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Abstract:

Purpose: Today’s manufacturing facilities are challenged by highly customized products and just in time
manufacturing  and  delivery  of  these  products.  In  this  study,  a  batch  scheduling  problem has  been
addressed to enable on-time completion of  customer orders in a lean manufacturing environment. The
problem is  optimizing  the  partitioning  of  product  components  into  batches  and  scheduling  of  the
resulting batches where each customer order is received as a set of  products made of  various components.

Design/methodology/approach: Three  different  mathematical  models  for  minimization  of  total
earliness and tardiness of  customer orders are developed to provide on-time completion of  customer
orders  and  also,  to  avoid  excess  final  product  inventory.  The  first  model  is  a  non-linear  integer
programming model whereas the second is a linearized version of  the first. Finally, to solve larger sized
instances of  the problem, an alternative linear integer model is presented.

Findings: Computational study using a suit set of  test instances showed that the alternative linear integer
model is able to solve all test instances in varying sizes within quite shorter computer times compared to
the other two models. It has also been showed that the alternative model is able to solve moderate sized
real-world problems.

Originality/value: The problem under study differentiates from existing batch scheduling problems in
the literature owing to the inclusion of  new circumstances that are present in real-world applications.
Those are: customer orders consisting of  multi-products made of  multi-parts, processing of  all parts of
the same product from different orders in the same batch, and delivering the orders only when all related
products are completed. This research also contributes to the literature of  batch scheduling problem by
presenting new optimization models.

Keywords: batch scheduling, earliness and tardiness, mixed integer programming formulation, on-time delivery 

1. Introduction

A batch-processing machine (BPM) can simultaneously process several jobs in a batch, that is, different jobs in the
same batch are processed at the same time. BPM scheduling problem is defined as a combination of  sequencing
and partitioning problems with an objective function to be optimized (Albers & Brucker, 1993). The aspect of
partitioning is to find a partition of  all jobs into batches whereas the sequencing aspect is to find a sequence of  the
batches formed by the partitioning.
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BPM scheduling problem addressed in this study mainly stems from scheduling of  a cutting machine in furniture
manufacturing. The short-term production planning problem considers the following input data: customer orders
which consist of  a set of  products, bill of  materials which involves a set of  components for each product, due
dates of  the customer orders, capacity of  BPM (cutting machine) in terms of  number of  components and finally
process time of  BPM. Decision problem is to cluster the components of  products into batches that have limited
capacity and also to find a production sequence for these batches. The problem intends to minimize the sum of  the
weighted sum of  early and late completion times of  customer orders by determining optimum composition of
each batch in terms of  both type and number of  components as well as optimum production sequence of  these
batches. To emphasize the importance of  on-time completion of  customer orders, we have called the problem
BPM-On-time scheduling. One of  the differentiating aspect of  BPM-On-time scheduling problem arises from its
policy of  order of  deliveries. According to this policy, a customer order cannot be delivered unless all products
ordered by the same customer are completed. The other aspect is that products are made of  several components
and all components of  a product belonging to the same customer order must be processed simultaneously because
of  technical requirements. In other words, products of  a customer order can be partitioned into different batches
but components of  a product in the same customer order cannot be partitioned. This constraint is different from
the constraint of  incompatible job families considered in the literature since it does not allow processing of  jobs
from different  job  families  simultaneously.  Existing  literature,  which  is  closely  related  to  the  completion  of
customer orders just in time, focuses on either processing of  jobs in batches to minimize due date related objectives
or delivering of  completed jobs in batches to minimize inventory and delivery costs. The latter is called batch
delivery  and was first  introduced by Cheng and Kahlbacher (1993).  Batch delivery  problem mainly  considers
finding optimal partitions of  jobs into batches for delivery.  In BPM-On-time scheduling problem however,  a
customer order is a given set of  products and it must be delivered once all the products ordered are completed.
Therefore, BPM-On-time scheduling problem should not be treated in batch scheduling literature as batch delivery.
In  this  study,  we  aim  to  contribute  to  the  literature  of  batch  scheduling  by  emphasizing  the  differentiating
constraints of  BPM-On-time scheduling problem. We also aim to contribute by suggesting optimization models to
BPM-On-time scheduling problem since there is room for further research. 

In this study, firstly, a nonlinear integer programming formulation to the problem, called Model-NL, is provided.
Then,  Model-NL is  converted into  an integer  linear  programming (ILP)  model,  named Model-PL,  using the
piecewise linearizing method. Finally, we suggest an alternative ILP model, Model-A, to deal with difficulties of
both Model-NL and Model-PL. The proposed models, Model-A, Model-NL and Model-PL are compared using a
suit set of  test instances. The experimental studies confirm that Model-A strongly outperforms the other models in
terms of  both run time and problem size which can be solvable optimally. 

Section 2 addresses the related works in the literature. In section 3, BPM-On-time scheduling problem is described
and  the  three  mathematical  models  are  explained  in  detail.  Section  4  contains  experimental  study  in  which
generation of  the test instances and results obtained by the models are given. A case study from furniture industry
is presented in Section 5 to show the performance of  suggested Model-A in real life. Finally, conclusions and future
directions are discussed in the last section.

