
Journal of  Industrial Engineering and Management
JIEM, 2018 – 11(3): 528-534 – Online ISSN: 2013-0953 – Print ISSN: 2013-8423

https://doi.org/10.3926/jiem.2430

A Reply to Ponte et al (2016) Supply Chain Collaboration: 
Some Comments on the Nucleolus of  the Beer Game

David Mueller

Brandenburg University of  Technology, Cottbus-Senftenberg (Germany) 

david.mueller@b-tu.de 

Received: September 2017
Accepted: March 2018

Abstract:

Purpose: The aim of  the paper is to pick up the result of  a previously published paper in order to deepen
the discussion. We analyze the solution against the background of  some well-known concepts and we
introduce a newer one.  In doing so we would like to inspire the further discussion of  supply chain
collaboration.

Design/methodology/approach: Based on game theoretical knowledge we present and compare seven
properties of  fair profit sharing.

Findings: We show that the nucleolus is a core-solution, which does not fulfil aggregate monotonicity. In
contrast the Shapley value is an aggregate monotonic solution but does not belong to the core of  every
cooperative game. Moreover, we present the Lorenz dominance as an additional fairness criteria.

Originality/value: We discuss the very involved procedure of  establishing lexicographic orders of  excess
vectors for games with many players.

Keywords: beer  game,  cooperative  game  theory,  profit  allocation,  Shapley  value,  nucleolus,  core-selection,
aggregate monotonicity, Lorenz set 

1. Introduction 

Ponte, Fernández, Rosillo, Parreño and García (2016) suggested in this journal the use of  cooperative game theory
within supply chain management and demonstrated the application with the famous beer game. Embracing this
incorporation of  cooperative game theory in principle, some comments and enhancements are necessary.

2. Aims and Solution Concepts of  Cooperative Game Theory 
2.1. Fundamentals of  Game Theory 

Cooperative game theory is based on a range of  assumptions. For a detailed discussion we refer to the appropriate
literature (Maschler, Solan & Zamir, 2013, p. 659-662). A cooperative game Γ is the pair (N, v), where N = {1,2, …,
n} denotes the set of  players. Not only is the amount of  all the players N important here, but also all the subsets of
N. Such a subset  S  N is referred to as coalition  S, whereby  N itself  is described as a grand coalition. Each
coalition is marked by a value function v(S). The function v assigns a value to each subset S, which represents the
economic performance of  this coalition. 
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2.2. Properties of  a Game

To analyze a solution we have to introduce some classes of  games. Cooperation may be successful or not. To
concretize the term “success'', some desirable properties of  games may be defined. One goal is the generation of  a
result which is not worse than the results of  isolated actions. This is referred to as superadditivity. A game (N, v) is
superadditive if  v(R  S) ≥ v(R) + v(S) for all S, R  N with R  S = .

In the following we concentrate on situations in which for at least one coalition yields v(R  S) > v(R) + v(S). In
consequence, the grand coalition generates a better result than the sum of  all stand-alone coalitions. 

A game (N, v) is essential if  v(N) > ∑iN v({i}). By EN we denote the set of  all essential games with the set of
players  N.  In  the  following essential  games only  are  analyzed.  Superadditivity  describes  the  relationship  of
coalitions of  disjoint elements. A similar effect may be claimed for coalitions of  conjoint elements. This is called
convexity. A game (N, v) is convex (Maschler et al., 2013, p. 718) if  v(S {i}) – v(S) ≤ v(R  {i}) – v(R) for all S
 R  N\{i}. We will denote the set of  convex games by CN. 

2.3. Properties of  a Fair Solution

Looking at a game, the question arises of  how to share the jointly  generated result between the partners,
which is equivalent to an allocation of  the result. A function  f(v) which assigns to a game (N,  v) a, possible
empty, subset f(v) of is called a solution concept. The function f  distributes v(N ) and generates a payoff  vector

x = (x1, x2, x3, … xn) with x  . Such a function is referred to as allocation scheme. 

Definition 1: A solution f  is a single-valued solution if  | f  (v)| = 1 for every v. In this case, f  (v) is represented by
an element of , i.e. f  (v) = x. 

