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Abstract:

Purpose: Disposal of  infectious waste remains one of  the most serious problems in the social

and environmental  domains  of  almost every  nation.  Selection of  new suitable locations and

finding the optimal set of  transport routes to transport infectious waste, namely location routing

problem  for  infectious  waste  disposal,  is  one  of  the  major  problems  in  hazardous  waste

management.

Design/methodology/approach: Case  study,  which  involves  forty  hospitals  and  three

candidate municipalities in sub-Northeastern Thailand, is divided into two phases.  The first

phase is to choose suitable municipalities using hybrid fuzzy goal programming model which

hybridizes  the  fuzzy  analytic  hierarchy  process  and fuzzy  goal  programming.  The  second

phase  is  to  find  the  optimal  routes  for  each  selected  municipality  using  hybrid  genetic

algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move,

Insertion-move and λ-interchange-move.

Findings: The results indicate that the hybrid fuzzy goal programming model can guide the

selection of  new suitable municipalities, and the hybrid genetic algorithm can provide the optimal

routes for a fleet of  vehicles effectively.
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Originality/value: The novelty of  the proposed methodologies, hybrid fuzzy goal programming

model, is the simultaneous combination of  criteria in order to choose new suitable locations, and

the  hybrid  genetic  algorithm can be used  to  determine  the  optimal  routes  which  provide  a

minimum number  of  vehicles  and  minimum transportation  cost  under  the  actual  situation,

efficiently. 

Keywords: multi-objective  facility  location  problem,  fuzzy  analytic  hierarchy  process;  fuzzy  goal

programming model, hybrid genetic algorithm, infectious waste disposal, multi-criteria decision making,

location routing problem

1. Introduction

Health-care waste management,  including collection,  transportation, treatment and disposal,  is  a very

important issue as far as the hospital environment and public is concerned. Improper waste management

will cause environmental pollution, unpleasant smells and growth and multiplication of  insects, rodents

and worms, and may lead to transmission of  diseases like typhoid, cholera, and hepatitis through injuries

from sharps contaminated with human blood (Abdulla,  Abu Qdais  & Rabi,  2008).  Infectious waste

material is one of  the hazardous wastes generated at health-care facilities. The collection, transportation,

treatment and disposal of  infectious waste can cause substantial harm to human health and safety or to

the environment when improperly handled (Hansakul, Pitaksanurat, Srisatit & Surit, 2010; Miyazaki &

Une, 2005). Selecting locations for the construction of  disposal facilities and finding the optimal set of

routes  for  infectious  waste  disposal  are  the  important  steps  for  pollution  control,  minimizing

environmental hazards and minimizing costs. Infectious waste management remains one of  the major

problems in the hazardous waste management in Thailand. The government is aware of  this problem,

and has set policies to manage this waste more effectively. Infectious waste management problems are

often  found,  such  as  illegal  dumping,  delayed  collection  and  delayed  disposal  because  the  existing

incinerators are insufficient to meet demands. Although, in the past, many public hospitals had their own

incinerators to dispose of  their infectious waste, because of  environmental concerns and protests by local

residents and hospital staff  members, these incinerators inside the hospitals have been shut down. Hence,

these  hospitals  eventually  require  services  from  outside  agencies.  However,  there  are  three  serious

problems which are often found from using the services of  outside agencies. First, the existing outside

agencies cannot dispose of  all existing infectious waste. Second, waste collection by outside agencies can

be delayed, which does not meet the requirements of  hospitals. Finally, transporting infectious waste from

public hospitals does not meet the regulatory requirements for safety, such as the illegal dumping and
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illegal disposal in inappropriate places. Hence the Thai government has set up a policy to encourage the

construction  of  new  disposal  facilities  at  areas  of  potential  municipalities,  in  order  to  address  the

abovementioned  problems  and  increase  the  efficiency  of  infectious  waste  disposal.  These  disposal

facilities  must  be  able  to  serve  nearby  hospitals  and  at  the  same  time  must  reduce  economic,

environmental, health, and social factors. In order to achieve maximum benefit, new disposal facilities

need to be planned along with suitable transport routes which provide the lowest transportation cost in

accordance with the due date time. Therefore, building new, suitable, disposal facilities and finding the

transport routes for infectious waste disposal more effectively is becoming an issue that is particularly

important to consider.

Community hospitals, with forty hospitals in sub-Northeastern Thailand, are one type of  public hospital

that has often found the abovementioned problems, because they are far from the existing disposal

facilities of  outside agencies. To address such problems, the government has set policies to locate the new

sites for infectious waste disposal at areas of  potential municipalities. Selecting new suitable sites in this

case is a complex problem which is difficult to address using any existing techniques alone, because there

are relevant factors which must be considered, including infrastructure, geological, environmental, social

and  cost  factors.  Certainly,  all  factors  must  be  considered  simultaneously  in  designing  an  optimal

transportation network. Finally, in order to achieve maximum benefit, we need to find suitable transport

routes which provide minimum transportation cost for each selected municipality.

From the literature reviewed and due to the complexity of  this issue, the solution approach for the

location routing problem (LRP) for infectious waste disposal consists of  the following stages: (i) suitable

municipalities are first selected by combining the fuzzy analytic hierarchy process (FAHP) and the fuzzy

goal programming model (FGP model), namely the hybrid fuzzy goal programming model (HFGP), and

(ii) the vehicle routing problem (VRP) based on the selected municipalities sequentially. Firstly, selecting

new, suitable municipalities for infectious waste disposal is an issue with many relevant factors (both

tangible and intangible) that need to be considered simultaneously. The facility location problem (FLP) in

this  case  is  one  of  the  multi-criteria  decision  making  problems  (MCDM  problems),  namely  the

multi-criteria/objective facility location problem (MCFLP/MOFLP). This problem is a complex problem

which is difficult to solve and interpret. Using only one tool may not be sufficient to solve this problem.

From the literature reviewed, FAHP is a powerful tool to solve multi-attribute decision making (MADM)

problems which are difficult to interpret,  and the FGP model is  a suitable tool to solve multi-fuzzy

objective problems. Hence, combining FAHP and FGP models should make a suitable model to solve

location selection in this case, in order to maximize total priority weight and total cost. Finally, after

obtaining the  new suitable  municipalities  from the HFGP model,  finding the  vehicle  trips  for each

selected municipality is one of  the vehicle routing problems (VRPs). The VRPs belong to an NP-Hard

problem in combinatorial optimization which is hard to solve by exact solution techniques. Hence, the
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Genetic algorithm (GA) is one of  various meta-heuristic algorithms which are often used to solve the

VRPs in the literature because it is a simple, flexible and powerful algorithm to solve NP-hard problems.

However, in order to increase the efficiency of  this algorithm, a new hybrid genetic algorithm (hybrid

GA) is developed to solve the VRP in this case study, instead of  the traditional GA. The major difference

between the traditional GA and the hybrid GA in this case is that three local searches (2-Opt-move,

Insertion-move and λ-interchange-move) are added to increase the efficiency of  the algorithm. This is the

major reason why hybrid GA is chosen as a suitable algorithm for solving the VRP in this paper.

The rest of  the paper is organized as follows. Sections 2, 3 and 4 are Literature review, Methodology and

Application of  the proposed methodology respectively, and finally, Section 5 is the Conclusion.