2. Related Works
BPM scheduling problem has received great attention since it was first proposed by Ikura and Gimple (1986). BPM
scheduling  may  be  seen  in  different  types  of  manufacturing  industries:  Semiconductor  industry,  furniture
manufacturing industry, iron and steel  industry, and chemical  processes incorporate several examples of  BPM
scheduling problem. Applications of  BPM scheduling problem to varying real-world environments also resulted in
variants of  the problem. The literature involves a large quantity of  these variants considering single or parallel
machines, identical or non-identical jobs, compatible or incompatible job families, unbounded or bounded BPM
capacity, processing a job at any time or processing it earliest at release time and so on. Different optimization
objectives such as makespan, total completion time, maximum tardiness, total tardiness, and number of  tardy jobs
also contribute to the variants of  BPM scheduling. There are several reviews of  batch scheduling problems. Potts
and van Wassenhove (1992) and Webster and Baker (1995) review the problem by focusing on the single machine
environment. Potts and Kovalyov (2000) review the research related with different machine environments and
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several types of  objectives. Mathirajan and Sivakumar (2003, 2006) and Mönch, Fowler, Dauzere-Peres, Mason and
Rose (2011) especially focus on BPM scheduling problems which arise in semiconductor manufacturing. Xiao and
Shao (2013) review BPM scheduling problem by emphasizing both job sizes and processing time. Yılmaz and
Durmusoglu  (2017)  focus  on dual  resource  constrain  batch scheduling  problem to  minimize  production  cell
response time. Genetic algorithm, simulated annealing and artificial bee colony metaheuristics are proposed ABC
was found to deliver superior result compared to others.

In this study, in order to emphasize importance of  on-time completion of  customer orders, we restricted our
survey to the research that aim to minimize early and tardy completion times of  jobs in a BPM scheduling problem.
There is an increasing trend in adoption of  lean manufacturing tools and techniques to improve the efficiency of
production systems and to decrease production costs. A lean manufacturing system requires completing customer
orders  just  in  time  since  early  completion  of  orders  results  in  increasing  work-in-process  costs  while  late
completion causes both customer dissatisfaction and storage cost of  finished products. Therefore minimization of
both earliness and tardiness of  orders is crucial in any manufacturing environment including BPM scheduling. Hall
and Posner (1991) showed that the weighted sum of  earliness and tardiness of  jobs scheduled on a single processor
considering a common due date is NP-complete. Brucker, Gladky, Hoogeveen, Kovalyov, Potts, Tautenhahn and
van de Velde (1998) also proved that all batch scheduling problems with the optimization function related to due
date are NP-hard. Qi and Tu (1999) proposed a dynamic programming algorithm for the scheduling of  a single
processing machine considering distinct due dates, a common process time and identical job size to minimize sum
of  earliness and tardiness. Mönch, Unbehaun and Choung (2006) suggested several two-phase heuristics to the
same problem applied to scheduling of  a burn-in oven in the semiconductor manufacturing industry with an
additional content of  maximum allowable tardiness. The proposed heuristics are based on genetic algorithms and
dominance properties of  optimal schedules. Mönch and Unbehaun (2007) also suggested decomposition heuristics
in the case of  parallel burn-in ovens. The suggested heuristics assign the jobs into early and tardy job sets for each
of  the parallel burn-in ovens. The early and tardy job sets are then used to form batches and finally, batches are
sequenced optimally. Zhao, Hu and Li (2006) investigated properties of  an optimal schedule for a batch scheduling
problem with the assumptions of  a common due window and identical  jobs to minimize  the total  weighted
earliness and tardiness. Li, Chen, Xu and Li (2015) proposed a new heuristic algorithm to assign jobs into batches
for the scheduling problem under constraints of  capacitated batch and non-identical jobs and assuming a common
due date. They also hybridized the proposed algorithm with genetic algorithms to effectively solve the scheduling
problem under study. Parsa, Karimi and Moattar-Husseini (2017) formulated the same research problem as a mixed
integer linear programming model and developed a dynamic programming algorithm for a given set of  batches.
They developed several  heuristics  in which the dynamic programming algorithm is  utilized.  The authors also
proposed a branch and bound algorithm which is able to solve instances with up to 20 jobs. Cheng, Leung and Li
(2017) concluded that an algorithm exists to solve a minimum cost scheduling problem on a single batch processing
machine with jobs having identical size in polynomial time. However, the typical problem with due date related
objective same processing time is strongly NP-hard.