With the allocation of  the jointly generated result,  the problem of  fairness arises. Several properties of  a fair
solution have been identified in cooperative game theory in the last decades.  The most crucial properties are
(González-Díaz, García-Jurado & Fiestras-Janeiro, 2010, p. 226; Calleja, Rafels & Tijs, 2012; Mueller, 2018, p. 406-
408): 

• Efficiency: A single-valued solution f  is efficient if  ∑iN fi(v) = v(N).
• Individual rationality: A single-valued solution f  is individual rational if  fi(v) ≥ v({i}) iN.
• Equal-treatment-property: A single-valued solution f  satisfies equal-treatment property if  for the players i

and j, for which holds: v(S  {i}) = v(S  { j }) S  N with i, j  S yields fi(v) = fj(v).
• Dummy-player-property: A player i is called a dummy player if  v(S  {i}) = v(S) + v({i}) for all  S  N

with i  S. A single-valued solution f  satisfies the dummy-player-property if  for a dummy-player i yields:
fi(v) = v({i}).

• Additivity:  A  single-valued  solution  f  satisfies  additivity  if  for  any  two  games  v,  w follows
(v + w) = f (v) + f (w). 

• Aggregate monotonicity: A single-valued solution f  satisfies aggregate monotonicity if  for all games v, w
with v(N) > w(N) and v(S) = w(S) for all S  N follows: fi(v) ≥ fi(w) iN.

There are several other properties (Arin & Katsev, 2018, p. 305) which are not of  interest for further discussion.
The first two properties are summerized by defining an imputation.

Definition 2: The set of  imputations I(v) of  a game N(v) is defined by 

Only those imputations are of  interest that are not dominated by another imputation. The set of  non-dominated
imputations forms the core. 
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Definition 3: The Core(v) of  a game N(v) is defined by 

The core of  a game contains all solutions which are justified as fair and, therefore, are stable. It may be small, very
large, or empty. Without defining the property of  balancedness in detail we point out, that the core of  a balanced
game is never empty (Mueller, 2018, p. 405).

By  BN we denote the set of  all  balanced games with player set  N.  With this  class at hand we introduce the
core-selection-property.  A  solution  satisfies  core  selection  if  it  selects  a  core  element  for  any  game  with  a
non-empty core.

Core selection: A single-valued solution f  satisfies core selection if  f  (v)  Core(v) for all v  BN.

2.4. Characterization of  the Shapley-Value and the Nucleolus

In order to determine a fair share for player  i, the following thought is worth noting: each player receives a part
depending on that player's contributions to the theoretically possible, thus imaginable, coalitions. The contribution
of  the player consists in the increase in value caused by that player's participation in the coalition. The question that
has to be answered is which value the coalition has with player i and which it would have without player i. This
difference is called the marginal contribution. 

Definition 4: The marginal contribution mci of  player i to a coalition S is defined by: mci = v(S  {i}) – v(S).

Assuming all orders of  forming a coalition to have the same probability results in the weighted average of  the
marginal contributions of  a player, which is commonly described as the Shapley value (Shapley, 1953, p. 311).

Definition 5: The Shapley value of  a player φi in a game (N, v) is defined by

.

The Shapley-value (Mueller, 2018, p. 412):

• satisfies  efficiency,  dummy-player-property,  equal-treatment-property,  additivity  and  aggregate
monotonicity for all cooperative games,

• is individual rational for each v  EN,
• but fulfils core-selection only for each v  C N.

The nucleolus was introduced by Schmeidler (1969) and searches for a fair distribution by minimizing the maximal
dissatisfaction of  every player. To achieve this, the dissatisfaction of  a coalition with a concrete payoff  vector is
named in this connection as excess. It is necessary to calculate how unhappy a coalition would be with a payoff
vector.

Definition  6: The  excess  (unhappiness)  ex(S,  x)  of  a  coalition  S  with  a  payoff  vector  x is  derived  by
ex(S, x) = v(S) – ∑iS xi.

To derive the nucleolus, the payoff  vectors with the highest unhappiness for every player are sought in the next
step. To do so, these excess values are sorted in non-increasingly order (González-Díaz et al., 2010, p. 233; Mueller,
2016, p. 205). The excess of  a coalition Si with respect to a payoff  vector x is denoted by ex(Si, x) = θi(x).