2. Literature Review

The facility location problem (FLP) has been studied for over one hundred years. Even though it is old,

applications of  these models to real world problems are getting more attractive. The FLP is a classic

problem, originating from Pierre de Fermat, Evagelistica Torricelli, and Battista Cavallieri (Drezner &

Hamacher, 2004). However, it is formally accepted by all scientists that Alfred Weber’s book is the most

important historic origin of  location science (Farahani, SteadieSeifi & Asgari, 2010). Traditional FLP is a

single objective/criterion problem, and objectives that are usually considered in location problems can be

different. These objectives can be as follows: minimizing the longest distance from the existing facilities,

minimizing the  total  setup cost  (Vasko & Wilson,  1986),  minimizing the  tour  total  cost  (Gendreau,

Laporte & Semet, 1997), minimizing the total cost (Nozick, 2001) and minimizing the number of  located

facilities (Toregas, Swain, ReVelle & Bergman, 1971). Although facility location theory has a long history

in single objective/criterion problems, it seems that since the origin of  multi-criteria decision making

theory (MCDM theory) in management sciences, this theory has been applied in the real word problems

of  location selection. The MCDM problems are divided into multi-attribute decision making (MADM)

and multi-objective  decision making (MODM) problems.  In the  MADM problem there  is  a  limited

number of  predetermined alternatives and a single goal/objective. MADM aims to select the best from

the predetermined alternatives. There are several common tools which are used to tackle the MADM

problems, such as simple additive weighting (SAW), hierarchical additive weighting, elimination and choice

expressing  reality  (ELECTRE),  technique  for  order  preference  by  similarity  to  an  ideal  solution

(TOPSIS),  analytical  hierarchy  process  (AHP)  and data  envelopment  analysis  (DEA)  (Kuo,  Yang &

Huang, 2008). One tool often suggested for solving MADM problems is AHP (Majumdar, Mangla &

Gupta, 2010), because it is a flexible and powerful tool for handling both qualitative and quantitative data

(Ünal & Güner, 2009). Since the traditional AHP still cannot reflect the human thinking style, the fuzzy
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analytic hierarchy process (FAHP) based on the fuzzy set theory of  Zadeh (1965a) was developed in

order  to overcome this  weak  point  for  solving  fuzzy problems (Kahraman,  Cebeci  & Ruan,  2004).

Nowadays this tool is widely used for solving MADM problems instead of  traditional AHP as shown in

literature (Shaverdi, Ramezani, Tahmasebi & Rostamy, 2016; Verma & Chaudhri, 2014; Wang, Lestari &

Tran, 2017). Since the MADM tools alone cannot handle the multi-existing environmental restrictions of

the MODM problems, such as selecting the locations for hazardous waste disposal, choosing the plants

for  nuclear  power  and  choosing  the  suitable  locations  for  infectious  waste  disposal,  a  group  of

researchers have taken MADM tools combined with mathematical techniques in order to simultaneously

deal  with  environmental  restrictions.  Goal  programming  (GP),  proposed  by  Charnes,  Cooper  and

Ferguson (1955), has been often combined with the MADM tools for solving MODM problems in the

literature (Badri, 1999; Blake & Carter, 2002; Fang & Li, 2015; Karsak, Sozer & Alptekin, 2003; Kengpol,

Tuammee & Tuominen, 2014). However, in practice, determining exactly the target value of  each goal is

difficult  for  decision  makers;  a  decision  maker  does  not  have  sufficient  information  related  to  the

different goals. To overcome the weakness, the fuzzy set theory initially introduced by Zadeh (1965b) has

been applied to MODM problems with imprecise data. Zimmermann (1976) and Zimmermann (1978)

proposed the fuzzy set theory to a linear programming (LP) problem with single and multiple objectives.

Narasimhan (1980) first proposed fuzzy set theory to GP, namely the fuzzy goal programming (FGP)

model,  to  specify  imprecise  aspiration  levels  of  each  fuzzy  goal.  This  research  first  considers  a

symmetrical  FGP model,  having  equal  important  weights  for  each  objective.  Later,  Hannan  (1981)

simplified the Narasimhan approach by using  the  interpolated membership functions,  and then this

model could be solved using the LP. Because various problems in the real world often have different

levels of  each objective, the solution approach is extended to the case of  asymmetrical FGP, having

unequal important weights for each goal. Although several asymmetrical FGP models (Lin, 2004; Tiwari,

Dharmar & Rao, 1987; Yaghoobi & Tamiz, 2007; Yücel & Güneri, 2011) have been proposed in the

literature, the weighted max-min model based on Lin (2004) was developed to solve asymmetrical FGP

problems effectively; this model can properly reflect the views of  experts, unlike other methods (Amid,

Ghodsypour & O’Brien, 2011). Therefore, in this paper, a weighted FGP model based on the max-min

FGP model of  Lin (2004) has been developed for solving the new MOFLP model for infectious waste

disposal in this case study, by taking the priority weights of  each candidate municipality into this weighted

max-min  FGP  model.  This  new  fuzzy  model  enables  decision  makers  not  only  to  consider  the

imprecision  of  information  but  also  to  take  the  limitations  of  available  resources  into  account  in

calculating new suitable municipalities for infectious waste disposal from each candidate municipality,

unlike the traditional FLPs. For this reason, selecting this fuzzy model will enhance the confidence of

decision makers for choosing the suitable locations for infectious waste disposal.
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The vehicle routing problem (VRP) consists of  determining a set of  vehicle trips, including customers,

a single depot and routes. Each vehicle trip starts and ends at the same depot with known location and

capacity, each customer with known location and demands is assigned to exactly one vehicle, and any

vehicle cannot carry over its capacity. Each vehicle may also be limited in the total distance (maximum

allowed distance). The objective is to determine a set of  vehicle routes for each vehicle that will often

minimize the total distance/transportation cost. The basic models of  VRP were proposed in papers of

Dantzig and Ramser (1959) and Clarke and Wright in (1964). Later, the VRP has been very extensively

studied in literature because of  its wide applicability and its importance to many real world situations

for reducing operational costs in transportation networks. The VRP is extended with variants for each

problem such as VRP with time windows (Anghinolfi, Paolucci & Tonelli, 2016), VRP with pick-up and

delivery (Tasan & Gen, 2012), VRP with backhauls (Brandão, 2006), VRP with multi-depot (Zhang,

Zhong, Liu & Wang, 2014) and VRP with multi-objective (Alexiou & Katsavounis, 2015). These VRP

models  are  known  to  be  the  NP-hard  problems  (Meryem  &  Abdelmadjid,  2015;  Narasimha,

Kivelevitch,  Sharma & Kumar,  2013),  and it  is  difficult  to solve large NP-hard problems by exact

solution techniques. Hence, when the problems become too large for exact solution techniques, recent

meta-heuristic techniques (Montané & Galvão, 2006; Baker & Ayechew, 2003; Goksal, Karaoglan &