3. Problem Definition
BPM-On-time scheduling problem is mainly motivated by scheduling of  a single cutting machine in furniture
manufacturing. There exists a set of  customer orders, {1, …,  m}. Each order  i consists of  a set of  products,
{1, …, n}, and each product j is made of  a set of  components. The problem is bounded since number of  batches,
b, is less than the number of  products in the system, n. It is given that the total number of  components of  product
j for customer i is Kij including the order amounts. A batch may contain any product j of  any customer i, however,
number of  components, Kij, must be cut in the same batch and cannot be partitioned into different batches because
of  technological requirements. Hence, Kij is considered as size of  product j of  customer i and this situation results
in non-identical job sizes. Capacity of  each batch is limited to B in terms of  number of  components included and
process time of  the cutting machine, P, is fixed for all batches. The machine can cut out a set of  components (Kij)
from a board of  raw material simultaneously. Therefore, all components included in the same batch are completed
at the same time. Customer order i, only can be completed when all the products in this order are completed. This
condition causes the completion time of  an order i, Ci, to be the latest completion time among the batches which
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contains at least one product of  customer i. There is an agreed due date, Di, for each customer. If  the completion
time, Ci, of  customer order i excesses the due date, Di, then tardiness, Ti, occurs for customer i. On the other hand,
completion time Ci, which is less than the due date, results in earliness, Ei. Objective of  the problem is to minimize
the sum of  the weighted early  and tardy completion of  customer orders to provide customer satisfaction by
completing their orders just in time and to avoid both work-in-process inventory and product stocks. To achieve
this objective, an optimal partitioning of  products into batches and sequencing the resulting batches throughout the
planning horizon is required. Assumptions for the problem are that all data is deterministic and known a priori and
a  batch  cannot  be  interrupted  once  the  machine  starts  the  processing  on it.  As  a  summary,  BPM-On-time
scheduling problem can be represented as 1|p-batch,  b <  n, si <  B,  Di, P|∑(αiEi +  βiTi) following the notation
introduced by Graham, Lawler, Lenstra and Rinnooy-Kan (1979). Abbreviation p-batch introduced by Brucker
(2007) defines  a  parallel  batch which consists  of  a  set  of  jobs  that  can be  processed on the  same machine
simultaneously. Notation b < n means that the problem is bounded, si < B corresponds to non-identical job sizes
and limited batch capacity, Di stands for different due dates for each customer i, and P shows fixed process time.
The parameters and variables which are related with time (e.i., P, Di, wb, Tijb, Ci, li, ei) are assumed in the same time
unit.

Indices:

i index of  customer order (i = 1, ..., m)

j index of  products ordered by customer i (  j = 1, ..., n)

b index of  batches (b = 1, ..., nb)

s index of  batches (s = 1, ..., nb)

Parameters:

αi tardiness penalty for customer order i for each planning period

βi earliness penalty for customer order i for each planning period

B fixed capacity for each batch

P process time of  each batch

Di due date of  customer i 

Kij total number of  components of  product j in customer order i

m number of  customer orders

n number of  products

nb number of  batches

M sufficiently large constant value

Variables:

wb start time of  batch b

Tijb completion time of  j th product of  i th customer order in batch b

Ci completion time of  i th customer order

yijb =  
1 if  j th product of  i th customer order in batch b

0 otherwise

zbs =  
1 if  batch b precedes batch s

0 otherwise

Li = Duration tardiness of  customer order i

Ei = Duration earliness of  customer order i
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3.1. The Nonlinear Integer Programming Model

BPM-On-time scheduling problem addressed in this  study is,  firstly,  formulated as a  nonlinear integer model,
Model-NL, which is given by Equations (1-10). Objective function in Equation (1) minimizes the total of  weighted
tardiness and earliness of  the customer orders. Equation (2) implies that product j of  order i can be processed in
only one batch. Total number of  components included in a batch cannot exceed the batch capacity, B, as provided
by  Equation  (3).  Equations  (4-5)  stipulate  sequencing  of  the  batches  considering  the  process  time,  P.  Both
Equations (6-7) are used to formulize completion time of  j th product of  i th order in b th batch. Equation (8) gives the
completion time of  order i which is the longest among the completion times of  the batches in which at least one
product of  this order is included. Tardiness time and earliness time of  an order i are calculated in Equations (9-10),
respectively, in their relation with the due date, Di, and the completion time of  order i, Ci. Since both the tardiness,
Li, and earliness,  Ei, are defined as positive variables (Equation 11), only one of  them can take a positive value
according to the Equations (9-10).

Model-NL:

(1)

Subject to:

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

3.2. The Piecewise-Linear Integer Programming Model

To speed up Model-NL, it  is linearized using the upper bound technique (Paschos & Quadri,  2010). For this
purpose, the single nonlinear function of  Model-NL which is given in Equation (8) is replaced with Equations (19-

-394-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2541

20). Equation (19) stipulates that completion time of  order i,  Ci, can be at least equal to completion time of  the
latest batch (that is, the batch having the longest completion time, Tijb) which involves a product or products of  this
order.  On  the  other  hand,  Equation  (20)  guarantees  that  Ci cannot  exceed  the  maximum  Tijb.  By  the  way,
optimization procedure sets  Ci to the maximum  Tijb. The complete model of  Model-PL, is given by Equations
(12 to 23). 