Definition 7: The vector of  non-increasingly ordered excess values Θ is defined by Θ(x) = θ1(x); θ2(x); θ3(x); …;
θ2

n(x) with θi(x) ≥ θj(x) for 1 ≤ i ≤ j ≤ 2n.
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To compare two payoffs,  their  vectors of  non-increasingly  ordered excess values are compared based on the
lexicographic order. The vector which is lexicographically smaller than the other one is chosen as this vector offers
the minimum of  the maximal dissatisfaction for all players resulting from the two payoffs.

Definition 8: If  two imputations x and y are compared, then x is considered to be lexicographically smaller (LEX)

than y if  there exists an index m, with which results θk(x) = θk(y)  1 ≤ k ≤ m and θm(x) < θm(y).

With these explanations, the nucleolus of  a game can be defined as follows (González-Díaz et al., 2010, p. 232):

Definition 9: In a game (N, v) with I(v) ≠  the nucleolus nuc(v) is defined by: nuc(v) = {x  I(v)|Θ(x)LEXΘ(y)

 y  I(v)}.

We summarize that the nucleolus (Mueller, 2018, p. 414):

• satisfies  efficiency,  individual  rationality,  dummy-player-property,  equal-treatment-property  and  core
selection for each v  EN,

• does not fulfil additivity for each v  EN,
• is neither for each v  EN nor for each v  C|N|≥4 aggregate monotonic.

2.5. Analyzing the Beer Game

Table 1 contains the characteristic function of  the beer game.

S v (S ) S v (S ) S v (S ) S v (S )

{} 0 {4} 400 {2,3} 550 {1,2,4} 850

{1} 100 {1,2} 400 {2,4} 650 {1,3,4} 1,250

{2} 200 {1,3} 450 {3,4} 750 {2,3,4} 1,050

{3} 300 {1,4} 600 {1,2,3} 800 {1,2,3,4} 1,500

Table 1. Characteristic function of  the beer game. Ponte et al. (2016, p. 1027).

Using  the  notation  {1}  =  S,  {1,4}  =  R,  and  {i}=  2  shows  that  the  game  is  not  convex  as  we  get:
400 – 100  850 – 600. To guide the following procedure, we have to check if  the game has a non-empty core at all.
Establishing a system of  inequalities based on the characteristic function shows that this question can be answered
in the affirmative. So, the core is not empty and there exists a fair solution.

Computing the Shapley values for the players leads to the following results: φ1 = 262.50, φ2 = 254 , φ3 = 445  and

φ4 = 537,50. As pointed out, the non-convexity of  the game may cause that the Shapley-value does not belong to

the core. Analyzing coalition {1,3,4} shows that these players get a value of  1,245 . This is less than the value

which they generate (1,250). That’s why the Shapley value is not a core-allocation and we have to compute the
nucleolus.

Concerning the calculational effort of  the nucleolus, the very involved procedure of  establishing lexicographic
orders of  excess vectors for games with many players must be mentioned. There are some mistakes in computing
the nucleolus caused by overlooking the possibility that a linear program can have multiple solutions (Guajardo &
Jørnsten, 2015). Nevertheless, the nucleolus has been correctly computed in several publications (e. g. Fromen,
1997; Hallefjord, Helming & Jørnsten, 1995; Kimms & Çetiner, 2012).

The solution of  the beer-game is x = (225, 225, 410.5, 639.5) (Ponte et al., 2016, p. 1029). Checking Definition 3
indicates that this solution belongs to the non-empty core. That means it is a stable and fair solution. Unfortunately,
this result is not the nucleolus. To prove that we compute the resulting vector of  non-increasingly ordered excess
values Θ(x). We get: 
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Θ(x) = (0, 0, -25, –25, –50, –60.5, -85.5, –110.5, –125, -185.5, –214.5, -225, –239.5, 239.5, –264.5, –300).

We may reduce the maximal dissatisfaction by choosing the imputation y = (250, 225, 410.50, 614.5). This leads to
the vector of  non-increasingly ordered excess values Θ(y), with:

Θ(y) = (0, 0, –25, –25, –75, –85.5, –85.5, –110,5. –150, –189.5, –200, –210.5, –214.5, –239.5, –264.5, –275).