Altiparmak, 2013; Liu, Xie, Augusto & Rodriguez, 2013; Nagy & Salhi, 2005) are often used for solving

various  VRP models.  However,  there  are  no  meta-heuristic  techniques  to  confirm  which  is  best,

depending on the variant of  each problem and individual preference. The genetic algorithm (GA) is

one  of  the  meta-heuristic  techniques  which  is  often  employed  to  solve  the  various  VRPs  in  the

literature (Baker & Ayechew, 2003; Potvin, Duhamel & Guertin, 1996) because this algorithm is easy to

understand, has great flexibility and is applicable to many kinds of  real world problems (Ho, Ho, Ji &

Lau, 2008). However, in order to improve the solution efficiency, nowadays the GA technique is often

integrated with other tools/techniques for dealing with various VRPs. The various new algorithms of

hybrid genetic  algorithm (hybrid GA) (Jeon, Leep & Shim, 2007;  Shi,  Boudouh & Grunder,  2017;

Vidal,  Crainic, Gendreau, Lahrichi & Rei,  2012) have been continuously developed for solving real

world VRPs, depending on the preferences and expertise of  each researcher. Hence, combining GA

with other tools/techniques, namely hybrid GA, is one of  the most popular techniques for solving

VRPs in literature, which is appropriate and adequate for solving the VRPs in this case study. This is

the major reason why hybrid GA was chosen as an appropriate technique in this paper.
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3. Methodology

The solution  approach for  this  case  consists  of  the  following  stages.  (i)  The first  phase  of  this

research is to select suitable municipalities for infectious waste disposal from candidate municipalities,

for which location selection in this case is a complex problem, a multi-objective facility problem. The

HFGP model is formed in the first phase by combining FAHP and FGP models in order to achieve

the lowest total cost and maximum total priority weight. (ii) After that, the VRP model and hybrid

GA are used in the second phase in order to achieve the lowest transportation cost/minimum total

distance  by  using  the  optimization  techniques  with  LINGO13  and  Visual  studio  2015  (C++)

respectively.

The details  of  selecting the new suitable municipalities  and finding the suitable transport  routes for

minimizing transportation cost/minimizing total distance are as follows:

• Define the most important criteria for selection of  locations for infectious waste disposal,

• Evaluate the global priority weights for each candidate municipality using FAHP,

• Formulate and compute a HFGP model, 

• Select the new suitable municipalities for infectious waste disposal.

• Build  and  compute  the  VRP  model  using  an  optimization  technique  (LINGO13)  and

meta-heuristic technique with Visual studio 2015 (hybrid GA with C++), and 

• Select the optimal routes for each selected municipality.

The first step is to define the most important criteria for selection of  locations for infectious waste

disposal, and determining candidate municipalities is considered by using legislation, regulations and

expertise. After that, these important criteria and candidate locations are decomposed into a multi-level

hierarchical structure. The second step is to evaluate the priority weights of  elements in the proposed

hierarchical structure using FAHP. The third step is to formulate and compute the HFGP model which

takes the weights of  candidate municipalities into this model for extension to consider needed criteria

for this problem. The fourth step is to choose the suitable municipalities from results of  the HFGP

model. Another step is to build and compute the VRP model using LINGO13 and hybrid GA, and

then the proposed hybrid GA is used to solve the VRP model for a large size problem in this case. The

final step is to choose the optimal routes for each selected municipality from results of  the proposed

hybrid GA.
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3.1. FAHP 

From the literature reviewed, FAHP is a flexible and powerful tool to solve MADM problems. Hence,

using FAHP should make a suitable approach to evaluate the global priority weights of  each candidate

municipality, in order to take these weights into a HFGP model in Section 3.2. In this paper, we calculated

the priorities weights of  elements in each level of  hierichy via the geometric means method of  Buckley

(1985) and Buckley, Feuring and Hayashi (2001); see also in similar papers of  Cebeci (2009) and Meixner

(2009).  In  this  paper,  the  fuzzy  arithmetic  operations  on  triangular  fuzzy  numbers  (TFNs)  can  be

expressed as follows:

Addition: F1  F2 = (l1 + l2, m1 + m2, u1 + u2) (1)

Multiplication: F1  F2 = (l1 · l2, m1 · m2 ·m2, u1 · u2) (2)

Division: F1 / F2 = (l1 /u2, m1 /m2, u1 /l2) (3)

Reciprocal: F1
–1 = (1/u1, 1/m1, 1/l1) (4)

where l1 and l2 are the least possible value; m1 and m2 are modal value and u1 and u2 are highest possible

value respectively.  F1 and  F2 are two TFNs; TFNs will be applied in order to compare a priority scale

between criteria/elements as shown in Table 1. 

TFNs Definition

(1,1,1) Equal importance 

(2,3,4) Moderate importance

(4,5,6) Strong importance

(6,7,8) Very strong importance

(8,9,9) Extreme importance

Intermediate values between the two adjacent judgments

Table 1. The 9 - point scale of  TFNs

The steps of  the FAHP are as follows.
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3.1.1. Construct the Hierarchy 

The relevant  decision factors  can be defined  by asking  questions  to experts  questions  about  which

criterion is more important with regard to the goal.  After that, these factors are decomposed into a

multi-level hierarchical structure, as shown in Figure 1. At level “0”, the goal is to select new suitable

municipalities for infectious waste disposal.  At level “1”, the criteria are C1,  C2,  C3,  at level “2”, the

sub-criteria are SC11, SC12, ..., C34, and at level “3”, the candidate municipalities are L1, L2 and L3.

Figure 1. Multi-level hierarchy for selecting locations for infectious waste disposal

3.1.2. Construct the Comparison Matrices of  Each Decision Maker

The comparison matrices of  each decision maker k can be constructed using TFNs in Table 1. After that,

integrating the comparison matrices from all experts using the fuzzy geometric mean method (Dong &

Cooper, 2016; Meixner, 2009; Wichapa & Khokhajaikiat, 2017) is as shown in Equation (5).

(5)

Where   is  a  aggregated  comparison  matrix  of  k decision  makers,  and   is  the

triangular fuzzy numbers of  the kth decision maker. 

3.1.3. Estimate Priority Weights of  Each Level

The priority weights of  each level will be estimate by the geometric means method of  Buckley (1985) and

Buckley et al. (2001) where: 

(6)
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And

(7)

The fuzzy priority weights have to be defuzzified, which can be converted to crisp priority weights using

Equation (8) (Meixner, 2009; Tsaur, Chang & Yen, 2002).

(8)

3.1.4. Check for Consistency Ratio (CR) Values 

1. Defuzzify aggregated comparison matrix and then multiply the crisp comparison matrix by the

crisp priority weight vector. 

2. Divide the weighted sum vector with criterion weight in step 1; average weighted sums (wi) will be

obtained for each row i for the calculation in this step.

3. Compute λmax by Equation (9).

(9)

4. Compute the consistency index (CI ) and CR by Equation (10).

CI = (λmax – n)/(n –1) and CR = CI/RI ≤ 0.10 (10)

A CR value of  0.10 or less is accepted as a good consistency measure. If  the value exceeds 0.10, it is

indicative of  inconsistent judgment, and it should be revised as shown in related papers of  researchers

(Cebeci, 2009; Meixner, 2009; Wichapa & Khokhajaikiat, 2017).