Model-PL:

(12)

Subject to

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

3.3. The Alternative Integer Linear Model 

Our pre-experiments showed that Model-PL fails to find optimum solutions within reasonable amount of  time as
the problem size gets larger. To be able to solve larger sized instances, BPM-On-time scheduling problem was
re-formulated by fixing the sequence of  batches in advance. Fixing of  the batch sequence allows us to drop  wb

(variable of  start time for batch b), zbs (binary variable of  successive batches b and s) and Tijb (completion time of
batch b which includes product j of  customer i) from the original nonlinear model. In the alternative formulation,
the start time is taken as a parameter and computed by wb+1 = wb + P for b = 1, ..., nb – 1 by setting w1 = 0 a priori
and thereby, a new batch is taken into process after each P hours. By the way, any customer order  i processed
between time duration [wb-1, wb] is considered to be included in bth batch. Therefore, this alternative formulation of
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BPM-On-time scheduling problem, called Model-A, involves the decisions of  assigning products of  customer
orders to the batches (i.e., time intervals) while satisfying the batch capacity constraint and assuring that the total
number of  components of  a product is included in the same batch (i.e., components of  a product cannot be
splitted). 

Model-A is given by Equations (24-33). While Equations (24, 25, 26, 31, and 32) are the common constraints
with Model-NL, in addition to dropping of  variables wb and zbs from Model-NL, another distinction in Model-A
is related with the formulation of  completion time,  Ci. Binary variable Sib is introduced to find which batch is
completed  latest  including  any  product  of  order  i.  Equation  (27)  guarantees  that  Ci corresponds  to  the
completion time of  exactly one batch. Equation (28) gives that the lower bound on  Ci is the maximum one
among  the  completion  times  of  batches  in  which  any  product  of  order  i is  processed.  Equation  (29)  is
introduced to stipulate  Ci equals its upper bound. Equation (30) means that  Sib must be zero unless batch  b
contains any product of  order i. 

Model-A: 

(24)

Subject to

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

4. Experimental Study
In this section performances of  the models developed in the study are tested on test instances with varying sizes.
This test data is generated by scaling down real life cases. The aim is to find out capability of  Model-A in solving
larger  instances  compared to Model-NL and Model-PL.  The next  subsection  explains  generation  of  the  test
instances and then computational results are given in subsection 4.2.
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4.1. Generation of  Test Instances

A real life furniture manufacturing system was examined in order to generate test instances. In the system, there
are approximately 250 working days a year. Each day, a batch of  components of  one or more products must be
cut on a single cutting machine. Each batch has a fixed capacity of  3000 components of  the product. The
number of  customer orders changes between 70 and 250 daily. To generate test instances, this manufacturing
environment was scaled down by 1/50. The number of  batches should be at least 5 according to the scaled data.
The run times of  Model-NL, Model-PL, and Model-A were limited to 120 minutes in order to sustain effective
planning time.

The  test  instances  are  generated  by  changing  some parameters  systematically  and  selecting  other  parameters
randomly as given in Table 1. The only fixed parameters are process time, P = 10-hour and batch capacity, B = 60
components.

Systematically changed parameters Randomly selected parameters

• The number of  customer orders, m 
= (from 2 to 10)

• Number of  components, Kij, for product j of  each order i = (the number of  
product component types from the bill of  materials of  product j) × 
(Uniform(0,5))

• The number of  product types, n = 
(from 1 to 14)

• Earliness and tardiness penalties of  each order i: 
αi = Uniform(0, 10)
βi = Uniform(0, 10)

• Due dates are selected from the set {P, 2P, …, ɣP} where ɣ = 6 for small or 
moderate sized problems, ɣ = 10 for larger problems

Table 1. Parameter generation for the test instances

A total of  87 instances are generated. In Appendix A, the test instances are named using number of  customers (m),
number of  products (n), number of  batches (nb) and total number of  parts (∑K ). For example,  m2 n3 nb2 K49
stands for an instance with 2 customer orders, 3 products, 2 batches and 49 total parts.

4.2. Computational Results

In this section Model-NL, Model-PL, and Model-A are run to solve the 87 test instances. All the models are run
using LINGO v15.0 and are terminated if  the computer time exceeds 120 minutes.  The optimum cost of
earliness and tardiness and the computer time to solve the instances using three models are given in detail in
Table A1 of  Appendix. Table 2 is a summary of  Table A1. As shown in Table 2, only 19 instances out of  the 87
are solved optimally using Model-NL, the remaining 68 test instances could not be solved because of  the run
time limit of  120 min. As the problem size gets larger in terms of  m, n, and K, Model-NL performs quite poorly.
Model-PL starts to perform worse when m ≥ 9 and ∑K ≥ 200, however there are several smaller sized instances
which Model-PL cannot solve within the allowed time limit.  Total number of  instances which are solved by
Model-PL is 38. On the other hand, Model-A is able to find optimum solutions quite efficiently for all of  the test
instances. As seen from Table 2, the average run time of  Model-A is quite shorter than the corresponding
average run times over the same instances that are solved by Model-NL and Model-PL. Additionally, Table 3
gives the number instances which are solved by the models with respect to the total number of  components.
According to the results in Table 3, Model-NL is able to solve the instances up to only 200-component whereas
Model-PL can solve the instances with at most 350-components. On the other hand, Model-A is capable of
optimizing all the instances regardless of  the component size. Figures 1-a, 1-b and 1-c show the number of
instances  solved  by  each  model  with  respect  to  the  average  numbers  of  products,  costumer  orders,  and
components, respectively to figure out the performance of  Model-A further. It is clear that, Model-A strongly
outperforms the other two models considering the three problem parameters. These results confirm that Model-
A is the best performing model among the three models. Consequently, we decided to apply Model-A to solve
real-world problems.
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Performance indicator Model-NL Model-PL Model-A

