boundary shown
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in Table 1 and estimated OC(6) as 76134 units. Since OC(6) is equal to OB(6), there is no predicted throughput
shortage that is required to be carried forward to the next day (i=7). 

For day 7, OM(7) is estimated at 79716 units, and ORT(7) is 75200. Since OM(7) is higher than ORT(7), there is
throughput shortage; thus the throughput shortage of  day 7, (La(7)=4516 units) is carried forward to the 2nd stage
of  production planning for day 8. Since the case study is limited to seven days period, the analysis stops at this
point.

Case Study 3: Period 3

Table 4 shows the production planning data obtained for the 3rd period for 7 days.

 
Process

Variables

Day

1 2 3 4 5 6 7

1st stage 

CTDA 2.9328 2.8477 2.8342 2.8146 2.9055 2.8418 2.9181

CTOC 7200 7200 7200 7200 7200 7200 7200

CTWB 6.2891 6.3310 6.3187 6.1722 6.1137 6.2671 6.1263

CTPC 1.0199 0.9977 1.0288 0.9880 1.0186 0.9883 1.0078

DDDA 3966 4210 3277 3547 4177 4091 2851

DDWB 2541 1922 2410 2180 2419 2655 2399

DFDA 2019 1579 1368 1392 1752 2180 1611

DFWB 1762 1934 2076 1855 1988 1628 2070

STDA 5564 5716 4288 4399 4980 5927 3899

STWB 2613 2561 1762 2611 2701 1677 1577

M 3 3 3 3 3 3 3

TTOTAL 993745 994579 1002224 999328 994918 994747 1005139

Q 2200 11264 11264 3080 3080 11264 2200

OM 72902 91956 92674 82019 80998 92276 76479

ORT 74756 87190 66219 77910 74198 84688 63170

La -1854 4766 26455 4109 6800 7588 13309

2nd stage

OB - - 97440 85551 83339 92795 -

OC - - 93908 83210 82820 92795 -

Lp - - 3532 2341 519 0 -

Adjusted CTDA - - 2.8072 2.8072 2.8072 2.8072 -

Adjusted CTWB - - 6.0902 6.0902 6.0902 6.1872 -

Adjusted CTPC - - 0.9882 0.9882 0.9882 0.9882 -

Table 4. 1st Stage and 2nd Stage of  Production Planning for 3rd Period

For day 1 in the 1st stage of  production planning, OM(1) is estimated at 72902 units. ORT(1) is 74756 units. Since
OM(1) is lower than ORT(1), there is no throughput shortage to be carried to the 2nd stage of  production planning. 

OM(2) is estimated at 91956 units, and ORT(2) is 87190 units. Since OM(2) is higher than ORT(2), there is throughput
shortage;  thus  the  throughput  shortage  of  day  2,  (La(2)=4766  units)  is  carried  forward  to  the  2nd stage  of
production planning. For day 3, OM(3) is estimated at 92674 units. The throughput shortage from day 2, La(2) is
added to the planned throughput of  day 3, OM(3). OB(3) is calculated as OM(3) + La(2) where it is equal to 97440
units. In the 2nd stage, the mathematical programming assessed the adjusted cycle time within the boundary shown
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in Table 1 and estimated OC(3) as 93908 units. Since OC(3) is lower than OB(3), there is a predicted throughput
shortage that is required to be carried forward to the next day (i=4). Lp(3) is 3532 units. 

For day 4, OM(4) is estimated at 82019 units. The predicted throughput shortage from day 3, Lp(3) are added to the
planned throughput of  day 4, OM(4). OB(4) is calculated as OM(4) + Lp(3) where it is equal to 85551 units. In the 2nd

stage, the mathematical programming assessed the adjusted cycle time within the boundary shown in Table 1 and
estimated OC(4) as 83210 units. When OC(4) is lower than OB(4), there is a predicted throughput shortage that is
required to be carried forward to the next day (i=5). Lp(4) is 2341 units. 

For day 5, OM(5) is estimated at 80998 units. The predicted throughput shortage from day 4, Lp(4) are added to the
planned throughput of  day 5, OM(5). OB(5) is calculated as OM(5) + Lp(4) where it is equal to 83339 units. In the 2nd

stage, the mathematical programming assessed the adjusted cycle time within the boundary shown in Table 1 and
estimated OC(5) as 82820 units. When OC(5) is lower than OB(5), there is a predicted throughput shortage that is
required to be carried forward to the next day (i=6). Lp(5) is 519 units.

For day 6, OM(6) is estimated at 92276 units. The predicted throughput shortage from day 5, Lp(5) are added to the
planned throughput of  day 6, OM(6). OB(6) is calculated as OM(6) + Lp(5) where it is equal to 92795 units. In the 2nd

stage, the mathematical programming assessed the adjusted cycle time within the boundary shown in Table 1 and
estimated OC(6) as 92795 units compare. When OC(6) is equal to OB(6), there is no predicted throughput shortage
that is required to be carried forward to the next day (i=7). 

For day 7, OM(7) is estimated at 76479 units, and ORT(7) is 63170. Since OM(7) is higher than ORT(7), there is
throughput shortage; thus the throughput shortage of  day 7, (La(7)=13309 units) is carried forward to the 2nd stage
of  production planning for day 8. Since the case study is limited to seven days period, the analysis stops at this
point.