3.1.5. Compute the Final Priority Weights for Each Alternative

The priority weight of  each alternative is multiplied by the sub-criteria weights and aggregated to get local

priority weights with respect to each criterion. The local priority weights are then multiplied by the criteria

weights and aggregated to get global priority weights/location weights. The best alternative/location is

the maximum value of  the global priority weights, and the value of  a high location weight means that it is

better than a low location weight.
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3.2. HFGP Model

The multi-objective facility location problem model (MOFLP model) for infectious waste disposal is

formulated  to  select  multi-size  incinerators  and  multiple  municipalities.  In  addition,  this  model  is

formulated to respond to two objectives, minimize total cost and maximize total priority weight. Details

of  the mathematical model of  this problem are shown below.

Indices: 

i is the index of  each municipality, I = 1,2,..,m, (m = 3).

j is the index of  each hospital, j = 1,2,..,n, (n = 40).

k is the size of  each incinerator, k = 1,..,K, (K = 2). 

Parameters: 

fk is the facility cost (baht/week).

ok is the operating cost (baht/ week).

cij is the transportation cost between municipality i and hospital j (baht/week)

dtij is the real distance between municipality i and hospital j (km).

u is the unit transportation cost (baht/km). 

sk is the size of  each incinerator i.

dj is the demand of  hospital j (kg/week).

wi is the global priority weights of  municipality i.

DT is the maximum allowable distance. 

Decision variables: 

Xij is a binary decision variable; Xij = 1 if  the hospital j is served by the municipality I, Xij = 0 otherwise.

Yi is a non-negative integer decision variable; Yi = 1 if  municipality i is opened, Yi = 0 otherwise.

Zik is a binary decision variable; Zik = 1 if  the municipality i is opened by selecting incinerator k, Zik = 0

otherwise. 

Objective function:

(11)
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(12)

Subject to: 

(13)

(14)

(15)

(16)

dtij · Xij ≤ DT    i  (i = 1 ....m)    j  (i = 1 ....n) (17)

Xij  {0,1} (18)

Yi  {0,1} (19)

Zi,k  {0,1} (20)

In this paper, the first objective function of  the MOFLP model is to minimize total cost as shown in

Equation (11),  and the  second objective  function  is  to maximize  total  location weight  as  shown in

Equation (12).  Equation (13)  ensures that  the demand of  each hospital  j is  fulfilled.  Equation (14)

expresses that the service prepared by a site cannot exceed its capacity. Equation (15) expresses that the

sum of  the service provided by sites cannot exceed the sum of  its capacities and Equation (16), the

selected municipalities must use only k-size incinerators. Equation (17) expresses that each travel distance

from point i to point j cannot exceed the maximum acceptable distance. Equations (18), (19) and (20) are

binary.

In this case study, the target value associated with each goal could be fuzzy, and both goal 1 (G1) and goal

2 (G2) might not be completed simultaneously under the system constraints. In order to address this

problem, based on Zimmermann (1978), he expressed objective functions  Gj, j = 1, 2..q by fuzzy sets

whose membership functions increase linearly from 0 to 1. In this approach, the membership function of

objectives is formulated by separating each objective function into its maximum and minimum values.

The linear membership functions for minimization (Gk) and maximization goals (Gl) are given as follows:
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(21)

(22)

 and  are ideal solutions, minimum values of  goal Gk and maximum value of  goal Gl respectively.

 and Gl are non-ideal solutions, the maximum value of  goal  Gk and the minimum value of  goal  Gl

respectively. Linear membership functions μ(Gj(x)) are shown in Figure 2.

Figure 2. Objective function as fuzzy numbers of  min Gk and max Gl

The target of  two objectives of  the multi-objective facility location problem model for location selection

for infectious disposal is fuzzy values, and these objectives can be written for fuzzy goal programming

(FGP) as follows: 

(23)

(24)

where G1
0(G1

–) and G2
0(G2

+) are the aspiration levels of  objectives 1 and 2 respectively which DMs want

to reach. The symbol  in the constraints set denotes the fuzzified version of  ≤ and the symbol  in the

constraints set denotes the fuzzified version of  ≥. In order to solve this fuzzy problem, Based on the

FGP of  Lin (2004), the model is a powerful tool to solve weighted FGP which differs from the other

FGP models, the multi-objective facility location problem model in this case can be converted to the

HFGP model as follows: 
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Objective function: 

Max G = λ (25)

Subject to: 

wG1 λ ≤ (max G1 – G1)/(max G1 – min G1) (26)

wG2 λ ≤ (G2 – min G2)/(max G2 – min G2) (27)

(28)

(29)

where Equation (25) is an objective function as maximization of  the lambda value. Equations (26) and

(27) are fuzzy objective constraints. Equation (28) gives system constraints, which refers to Equations

(13)-(20) of  the MOFLP model. In Equation (29),  wGi are priority weights of  each goal according to

experts’ opinions. The optimal solution of  the HFGP model can be solved by LINGO 13.

3.3. VRP Model for Infectious Waste Disposal 

After  obtaining  the  suitable  municipalities  from  computing  the  HFGP  model  in  Section  3.1,  the

municipalities that have been selected as disposal centers for infectious waste disposal must be assigned

the best routes to achieve the lowest total distance. Details of  the VRP model are as follows.

Indices: 

The VRP model for infectious waste disposal may be defined as the following graph theoretic problem.

Let G = (N, A) be a complete graph where N = {1, 2, 3, …, n} is a set of  hospitals and municipality. A is

the arc set, pair of  nodes (i,  j).  N=2, 3, 4, …,  n is  a set of  hospitals, whereas  N  = 1 is a selected

municipality/a single depot. K is a set of  identical vehicles, which is available at the municipality. 

Parameters:

dtij is actual distance from node i to j (km) that is symmetrical (dtij = dtji)

K is a set of  identical vehicles, K = {1, 2, 3, …, k}. 
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N is a set of  hospitals and municipalities, N = {1, 2, 3, ..., n}. 

qk is the capacity of  each vehicle k (kg).

dj is the amount of  waste collected from hospital j (kg).

tij is the travel time from node i to j (min.) that is symmetrical (tij = tji).

D is the maximum permitted travel time per vehicle (min.). Each vehicle travels from node  i to  j at a

speed of  60 kilometers per hour (tij = dtij). 

Decision variables:

Xijk =1, if  vehicle k drives from hospital i to j, Xijk = 0, otherwise.

Zk =1, if  vehicle k is used to service hospitals, Zk = 0 otherwise. 

Objective function:

(30)

Constraints:

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Xijk  {0, 1}       i  N,  j  N,  k  K (39)

Zk  {0, 1} (40)

Yi – Yj + N · Xijk ≤ N – 1    i = 2, 3, 4, …,n; j  = 2, 3, 4, …,n; i  j;  k  K (41)

The objective is to minimize the total distance, as shown in Equation (30). Equation (31) guarantees that

the number of  arcs from node i and node j does not exceed n nodes. Equation (32) and Equation (33)

guarantee  that  a  vehicle  must  start  at  a  selected  municipality  to  hospitals  only  once.  Equation (34)

guarantees that  if  a vehicle  visits  a  hospital  j,  it  also leaves  that  hospital  j.  Equations (35)  and (36)

guarantee that all hospitals are visited only once. Equation (37) guarantees that the amount of  infectious

waste of  each hospital will be fulfilled by vehicles k but does not exceed the capacity of  the vehicle itself.