Number of  solved instances 24 38 87

Average run time in seconds over instances solved by all three models 49.6 0 0

Average run time in seconds over instances solved by Model-PL and Model-A – 10.6 0

Average run time in seconds over instances solved by only Model-A – – 32.4

Table 2. Comparison of  Model-NL, Model-PL, and Model-A

Range for total number 
of  components

Total number
instances

Number of  solved intances

Model-NL Model-PL Model-A

0-50 1 1 1 1

50-100 14 11 11 14

100-150 19 9 12 19

150-200 17 3 10 17

200-300 10 0 3 10

300-500 7 0 1 7

500-700 11 0 0 11

700-1000 8 0 0 8

Table 3. Comparison of  Model-NL, Model-PL, and Model-A respect to the number of  components

Figure 1. Comparison of  Model-NL, Model-PL, and Model-A according to the varying ranges 
of  number of  products (1-a), number of  orders (1-b) and number of  components (1-c)
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5. Case Study

The case study is from one of  the biggest modular bathroom furniture production factories in Turkiye. The
company produces for both local  and export  markets.  Products  are made up of  thermofoil,  melamine and
lacquer coated medium density fiber board (MDF) and coloring is done according to customer choices. Because
of  high customized nature of  the business, it is troublesome to keep products in the stock and therefore make-
to-order production strategy is implemented. Production process starts with the arrival of  customer orders to
factory. On the other hand customers are very sensitive to service level of  delivery and orders must be delivered
just in time. Partial deliveries are not accepted by the customer since products are complementary to each other.
The factory  uses  pull  production  system and production  process  is  designed  based on lean  manufacturing
philosophy. 

Manufacturing process in the factory flows through in order of  “panel cutting – edge bending – assembly
line” and finally ends in warehouse. Raw material is a sheet of  melamine coated MDF board. Cutting machine
receives the raw material and cuts a batch of  the components of  one or more products. The number of
components  to  be  cut  out  depends  on  the  assigned  product  types  to  the  batch  and order  quantities  of
products.  Capacity  of  a  batch  is  constrained  by  the  total  capacity  of  one  day  process  which  is  3000
components. Once components are cut, in other words, a batch is processed, edge banding process is done via
a roller conveyor. Through the edge banding process, parts take drilling operation and products are assembled
in  pre-determined  times.  After  the  assembly,  products  are  stored  in  warehouse  and  are  awaited  until  all
products in the same order are produced. Under these circumstances, the management targets to minimize
products awaited in stock and also to provide deliveries of  the completed orders to customers on time. As a
result, we focused on solving the scheduling of  the panel cutting process since the main factors that affect the
managerial targets arise from this process. 

Customer orders arrive the manufacturing system continuously and BPM-On-time scheduling problem should be
solved each day by taking into account all new orders received and the orders which have not been processed yet.
The objective is to reduce total penalty cost of  early and late completion of  customer orders. To achieve this, all the
products must be scheduled such that they will be completed as much as close to the promised due dates to
customers. 

In this section, only Model-A is used to solve BPM-On-time scheduling problem of  the panel cutting machine,
since the other models have already failed to solve test instances in Section 4.2. We obtain a set of  real-case
instances of  the problem by extracting data from different five successive days of  the system since pre-experiments
showed that Model-A is able to solve the real-world problem for five successive days. The cases includes varying
number  of  customer  orders  consisting  of  different  number  of  products  in  different  quantities.  Size  of  the
customer-product- component triple data gets huge as the planning horizon increases. To show the performance of
Model-A in terms of  total number of  components, ∑K, the number of  orders, m, the number of  products, n, and
the number of  batches, nb, a problem size coefficient is proposed as given in Equation (34). Results obtained by
Model-A for the eleven case instances drawn from the system are given in Table 4. Figure 2 also shows how the
performance of  Model-A changes with respect to  PS coefficient. Naturally, run time requirement of  the model
increases as the coefficient rises. However, the results in Table 4 implie that Model-A is able to solve the cases
which involve up to 8342 total number of  components within approximately 6 hours. It is clear that all the case
instances but the three (cases 1, 3, and 4) have an optimum solution which makes the completion of  orders just in
due dates promised to customers. Although the problem under study is one of  NP-hard problems, this study
encourages  the  practitioners  to solve  this  planning problem optimally  up to 9000 components  in  total  using
Model-A. 

(34)
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Instances
selected from
the real life

Number of
customer
orders, m

Number of
products, n

Number of
batches,

nb

Total number
of

components,
∑K

PS

Run
time

(min.)