Comparing  these  vectors,  we  can  conclude  that  Θ(y)  LEX Θ(x),  what  indicates  that  x is  not  the  nucleolus.

Continuing the procedure, we get the nucleolus with nuc(v) = (291 , 225, 441 , 541 ). This generates the following

vector of  non-increasingly ordered excess values:

Θ(nuc) = (0, 0, –25, –25, –116 , –116 , –116 , –141 , –141 , –158 , –158 , –191 , –208 , –233 , –233 , –283 ).

This result differs significantly from the original value. But we have pointed out that both values belong to the non-
empty core. The problem is that the core of  the discussed beer game is large and contains a lot of  possible
allocations. So the question rises for a justification of  an allocation which is wider than the core argumentation.
Besides the presented nucleolus we want to present another possible argument – the Lorenz set.

2.6. Lorenz Dominance, the Lorenz Set, and the Lorenz Solution

Lorenz dominance was established to mirror the concentration of  wealth in a quantitative way. Starting point
of  the argumentation is a society of  n individuals in which the total income of  I is distributed by the allocation
x (Brânzei,  Dimitrov  &  Tijs,  2008,  p.  37).  The  vector   results  from  rearranging  x according  to
 = ( ).

The vector  Lorenz dominates the vector ŷ for any x, y    with 

if   for all p  {1, …, n – 1} with at least one strict inequality. In this case we denote x LOR y.

Lorenz dominance implies an allocation with less inequality.  Some concepts of  egalitarian solution have been
developed based on Lorenz dominance (cf. Arin, Kuipers & Vermeulen, 2008: p. 569-571). As the beer game is not
convex we present a  newer solution concept – the Lorenz set  (Hougaard,  Peleg & Thorlund-Petersen,  2001;
Hougaard & Smilgins, 2016).

Definition 10: The Lorenz set L(v) of  a game is defined by:

L(v) = {x  Core(v)| y  Core(v): y LOR x}.

The  Lorenz  set  consists  of  Lorenz  undominated  solutions,  which  belong  to  the  core.  We  can  state  that
L(v)  Core(v) and that L(v) ≠  if  Core(v) ≠  (Hougaard & Smilgins, 2016, p. 153).

The  Lorenz  set  coincides  with  equal-distribution-solution  if  this  solution  belongs  to  the  core.  If  the  equal
distribution does not belong to the non-empty core, then there exists a unique allocation  x  Core(v),  which
minimizes the Euclidian distance from the equal distribution to the core and x  L(v). This is the Lorenz-solution
based on least squares solution (Arin et al., 2008, p. 569). We define the Euclidean length  for an allocation x
with: .

Definition 11: The Lorenz solution LS(v) of  a balanced game is the allocation x  Core(v) for which 
for all y  Core(v).
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To analyze the nucleolus and the solution of  Ponte et al. we will rearrange the values in non-decreasing order what

leads to   = (225, 225, 410.5, 639.5) for the solution of  Ponte et al. and   = (225, 291 , 441 ,541 ) for the
nucleolus. It becomes apparent that the nucleolus Lorenz dominates the other solution. But the nucleolus is not a

member of  the Lorenz set. If  we have a look at the imputation x3 = (416 , 250, 416 , 416 ), we get the ordered

vector   = (250,  416 ,  416 ,  416 ).  This  vector  Lorenz dominates  all  the  other  vectors  and minimizes  the
Euclidean distance to the equal distribution. 

3. Summary 

Incorporating game theoretic solution concepts into supply chain collaboration is a welcome broadening for the
management of  this process. Interpreting such situations as a cooperative game may lead to some useful insights.
Beside the well-established concepts we have introduced a newer concept of  fairness. The original results were
reflected against the background of  the new solution. We have shown that the nucleolus is a useful concept for
balanced  games  which  are  not  convex.  The  Lorenz  solution  enriches  the  discussion  by  introducing  the
Lorenzean understanding of  fairness. In doing so we would like to inspire the further discussion of  supply chain
collaboration.
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