Equation (38) ensures that every vehicle k cannot travel more than the tour length restriction. Equation

(39)  and  Equation  (40)  guarantee  the  decision  variables  xijk and  zk to  be  binary  decision  variables.

Equation (41) guarantees that there will be no sub tours.

In this case study, hybrid GA will be used to solve the VRP model for infectious waste disposal in this

case as shown in the next section. 

3.4. Hybrid GA 

Genetic algorithms (GA), which were firstly proposed by Holland (1992), are very easy to understand,

have great flexibility and are applicable to many kinds of  actual problems (Ho et al.,  2008). GA is a

stochastic and parallel search technique that imitates the principles of  evolution and natural selection by

using genetic operators (Li, 2011). The process of  traditional GA usually starts with a randomly generated

population of  n chromosomes, called an initial population. According to the nature of  VRPs, different

positions in each chromosome are often encoded as numbers, and these positions are randomly changed

within a range during evolution. The simplest form of  GA involves three operators: selection, crossover

and mutation.  After  obtaining population  of  size  p,  parents  are  randomly chosen from the  current

population for reproduction, on the basis of  a value of  probability distribution. Any chromosomes with

fitter values (higher values of  fitness function) are given more opportunities to reproduce by crossover

and mutation. After the reproductive process, some parents and some offspring will be chosen to be the

new generation in accordance with their fitness values, and by rejecting others to maintain the size of  the

population constant. After the number of  generations is predetermined, the algorithm converges to the

best chromosome, which is expected to be the best solution of  the problem. GA performance depends
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on  relevant  parameters  such  as  probability  of  crossover,  probability  of  mutation,  population  size,

repetition number, and algorithm. 

A hybrid genetic algorithm (Hybrid GA), which integrates GA and three local searches (insertion-move,

2-opt-move and λ-interchange-move), was proposed to solve the VRP in this case. The first objective of

the hybrid GA is to minimize the number of  vehicles (NV) and the second objective is to minimize the

total distance (TD), under the limits of  existing resources. The algorithm is shown in Figure 3.

Figure 3. Flow chart of  solution of  VRP using hybrid GA
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Figure 3 can be described as follows. Let n be the size of  the population at each generation. An initial

population will be randomly generated until the size is equal to  n. After that, the chromosomes in the

initial population are sorted by fitness, and then a pair of  chromosomes is randomly chosen for mating

using the ranking-based selection of  Correa et al. (Correa, Steiner, Freitas & Carnieri, 2001), as shown in

Equation (42).

(42)

OS is an ordered list of  solutions sorted by fitness.

P is the position in the OS to be selected as the chromosome Sp. 

rnd (M) is a random distribution in the range 0 to M-1.

After that, with crossover probability (pc), exchange parts of  a pair of  parents and create two offspring as

shown in Figure 4.

Figure 4. Crossover procedure

• Randomize indices cut1 and cut2, where cut1 < cut2 

• Step 1: Copy hospitals in parent-1 (P1) from indices cut1 to cut2 to child-2 (C2) starting at index 0.

Also hospitals in parent-2 (P2) from indices cut1 to cut2 to child-1 (C1) starting at index 0.

• Step 2: mask hospitals in P1 that already are contained in C1 and also mask hospitals in P2 that

already are contained in C2.

• Step 3: fill hospitals that unmask in C1 to P1 and C2 to P2.

In the mutation procedure, with the mutation probability pm, hospitals in the two offspring chromosomes

will be randomly swapped as shown in Figure 5A. The mutation procedure is repeated until the size of

the new population is equal to 100. After that, offspring and the old population (current population) will
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be combined and n chromosomes picked to be the new population using fitness. If  a new chromosome is

better than any chromosome in the current population, the new chromosome will be included and the

worst one in the current population will be removed. Finally, the chromosomes in the new population will

be improved by three local searches, insertion-move, 2-opt and λ-interexchange, as shown in Figure 5B,

Figure 5C and Figure 5D respectively.

Figure 5. Mutation and three local searches (Insertion, 2-Opt and λ-interchange)

The selection is still a rank-based selection and selects chromosomes n times for each local search. This

procedure is repeated until the stopping criteria are satisfied. Implementation and computational results

of  the hybrid GA are reported in the next section.

4. Application of  the Proposed Methodology

In Section 3, the proposed methodology was used to identify the suitable locations and transport routes

for  a  case  study  on  the  selection  of  a  transportation  network  for  infectious  waste  disposal  in

sub-Northeastern Thailand. There are three candidate municipalities, including Nong Bua Lam Phu Town

Municipality (NLTM), Nong Khai Town Municipality (NKTM), and Loei Town Municipality (LTM).

These candidates were extracted from legislation,  regulation and expertise by experts.  Therefore, the

suitable municipalities were chosen from three candidate municipalities to serve the forty community

hospitals, namely H1, H2, ..., H40 (see details in Figure 6), given the resource restrictions and preferences.

The steps of  the calculation are shown in Sections 4.1, 4.2 and 4.3.

-871-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2353

Figure 6. The transportation network of  the candidate municipalities and hospitals

4.1. Estimate the Priority Weights of  Municipalities Using FAHP

This section presents the steps to determine the priority weights of  elements at each level.  Firstly, a

multi-level hierarchical structure was constructed by consulting six decision makers, who have worked in

the field for more than fifteen years, and stakeholders (see Figure 1). In the hierarchy, level 0 was the goal,

the  new  suitable  municipalities  for  infectious  waste  disposal,  and  level  1  was  three  main  criteria,

infrastructure (C1), geological (C2) and environmental & social (C3). Level 2 was ten sub-criteria, public

utilities (SC11), traffic (SC12), area size (SC21), features of  area (SC22), flooding in the past (SC23), density of

population  (SC24),  municipal  administrators  (SC31),  ability  of  municipalities  (SC32),  distance  from

communities  (SC33)  and  distance  from  public  water  resources  (SC34).  Level  3  had  three  candidate

municipalities,  L1  = NLTM, L2  = NKTM and L3  = LTM. Secondly, fuzzy comparison matrices were

constructed from the six decision makers who have worked in the field for more than fifteen years using

the 9- scale of  FAHP (Table1), as shown in Table 2. Third, the fuzzy comparison matrices of  the decision

makers were aggregated into a FAHP combined matrix ( ) using Equation (5), and the priority weights

of  level 1 were estimated using Equations (6-10), shown in Table 3. In level 2 and level 3 were estimated

in the same way as the first level 1. Finally, the global priority weights were computed, as shown in Table

4.
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Goal C1 C2 C3

C1

(1.00, 1.00, 1.00), (1.00, 1.00, 1.00),
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00)
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00)

(0.25, 0.33, 0.50), (0.17, 0.20, 0.25),
(1.00, 1.00, 1.00), (2.00, 3.00, 4.00),
(0.25, 0.33, 0.50), (1.00, 1.00, 1.00)

(0.11, 0.11, 0.13), (0.11, 0.11, 0.13),
(0.13, 0.14, 0.17), (0.13, 0.14, 0.17),
(0.11, 0.11, 0.13), (0.17, 0.20, 0.25)