Optimum
∑(αiEi + βiTi)

Case 1 65 97 50 2631 88152 2.17 620

Case 2 80 122 50 2950 96721 16.70 0

Case 3 50 120 53 4351 96085 7.30 29

Case 4 89 163 65 6180 219333 54.61 124

Case 5 61 96 65 2265 93549 15.30 0

Case 6 53 79 65 2055 89614 4.38 0

Case 7 51 99 65 2162 72394 11.59 0

Case 8 81 146 65 5306 191343 70.95 0

Case 9 55 136 65 4137 108748 37.24 0

Case 10 140 229 65 8342 331494 373.76 0

Case 11 108 183 53 6865 214728 60.67 0

Table 4. Perfomance of  Model-A on the real-world cases

Figure 2. Run time performance of  Model-A respect to PS coefficient

6. Conclusion

In this study, BPM-On-time scheduling problem has been considered. The problem aims to minimize the weighted
sum of  early and tardy completion times of  customer orders in order to provide both customer satisfaction and
cost-effective production schedules in terms of  reduced work-in-process and final product inventories. To achieve
this objective, products from different customer orders are required to be clustered in batches and these batches
must be scheduled on a single batch processing machine optimally. BPM-On-time scheduling problem differs from
the literature with the addition of  new constraints: Different products which belong to different customer orders
can be processed simultaneously in the same batch. However, completion of  the customer order is the completion
of  the latest batch which includes at least one product of  this customer. Also, all components of  the same product
must be contained in the same batch. We examined the ways of  solving this variant of  batch scheduling problem
developing three mathematical models. The two of  the models, namely, Model-NL and Model-PL failed to solve
even small sized instances of  the problem. The last model, Model-A, however, has been found capable of  solving
all  the test  instances.  The case study carried out also showed that Model-A can be used to solve  real-world
problems up to 9000 components. 
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For further research, we are planning to develop heuristic approaches to BPM-On-time problem to deal with very
large sized instances considering longer planning horizons. 

Declaration of  Conflicting Interests
It  is  declared that  there  is  no  potential  conflict  of  interest  with  respect  to  the  research,  authorship,  and/or
publication of  this article. 

Funding 

This  research  with  the  number  FEN-C-DRP-110315-0062  is  supported  by  Marmara  University  BAPKO
foundation. 

References
Albers, S., & Brucker, P. (1993). The complexity of  one-machine batching problems.  Discrete Applied Mathematics,

47(2), 87-107. https://doi.org/10.1016/0166-218X(93)90085-3 

Brucker, P. (2007). Scheduling algorithms. (5th ed.). Berlin and New York: Springer.

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T., & van de Velde, S.L. (1998).
Scheduling  a  batching  machine. Journal  of  Scheduling ,  1(1),  31-54.  https://doi.org/10.1002/(SICI)1099-
1425(199806)1:1<31::AID-JOS4>3.0.CO;2-R 

Cheng, T.C.E., & Kahlbacher, H.G. (1993). Scheduling with delivery and earliness penalties.  Asia-Pacific Journal of
Operational Research, 10, 145-152. 

Cheng,  B.Y.,  Leung, J.Y.,  & Li,  K. (2017). Integrated scheduling on a batch machine to minimize production,
inventory  and  distribution  costs.  European  Journal  of  Operational  Research, 258,  104-112.
https://doi.org/10.1016/j.ejor.2016.09.009 

Graham, R.L., Lawler, E.L., Lenstra, J.K., & Rinnooy-Kan, A.H.G. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. In Hammer, P.L., Johnson,  E.L., & Korte, B.H. (Eds.), Discrete
Optimization II Proceedings of  the Advanced Research Institute on Discrete Optimization and Systems Applications of  the Systems
Science Panel of  NATO and of  the Discrete Optimization Symposium co-sponsored by IBM Canada and SIAM Banff, Aha. and
Vancouver  (287-326).  Volume  5  of  Annals  of  Discrete  Mathematics,  5,  287-326.  Elsevier  Science.
https://doi.org/10.1016/S0167-5060(08)70356-X 

Hall,  N.G., & Posner, M.E. (1991). Earliness-tardiness scheduling problems: weighted deviation of  completion
times about a common due date. Operations Research, 39(5), 836-846. https://doi.org/10.1287/opre.39.5.836 

Ikura, Y., & Gimple, M. (1986). Efficient scheduling algorithms for a single batch processing machine.  Operations
Research Letters, 5(2), 61-65. https://doi.org/10.1016/0167-6377(86)90104-5 

Li,  Z.,  Chen,  H.,  Xu, R.,  & Li,  X. (2015). Earliness–tardiness minimization on scheduling a batch processing
machine with non-identical job sizes. Computers&Industrial Engineering , 87, 590-599.
https://doi.org/10.1016/j.cie.2015.06.008 

Mathirajan, M., & Sivakumar, A.I. (2006). A literature review, classification and simple metaanalysis on scheduling
of  batch processors in semiconductor. The International Journal of  Advanced Manufacturing Technology, 29(9), 990-1001.
https://doi.org/10.1007/s00170-005-2585-1 

Mathirajan, M., & Sivakumar, A.I. (2003). Scheduling of  batch processors in semiconductor manufacturing - a
review. In Innovation in Manufacturing Systems and Technology (IMST).