5. The Implication of  Throughput Shortage Recovery
Table 5 shows the summary of  losses data for each period.

Method

Throughput shortage accumulated by day 7 (units)

Case study 1 Case study 2 Case study 3

Conventional production planning model 71862 64190 63027

Two-stage production planning model 18951 4516 13309

Table 5. Summary of  losses data for Each Period

Table  2,  Table  3,  and Table  4  are  essentially  a  simulation  of  the  2-stage  of  production  planning  to analyse
throughput shortage occurrence. In the model, (OB-OC) is analogous to (OM-ORT). (OB-OC) reflects the condition
of  throughput shortage if  the two-stage production planning model is adopted. Referring to Table 5, the model can
reduce the accumulated throughput shortage incurred over a week, based on a comparison of  throughput shortage
from conventional method (summation of  La over the 7 day period) and 2-stage of  production planning model (La

on day 7 if  Lp on day 6 is zero or negative, or Lp on day 7 if  Lp on day 7 is positive). 

It is shown that adopting the two-stage production planning model can recover the throughput shortage, but the
production capacity always limits the system based on the boundary of  process parameters. However, when the
real-time throughput is lower than the planned throughput, it is subjected to the throughput shortage recovery
mode, causing parameters adjustment to recover the throughput shortage and meet the demand for subsequent day
simultaneously. If  the adjusted parameters are outside the boundary of  process parameters, there is flexibility in
production capacity to recover the throughput shortage completely. However, this area has not been explored, as
the boundary of  process parameters ensures that the quality of  the product is not compromised. 

In  production,  the  machine  settings  are  not  fixed  during  setup  because  the  mechanical  part  adjustment
complements the values of  process parameters, resulting in a range of  values for the machine settings (Pinedo,
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2005). Hence the cycle time can fluctuate. In addition, the presence of  product variety is reflected by the fluctuation
of  the cycle time which is also induced by the range of  machine settings due to setup and batch variation. 

If  the throughput shortage is not carried forward in the subsequent day of  planning, it will create a backlog of
unprocessed batches, thus interrupting the production flow and causing a delay in meeting the demand and due
date. Also, when there is no adjustment on the process parameters, there is a possibility that there will be an
additional generation of  throughput shortage since the throughput shortage may not be recovered with the original
setting of  the process parameters. In practice, when the WIP build-up is too high, the loading of  machines can be
stopped to reduce the unprocessed backlog. The proposed model suppresses the need to stop machine loading
when WIP build-up is too high, as WIP build-up is mitigated through the cycle time adjustment.

The  planned  capacity  in  a  single  process  pushes  the  maximum  throughput  available  to  next  process.  The
relationship between throughput and process parameters is typically established in a production planning model for
a single process. As the manufacturing system becomes more complex, the structural configuration that relates to
the number of  processes become crucial for the model. The reason for integrating processes in planning instead of
individual processes is it enables overview planning of  the system that manages the products flow from the first
process to the last process. It also ensures that the planned throughput is met at the end of  the system. Integrating
throughput shortage in the subsequent day of  planning requires an active relationship between process parameters
of  integrated processes and planned throughput. When the number of  processes increases, the number of  process
parameters also increases. Thus, it is a challenge to model a large number of  processes and process parameters to
perform estimation effectively. 

Adjustment  of  process  parameters  plays  an  essential  role  in  enhancing  the  competitiveness  of  an  assembly
semiconductor  manufacturing  system to  meet  demand and recover  the  throughput  shortage.  It  improves  the
responsiveness to real-time throughput and throughput shortage.  Chen (2013) proposed a planned cycle time
reduction using a systematic procedure. However, the study still  lacks a clear relationship between the process
parameters and throughput shortage. Macher and Mowery (2003) and Chien, Hsu and Hsiao (2012) stated that
adjustment of  process parameters affects the productivity change by realigning the desired level of  throughput in
the production line. Although the process parameters are crucial to throughput performance, existing studies did
not express the association between adjustment of  process parameters with throughput and throughput shortage in
the production planning model. The novelty of  the proposed production planning model is the throughput and
throughput  shortage  can  be  manipulated  through  adjustment  of  process  parameters.  Process  parameters  are
adjusted within an allowable range of  values at the 2nd stage, which is essential to maintain the product quality
during the production run and recover the throughput shortage. This is because the adjusted parameters within
these settings control and sustains the process variation to avoid product quality deviation during the production
run (Kao, 2010; Michaloski, Zhao, Lee & Rippey , 2013). Recurrence of  product defect in such circumstances are
caused by other factors such as tools  wear and tear,  quality  of  material,  and other machine settings such as
dispensing pressure, air pressure, or pattern recognition. 

Indirectly, the cost of  production improvement can be diverted to other activities since the process parameters can
be adjusted with minimum cost. The significance of  the framework is the establishment of  a reference to develop
the numerical relationship between process parameters with throughput and throughput shortage. Thus, it becomes
feasible to adjust process parameters in multiple-process integration to plan for the future.

6. Conclusion
There is a possibility that the mathematical model of  planned throughput may be higher than the actual throughput
thus resulting in throughput shortage. A two-stage production planning model is proposed where mathematical
programming plays an important role to meet the throughput shortage and planned throughput. The effectiveness
of  throughput prediction in the 2nd stage of  production planning uses an optimised set of  process parameters
within a defined range. The positive results from the three different periods indicate that the proposed two-stage
production planning model is robust to manage the throughput planning in the real-time environment. 
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There are few areas to extend this research. First, the inclusion of  additional parameters such as material and
resource availability can further improve the model representation to the manufacturing system. Second, existing
parameters such as downtime and set up time can be included to enhance the model flexibility in meeting demand
and restore the throughput shortage simultaneously. Third, the framework reference can be further extended to
more processes to test the repeatability and reproducibility of  the approach. A large number of  validations can
further generalise the model effectiveness in different settings.
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