C2

(2.00, 3.00, 4.00), (4.00, 5.00, 6.00),
(1.00, 1.00, 1.00), (0.25, 0.33, 0.50),
(2.00, 3.00, 4.00), (1.00, 1.00, 1.00)

(1.00, 1.00, 1.00), (1.00, 1.00, 1.00),
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00),
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00)

(0.13, 0.14, 0.17), (0.13, 0.14, 0.17),
(0.13, 0.14, 0.17), (0.13, 0.14, 0.17),
(0.13, 0.14, 0.17), (0.17, 0.20, 0.25)

C3

(8.00, 9.00, 9.00), (8.00, 9.00, 9.00),
(6.00, 7.00, 8.00), (6.00, 7.00, 8.00),
(8.00, 9.00, 9.00), (4.00, 5.00, 6.00)

(6.00, 7.00, 8.00), (6.00, 7.00, 8.00),
(6.00, 7.00, 8.00), (6.00, 7.00, 8.00),
(6.00, 7.00, 8.00), (4.00, 5.00, 6.00)

(1.00, 1.00, 1.00), (1.00, 1.00, 1.00),
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00),
(1.00, 1.00, 1.00), (1.00, 1.00, 1.00)

Table 2. The comparison matrix of  criteria with respect to goal by the six experts

Combined
comparison matrix 

C1 C2 C3 wi CR

C1 (1, 1, 1) (0.52, 0.64, 0.79) (0.12, 0.13, 0.15) (0.08, 0.09, 0.12) 0.10

0.03C2 (1.26, 1.57, 1.91) (1, 1, 1) (0.13, 0.15, 0.18) (0.11, 0.13, 0.17) 0.13

C3 (6.48, 7.50, 8.09) (5.61, 6.62, 7.63) (1, 1, 1) (0.65, 0.79, 0.95) 0.77

Table 3. The combined comparison matrix of  six decision makers

Candidate municipalities Global priority weights (wi)

Nongbua Lamphu Town Municipality (NLTM) 0.55

Nong Khai Town Municipality (NKTM) 0.21

Loei Town Municipality (LTM) 0.24

Table 4. Global priority weights of  candidate municipalities

4.2. Compute the Suitable Locations Using HFGP Model

The wi of  each candidate municipality are found based on Section 4.1 to be w1 (global priority weight of

NLTM)  =  0.55,  w2 (global  priority  weight  of  NKTM)  =  0.21  and  w3 (global  priority  weight  of

LTM) = 0.24. In order to solve the MOFLP in this case, set wG1>wG2 according to experts’ opinions; the

sensitivity analysis of  the HFGP was also performed for different levels of  objective weights. The actual

distance matrix and demands of  three candidate municipalities and forty hospitals are shown in Table 5 as

dj, dtij. The values of  u and DT are 4.3 baht/km and 240 km respectively. In Table 6, fk (k = 1 and k = 2)

are 13,248 and 24,395 baht per week, and  ok are 69,090 and 130,508 baht per week respectively. The

values of  sk are about 3,000 and 6,000 kg per week. The data set for membership functions of  each goal

in Equation 26 and Equation 27 need to be evaluated first, the max-min total cost (Z1) and max-min total

weight of  opened municipalities (Z2) are shown in Table 7. 
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ID Hospital name NLTM
(km)

NKTM
(km)

LTM
(km)

Amount of  infectious waste
(kg/week)

H1 Nahaeo 190.00 275.00 128.00 80.50

H2 Pakchom 187.00 162.00 71.00 178.50

H3 Dansai 168.00 253.00 106.00 350.00

H4 Erawan 55.70 140.00 61.90 119.00

H5 Tha Li 156.00 240.00 122.00 147.00

H6 Phurua 132.00 216.00 69.30 56.00

H7 Na Duang 65.00 150.00 52.30 91.00

H8 Chiang Khan 148.00 202.00 31.20 105.00

H9 Wang Saphung 78.40 163.00 44.30 210.00

H10 Phu Kradung 94.40 168.00 96.40 108.50

H11 Phu Luang 102.00 187.00 70.00 112.00

H12 Pha Khao 78.60 148.00 98.50 105.00

H13 Sangkhom 142.00 99.00 134.00 112.00

H14 Phon Phisai 154.00 75.40 264.00 217.00

H15 Si Chiang Mai 103.00 60.20 173.00 105.00

H16 Sakhrai 89.60 6.00 200.00 49.00

H17 Tha Bo 102.00 44.00 192.00 217.00

H18 Suwannakhuha 53.00 102.00 145.00 133.00

H19 Si Bun Rueang 40.70 114.00 154.00 185.50

H20 Na Klang 26.80 111.00 90.70 147.00

H21 Na Wang 43.90 125.00 76.40 91.00

H22 Non Sang 55.60 129.00 169.00 105.00

H23 Kumphawapi 95.70 82.00 209.00 80.50

H24 Si That 120.00 106.00 233.00 175.00

H25 Chai Wan 109.00 89.50 222.00 350.00

H26 Wang Sam Mo 147.00 134.00 261.00 189.00

H27 Phibun Rak 94.00 47.50 207.00 217.00

H28 Nong Han 90.20 70.80 204.00 59.50

H29 Kut Chap 52.10 81.80 166.00 91.00

H30 Nong Wua So 27.00 61.70 140.00 108.50

H31 Ban Dung 138.00 71.50 251.00 210.00

H32 Sang Khom 124.00 49.00 237.00 108.50

H33 Non Sa-at 107.00 93.30 220.00 112.00

H34 Nam Som 80.90 95.70 83.90 105.00

H35 Phen 96.10 21.20 209.00 115.50

H36 Nong Saeng 81.60 81.20 195.00 217.00

H37 Thung Fon 121.00 101.00 231.00 105.00

H38 Ban Phue 95.70 82.00 209.00 49.00

H39 Na Yung 120.00 106.00 233.00 217.00

H40 Huai Koeng 109.00 89.50 222.00 42.00

 Total 4,074.00 4,633.30 6,281.90 5,575.5

Table 5. The resource data for the HFGP model
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Details of  the cost (baht/week)

Size of  incinerator 
(kg/week)

3,000 6,000

1. Facility cost
1.1 Incinerator
1.2 Landfill
1.3 Storage
1.4 Infectious waste tank
1.5 Cleaning system
1.6 Emergency generator

1,918
479.5
6,902

1,725.5
115.5
2,107

3,836
959

13,811
3,451

231
2,107

Total facility cost (baht/day) 13,248 24,395

2. Operating cost per day
2.1 Labor cost
2.2 Maintenance costs (6% of  incinerator)
2.3 Cost of  measuring air pollution
2.4 Cost of  IWD (3.3 Baht/kg )

51,026.5
1,151.5

7,672
9,240

102,053
2,303
7,672

18,480

Total operating cost (baht/day) 69,090 130,508

Table 6. Details of  the cost

µ = 0 µ = 1 µ = 0

Min. total cost, G1 – 172,421.2 495,848.3

Max. total weight, G2 0.45 1 –

Table 7. Data set for membership functions

These relevant parameters were taken to place into the HFGP model (Equation 25 to 29). Afterward, the

LINGO 13 software was applied, and the optimal solutions for different objective weights were as shown

in Table 8.