Mönch,  L.,  Fowler,  J.W.,  Dauzere-Peres,  S.,  Mason,  S.J.,  & Rose,  O.  (2011).  A survey  of  problems,  solution
techniques, and future challenges in scheduling semiconductor manufacturing operations.  Journal of  Scheduling,
14(6), 583-599. https://doi.org/10.1007/s10951-010-0222-9 

-401-

https://doi.org/10.1007/s10951-010-0222-9
https://doi.org/10.1007/s00170-005-2585-1
https://doi.org/10.1016/j.cie.2015.06.008
https://doi.org/10.1016/0167-6377(86)90104-5
https://doi.org/10.1287/opre.39.5.836
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/j.ejor.2016.09.009
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1%3C31::AID-JOS4%3E3.0.CO;2-R
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1%3C31::AID-JOS4%3E3.0.CO;2-R
https://doi.org/10.1016/0166-218X(93)90085-3


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2541

Mönch, L., & Unbehaun, R. (2007). Decomposition heuristics for minimizing earliness-tardiness on parallel burn-in
ovens  with  a  common  due  date.  Computers  &  Operations  Research,  34(11),  3380-
3396.https://doi.org/10.1016/j.cor.2006.02.003 

Mönch, L., Unbehaun, R., & Choung, Y.I. (2006). Minimizing earliness-tardiness on a single burn-in oven with a
common  due  date  and  maximum  allowable  tardiness  constraint.  OR  Spectrum,  28(2),  77-
198.https://doi.org/10.1007/s00291-005-0013-4 

Parsa,  N.R.,  Karimi,  B.,  & Moattar-Husseini,  S.M.  (2017).  Exact  and heuristic  algorithms for  the  just-in-time
scheduling  problem  in  a  batch  processing  system.  Computers  and  Operations  Research, 80,  173-183.
https://doi.org/10.1016/j.cor.2016.12.001 

Paschos,  V.Th.,  &  Quadri,  D.  (2010).  Paradigms  of  Combinatorial  Optimization:  Problems  and  New  Approaches
(pp. 246-256). https://doi.org/10.1002/9781118600207.fmatter 

Potts, C.N., & Kovalyov, M.Y. (2000). Scheduling with batching: A review. European Journal of  Operational Research,
120(2), 228-249. https://doi.org/10.1016/S0377-2217(99)00153-8 

Potts,  C.N., & van Wassenhove, L.N. (1992). Integrating scheduling with batching and lot-sizing: A review of
algorithms  and  complexity. Journal  of  the  Operational  Research  Society,  43(5),  395-406.
https://doi.org/10.1057/jors.1992.66 

Qi,  X.,  &  Tu,  F.  (1999).  Earliness  and  tardiness  scheduling  problems  on a  batch  processor.  Discrete  Applied
Mathematics, 98, 131-145. https://doi.org/10.1016/S0166-218X(99)00113-4 

Webster,  S.,  & Baker,  K.R.  (1995).  Scheduling groups of  jobs  on a single  machine.  Operations  Research,  43(4),
692-703. https://doi.org/10.1287/opre.43.4.692 

Yılmaz O.F., & Durmusoglu, M.B. (2017). A performance comparison and evaluation of  metaheuristics for a batch
scheduling problem in a multi-hybrid cell manufacturing system with skilled workforce assignment.  Journal of
Industrial & Management Optimization. https://doi.org/10.3934/jimo.2018007 

Xiao, Z., & Shao, H. (2013). Two-Dimensional Scheduling: A Review. Research Journal of  Applied Sciences, Engineering
and Technology, 6(9), 1566-1572. https://doi.org/10.19026/rjaset.6.3870 

Zhao, H., Hu, F. & Li, G. (2006). Batch Scheduling with a Common Due Window on a Single Machine. In Wang,
L., Jiao, L., Shi, G., Li, X., & Liu, J. (Eds.),  Fuzzy Systems and Knowledge Discovery. Lecture Notes in Computer Science
(4223). Berlin, Heidelberg: Springer. https://doi.org/10.1007/11881599_76 

-402-

https://doi.org/10.1007/11881599_76
https://doi.org/10.19026/rjaset.6.3870
https://doi.org/10.3934/jimo.2018007
https://doi.org/10.1287/opre.43.4.692
https://doi.org/10.1016/S0166-218X(99)00113-4
https://doi.org/10.1057/jors.1992.66
https://doi.org/10.1016/S0377-2217(99)00153-8
https://doi.org/10.1002/9781118600207.fmatter
https://doi.org/10.1016/j.cor.2016.12.001
https://doi.org/10.1007/s00291-005-0013-4
https://doi.org/10.1016/j.cor.2006.02.003


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2541

Appendix 

Test Instance Optimum ∑(αiEi + βiTi)
Model-NL Model-PL Model-A

Run time (sec.) Run time (sec.) Run time (sec.)