WG1 = 0.80, 
WG2 = 0.20

WG1 = 0.70,
WG2 = 0.30

WG1 = 0.60,
WG2 = 0.40

WG1 = 0.50,
WG2 = 0.50

NLTM
NKTM
LTM

Selected (Size = 3,000)
Selected (Size = 3,000)

Not selected

Selected (Size = 3,000)
Selected (Size = 3,000)

Not selected 

Selected (Size = 3,000)
Not selected 

Selected (Size = 3,000)

Selected (Size = 3,000)
Selected (Size = 3,000)
Selected (Size = 3,000)

Total cost
(Baht/week) 178,950.30 178,950.30 182,361.0 259,105.2

Total priority weights 0.76 0.76 0.79 1.00

Table 8. Sensitivity analysis for different values of  objective’s weights

As seen in Table 8, the sensitivity analysis of  the HFGP model was performed for different levels of

objective weights. The sensitivity analysis is conducted to evaluate the influence of  objective weights on the

MOFLP. It can be seen that by increasing wG1 and decreasing wG2 at the same time, the total cost goal has a

decreasing trend. On the other hand, it can also be seen that by decreasing wG1 and increasing wG2 at the
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same time, the number of  locations and total cost have an increasing trend. Finally, the optimal solutions from

the sensitivity analysis for different values of  objective weights were offered to the four decision makers. The

four decision makers made the decision to choose the NLTM and NKTM as suitable municipalities for

infectious waste disposal, with the following reasons: “Although total priority weight of  selected municipalities

is not equal to the maximum predefined value (Target = 1), the total cost is a minimum total cost. If  we

choose the others, the total cost will be very high, which is not according to experts’ opinions (wG1 > wG2)”

The  results  show  that  the  suitable  candidate  municipalities  were  NLTM  and  NKTM  (selected  by

wG1 = 0.70 and  wG2 = 0.30). It can decrease the total cost by selection of  NLTM and LTM by about

3,410.7 baht/week. Although the weight of  NKTM was slightly lower than the weight of  LTM, by about

0.03, the total cost objective was achieved using the new proposed model. Details of  optimal solution of

HFGP model are shown in Table 9.

Opened location Size of  location
(kg/week)

Hospitals

NLTM 3,000 H1, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12,
H18,H19, H20, H21, H22, H29, H30, H34, H36

NKTM 3,000 H2, H13, H14, H15, H16, H17, H23, H24, H25, H26, H27,
H28, H31, H32, H33, H35, H37, H38, H39, H40

Total cost = 178,950.30 baht/week Total priority weight = 0.76

Table 9. Optimal solution of  HFGP model

Therefore, this model can lead to the selection of  new suitable locations for infectious waste disposal by

considering both tangible factors and intangible factors simultaneously. In addition, the decision makers

believed that our work can provide essential support for decision makers in the assessment of  infectious

waste disposal problems, in this case study and other areas of  Thailand and, they also believe that the

proposed methodology can be applied to other complex problems.

4.3. Find the Routes for Each Selected Municipality Using Hybrid GA

Based on the actual situation of  this case study, the hospitals were determined to be served by each

selected municipality (NLTM and NKTM) once a week, and any special vehicle used to pick up the

infectious waste should be of  a suitable size, appropriate with the design of  the transport routes and

mobility of  the service. Hence, there are three sizes of  special vehicles, capacity of  1 ton, capacity of  2

ton and capacity of  3 ton, which are often used and recommended for infectious waste collection in

Thailand. The prices of  these special vehicles are about 2 million baht, 3 million baht and 4 million baht
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respectively. Actual distance matrices (dtij) and dj of  each selected municipality are shown in actual distance

matrices  of  NLTM and  NLTM,  see  details  in  Appendix  A.  The  experiment  was  performed  on  a

computer with the following characteristics: An Intel® Core™ i5-4210U processor Dual-core operating

at 1.70 GHz with 8 GB of  RAM, and Windows 8.1 operating system. The capacity of  all vehicles (qk) is

equal to 1, 3 and 6 ton respectively. Each vehicle travels from node  i to  j at a constant speed of  60

kilometers per hour so the maximum permitted travel  time per vehicle (D)  is  equal  to 480 minutes

according to the experts’ opinions. The input parameters for the experimentation in hybrid GA were

made with an initial population of  100 individuals and 10 generations, and hybrid GA was tested to solve

the actual problems using Visual Studio 2015 (C++). The probability for genetic operator in hybrid GA

were set to be pc = 0.8 and pm = 0.3. The obtained results of  each vehicle capacity are compared with

computational results using LINGO13 based on the VRP model in Section 4.3, as shown in Table 10. 

From Problem 1.1 (N = 5), Problem 1.2 (N = 10), Problem 1.3 (N=15) and Problem 1.4 (N = 20),

NLTM has been selected as a disposal center which needs to service 4 hospitals (H1, H3, H4, H5), 9

hospitals (H1, H3, H4, H5, H6, H7, H8, H9, H10), 14 hospitals (H1, H3, H4, H5, H6, H7, H8, H9, H10,

H11, H12, H18, H19) and 20 hospitals (H1, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H18, H19,

H20, H21, H22, H29, H30, H34, H36) respectively. From Problem 2.1 (N = 5), Problem 2.2 (N = 10),

Problem 2.3 (N = 15) and Problem 2.4 (N = 20), NKTM has been selected as a disposal center which

needs to service 4 hospitals (H2, H13, H14, H15), 9 hospitals (H2, H13, H14, H15, H16, H17, H23, H24,

H25), 14 hospitals (H2, H13, H14, H15, H16, H17, H23, H24, H25, H26, H27, H28, H31, H32) and 20

hospitals (H2, H13, H14, H15, H16, H17, H23, H24, H25, H26, H27, H28, H31, H32, H33, H35,H37,

H38, H39,H40) respectively. 

As seen in Tables 10, the computational results show that the optimal solutions for small size problem

(N = 5 and N = 10) were achieved using LINGO13 and hybrid GA for each vehicle capacity. In addition,

the computational results of  each vehicle capacity using hybrid GA for the problem 1.3 achieved best

known solutions  at  computational  times of  48 hrs.  using LINGO13.  Thus,  hybrid GA has enough

computational power to be used in this research. Practically, the working days of  the government sector

in Thailand will run from Monday to Friday, and the number of  vehicles will try to use the minimum

requirement. Each selected vehicle can only serve one route per day. However, one vehicle can serve a

maximum of  5 routes/ 5 days (Monday, Tuesday, Wednesday, Thursday and Friday). If  we choose a

vehicle size of  1 ton, three routes of  each selected municipality will be served by one vehicle. However,

for the other sizes, two routes of  each selected municipality will be served by one vehicle. In this case

study, only one vehicle can be used to be the minimum required number of  vehicles (NR ≤ 5). The size

of  the vehicle is considered based on the vehicle and the transport costs. Details of  costs for choosing

each vehicle are shown in Table 11, and then details of  best computational results for the actual problems

are shown in Table 12.
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Vehicle
capacity Data set

Number of
hospitals

LINGO13 Hybrid GA

Number of
vehicles/routes

(NV/NR)

Total
distance

(TD)

Computatio
nal times

(hh, mm, ss)

Number of
vehicles/routes

(NV/NR)

Total
distance

(TD)
Deviation

1 ton

Prob. 1.1 4 hospitals. 1 405.6 00:00:01 1 405.6 0%

Prob. 2.1 4 hospitals. 1 427.4 00:00:01 1 427.4 0%

Prob. 1.2 9 hospitals. 2 703.4 00:16:21 2 703.4 0%

Prob. 2.2 9 hospitals. 2 672.5 00:01:35 2 672.5 0%

Prob. 1.3 14 hospitals. 2 832.3 48:00:00 2 832.3 0%

Prob. 2.3 14 hospitals. 3 842.3 48:00:00 3 842.3 0%

Prob. 1.4 Actual case
for NLTM

3 1,149.5 48:00:00 3 1,149.5 0%

Prob. 2.4 Actual case
for NKTM 3 987.6* 48:00:00 3 987.6 0%

2 tons

Prob. 1.1 4 hospitals. 1 405.6 00:00:01 1 405.6 0%

Prob. 2.1 4 hospitals. 1 427.4 00:00:01 1 427.4 0%

Prob. 1.2 9 hospitals. 2 703.4 00:37:27 2 703.4 0%

Prob. 2.2 9 hospitals. 2 672.5 00:01:41 2 672.5 0%

Prob. 1.3 14 hospitals. 2 831.7 48:00:00 2 831.7 0%

Prob. 2.3 14 hospitals. 2 752.9 48:00:00 2 752.9 0%

Prob. 1.4 Actual case
for NLTM

3 1,129.8 48:00:00 3 1,129.8 0%

Prob. 2.4 Actual case
for NKTM 2 880.8 4800:00 2 880.8 0%

3 tons

Prob. 1.1 4 hospitals. 1 405.6 00:00:01 1 405.6 0%

Prob. 2.1 4 hospitals. 1 427.4 00:00:01 1 427.4 0%

Prob. 1.2 9 hospitals. 2 703.4 00:37:27 2 703.4 0%

Prob. 2.2 9 hospitals. 2 672.5 00:01:41 2 672.5 0%

Prob. 1.3 14 hospitals. 2 831.7 48:00:00 2 831.7 0%

Prob. 2.3 14 hospitals. 2 752.9 48:00:00 2 752.9 0%

Prob. 1.4 Actual case
for NLTM

3 1,129.8 48:00:00 3 1,129.8 0%

Prob. 2.4 Actual case
for NKTM 2 880.8 4800:00 2 880.8 0%

Table 10. Comparison of  solutions using LINGO13 and hybrid GA

Municipality
name

Vehicle size Vehicle cost 
(Baht/week)

Transportation cost
(Baht/week)

Total cost
(Baht/week)

NLTM

1 ton 3,835.62 (NV = 1) 1,149.5 × 4.3 = 4,942.85 8,778*

2 ton 5,753.43 (NV = 1) 1,129.8 × 4.3 = 4,858.14 10,612

3 ton 7,671.23 (NV = 1) 1,129.8 × 4.3 = 4,858.14 12,529

NKTM

1 ton 3,835.62 (NV = 1) 987.6 × 4.3 = 4,246.68 8,082*

2 ton 5,753.43 (NV = 1) 880.8 × 4.3 = 3,787.44 9,541

3 ton 7,671.23 (NV = 1) 880.8 × 4.3 = 3,787.44 11,459

Table 11. Details of  costs for choosing each vehicle size
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Disposal
centers

Transport routes 
(using vehicle capacity of  1 ton)

Distance
(km)

Amount of  infectious waste 
(kg)

NLTM

Route 1 for Monday: 
NLTM, H22, H19, H12, H10, H11, H9, H21, NLTM 331.1 917.0

Route 2 for Wednesday: 
NLTM, H7, H8, H5, H1, H3, H6, H4, NLTM

476.4 948.5

Route 3 for Friday: 
NLTM, H20, H34, H18, H29, H36, H30, NLTM 342.0 801.5

Total 1,149.5 2,667.0

NKTM

Route 1 for Monday: 
NKTM, H35, H27, H28, H26, H24, H23, H40, H33, NKTM

337.6 990.5

Route 2 for Wednesday: 
NKTM, H38, H39, H2, H13, H15, H17, H16, NKTM 365.1 927.5

Route 3 for Friday: 
NKTM, H25, H37, H31, H32, H14, NKTM

284.9 990.5

Total 987.6 2,908.5

Table 12. Details of  computational results for the actual problem using hybrid GA

As seen in Tables 11 and 12, in order to minimize the number of  vehicles and transportation costs

according to the decision makers’ opinions, a capacity of  1 ton was selected as a suitable size for NLTM

and NKTM because it provides the lowest total cost (vehicles and transportation costs), and then it has

been planned to pick up the infectious waste on Monday (Route 1), Wednesday (Route 2) and Friday

(Route 3) for each selected municipality. Therefore, the proposed hybrid GA can lead to providing the

lowest total cost under this actual case study, according to decision makers’ opinions.

5. Conclusion

In this study, the location routing problem, which is a complex problem, is handled within two phases

consisting the multi-objective facility location problem to find a suitable new municipality for infectious

waste disposal  and  the  vehicle  routing  problem  to  analyze  transport  routes  for  the  newly  selected

municipality, which aims to minimize transportation cost/total distance.

In the  first  phase,  multi-objective  facility  location problem is  considered with both quantitative  and

qualitative objectives. HFGP model is proposed to solve this complex problem.

Case  study  handles  forty  hospitals  and  three  alternatives,  which  are  candidate  facilities  in

sub-Northeastern  Thailand.  In  first  phase,  the  MOFLP  model  for  infectious  waste  disposal  was

formulated to determine the problem statement. Afterwards, the HFGP model was formulated to solve

the  complex  problem.  The  optimal  solution  is  computed  using  LINGO13  to  choose  the  best
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municipalities among alternative municipalities for infectious waste disposal. The results show that NLTM

and NKTM are two suitable locations.  HFGP model enhances minimum total  cost and the highest

priority weight. In second phase, hybrid GA model is proposed to solve VRP. Firstly, LINGO13 was used

to solve the VRP model in order to compare with hybrid GA.

The results show that the selected municipalities were assigned for infectious waste pickup efficiently

using minimum number of  vehicles and minimum total cost.

The major advantages of  the proposed methodology are that the HFGP model can guide selection of  a

new suitable municipality by considering subjective and objective criteria simultaneously, and the hybrid

GA can find the suitable transport routes, which require the minimum number of  vehicles and minimum

total cost, efficiently. These approaches are simple but powerful, and are flexible for decision makers to

limit costs and environmental impacts. The advantage of  this research is that decision makers can select

the optimal location network and give significant weights as needed.

For the future research, the authors suggest the other multi-criteria approaches such as ELECTRE III,

fuzzy PROMETHEE and fuzzy TOPSIS methods to be used and to be compared in justification of  the

location routing problem. This research can also be extended by incorporating additional selection criteria

such as risk factors and other environmental concerns. Hence, the proposed methodology can be applied

to  other  multi-criteria/multi-objective  problems  like  supplier  selection,  software  selection,  project

selection and machine selection of  companies. Finally, changing problem sizes and criteria may serve

another avenue for future research, though it may increase computational difficulties.
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