m2 n3 nb2 K49 10 0 0 0

m2 n3 nb2 K61 20 9 0 0

m2 n3 nb2 K82 0 0 0 0

m2 n3 nb3 K69 0 0 0 0

m2 n4 nb3 K77 0 3 0 0

m2 n4 nb4 K100 0 0 0 0

m2 n5 nb4 K112 40 270 0 0

m2 n5 nb5 K190 80 NA* 0 0

m2 n6 nb4 K143 160 NA 1 0

m2 n7 nb4 K178 30 NA 0 0

m2 n7 nb4 K225 10 NA 2 0

m2 n8 nb4 K188 100 NA 156 0

m3 n2 nb2 K63 0 0 0 0

m3 n3 nb3 K106 0 0 0 0

m3 n3 nb3 K112 0 0 0 0

m3 n3 nb4 K134 0 NA 0 0

m3 n3 nb4 K165 50 NA 13 0

m3 n3 nb4 K90 0 NA 0 0

m3 n4 nb3 K127 100 NA 0 0

m3 n4 nb3 K145 0 0 0 0

m3 n4 nb3 K164 0 77 0 0

m3 n4 nb4 K79 0 NA 0 0

m3 n5 nb5 K148 0 NA 0 0

m3 n6 nb5 K236 0 NA 198 0

m4 n3 nb6 K169 0 323 0 0

m4 n4 nb4 K184 240 NA 12 0

m4 n4 nb5 K85 0 364 NA 0

m4 n4 nb6 K155 0 NA 0 0

m4 n5 nb4 K200 180 NA NA 0

m4 n5 nb5 K230 0 NA 2 0

m4 n5 nb7 K144 20 NA NA 0

m4 n5 nb7 K230 0 NA NA 0

m4 n6 nb5 K199 0 NA NA 0

m4 n6 nb6 K142 0 NA NA 0

m4 n6 nb6 K187 20 NA NA 0

m4 n6 nb6 K303 50 NA 626 0
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Test Instance Optimum ∑(αiEi + βiTi)
Model-NL Model-PL Model-A

Run time (sec.) Run time (sec.) Run time (sec.)

m4 n6 nb8 K433 190 NA NA 0

m4 n7 nb5 K137 0 NA NA 0

m4 n7 nb5 K261 60 NA NA 0

m5 n3 nb4 K167 70 NA 1 0

m5 n3 nb5 K169 0 NA NA 0

m5 n3 nb6 K101 0 NA 0 0

m5 n4 nb5 K146 0 NA NA 0

m6 n2 nb2 K62 0 NA 0 0

m6 n2 nb4 K180 190 NA 9 0

m6 n3 nb2 K105 140 31 0 0

m6 n4 nb5 K192 40 NA NA 0

m6 n5 nb5 K290 130 NA NA 0

m4 n2 nb5 K75 0 4 0 0

m4 n3 nb4 K189 90 NA NA 0

m4 n3 nb4 K56 0 10 NA 0

m4 n3 nb5 K95 0 53 0 0

m7 n2 nb6 K118 0 NA NA 0

m7 n2 nb6 K99 0 NA 0 0

m7 n5 nb7 K320 410 NA NA 0

m9 n2 nb8 K127 0 NA NA 0

m9 n2 nb8 K153 0 NA NA 0

m9 n2 nb9 K208 0 NA NA 0

m9 n2 nb9 K262 0 NA NA 0

m9 n2 nb9 K318 0 NA NA 0

m9 n3 nb10 K146 0 NA NA 0

m10 n10 nb14 K789 250 NA NA 2

m10 n11 nb13 K776 1020 NA NA 395

m10 n12 nb14 K795 200 NA NA 2

m10 n13 nb16 K937 510 NA NA 12

m10 n14 nb17 K996 550 NA NA 66

m10 n5 nb11 K607 910 NA NA 28

m10 n5 nb11 K623 220 NA NA 1

m7 n2 nb3 K128 0 19 0 0

m7 n2 nb3 K91 0 NA NA 0

m7 n2 nb4 K153 0 NA NA 0

m7 n2 nb5 K232 0 NA NA 0

m10 n3 nb10 K549 1320 NA NA 4

m10 n3 nb10 K564 1040 NA NA 10
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Test Instance Optimum ∑(αiEi + βiTi)
Model-NL Model-PL Model-A

Run time (sec.) Run time (sec.) Run time (sec.)

m10 n3 nb6 K335 110 NA NA 0

m10 n3 nb9 K485 70 NA NA 0

m10 n4 nb10 K556 300 NA NA 1

m10 n4 nb12 K695 890 NA NA 9

m10 n4 nb7 K382 130 NA NA 0

m10 n6 nb11 K620 1070 NA NA 61

m10 n6 nb9 K529 1170 NA NA 9

m10 n7 nb10 K571 820 NA NA 3

m10 n7 nb13 K726 300 NA NA 1

m10 n7 nb16 K911 2030 NA NA 1697

m10 n7 nb17 K974 1140 NA NA 512

m10 n8 nb9 K524 30 NA NA 0

m10 n9 nb10 K583 490 NA NA 7

*NA: not available since the corresponding instance couldn’t be solved within a given run time

Table A1. Results obtained from Model-NL, Model-PL, and Model-A on the test instances
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