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Abstract:

Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm,

which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage

flexible flow shop scheduling problem. 

Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by

considering  sequence-dependent  setup times  and probable  rework  in  both  stations,  different

ready times for all jobs and rework times for both stations as well as unrelated parallel machines

with regards to the simultaneous minimization of  maximum job completion time and average

latency functions have been investigated in a multi-objective manner. In this study, the parameter

setting has been carried out using Taguchi Method based on the quality  indicator for better

performance of  the algorithm.

Findings: The results of  this algorithm have been compared with those of  conventional, multi-

objective algorithms to show the better performance of  the proposed algorithm. The results

clearly indicated the greater performance of  the proposed algorithm.
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Originality/value: This study provides an efficient method for solving multi objective no-wait

two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times,

probable rework in both stations, different ready times for all jobs, rework times for both stations

and unrelated parallel machines which are the real constraints.

Keywords: no-wait two-stage flexible flow shop, setup time of  the machinery, probable rework, adjusted

discrete multi-objective invasive weed optimization

1. Introduction

Among scheduling problems, no-wait  environments have recently been paid more attention to by

researchers. In no-wait  two-stage flexible flow shop problems, the steps to perform a job on the

machine are performed uninterruptedly from the beginning to the end. In other words, the difference

between the beginning and end times in no-wait  manufacturing environments is  the  same as the

processing  times.  The  main  two  reasons  for  the  incidence  of  such  problems  in  production

environments are the nature of  the processes (technology nature) and lack of  storage between the

stations and machinery. 

No-wait scheduling problems occur in manufacturing environments in which the processing in a job must

be carried out non-stop from the beginning to the end on one machine or among machines. There are

two main reasons for the occurrence of  such environments; namely the type of  technology and the lack

of  storage between the stations and machines. This means the beginning time for processing of  the job

on the corresponding machine is delayed until the processing completion time exactly coincides with the

beginning of  the  processing  of  the  job on the next  machine if  necessary.  In some industries,  it  is

necessary for each operation to start exactly following the previous operation due to such factors as

temperature and concentration. Some of  the specific applications of  these problems are in food (Hall &

Sriskandarajah,  1996),  pharmaceutical  (Raaymakers & Hoogeveen,  2000),  chemical  (Rajendran,  1994),

concrete software (Grabowski & Pempera, 2000), steel (Gerami, Allaire and Fittro, 2015),  plastic and

aluminum (Aldowaisan & Allahverdi, 2004) industries. In steel industry, for example, this occurs due to a

series of  consecutive processes such as casting, smelting and rolling. In food industry (Elyasi, Jafarzadeh

& Khoshalhan, 2012), food products must be placed in cans right after cooking so that the products are

fresh. In addition, in modern manufacturing environments such as just in time flexible manufacturing

systems, robotic cells (Jafarzadeh, Gholami and Bashirzadeh, 2014) provide the manufacturing process in

accordance with scheduling problems.
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Most studies on such issues have been in the field of  creative and innovative methods in recent years.

Hall has performed a literature survey regarding no-wait problems in 1996 (Hall & Sriskandarajah,

1996). One of  the first studies in this regard was a literature survey by Gilmore and Gomory (1964).

The latter formulated a one processor no-wait two-stage flexible flow shop scheduling problem to

obtain a good scheduling using travelling salesman problem (TSP) techniques. Unlike conventional

researches  on  flow  shop  scheduling,  which  use  mathematical,  counting-planning  and  innovative

techniques to reach an optimal or nearly optimal response, the conversion and formulation of  a no-

wait flow shop scheduling problem by travelling salesman problem takes a different approach. In this

method,  the  delays  in  processing time between the jobs and machines  are  first  converted to the

distance matrix for the TSP problem. The conventional techniques are then applied to solve this

problem. They obtained one optimal  response for  the  no-wait  flow shop scheduling problem by

using branch and bound algorithm for the TSP problem, which required O(n2) steps. Their method

has  been  considered  by  many  researchers.  Similar  to  Johnson’s  algorithm  in  general  flow  shop

problems,  Gilmore  and  Gomory’s  method  has  been  used  by  researchers  in  combination  with

innovative methods for the improvement of  the minimization of  the maximum job completion time

or other objective functions many times. 

Levner (1969) studied the flow shop problem in the absence of  storages by evaluation criterion of

the performance of  the minimization of  the maximum job completion time and proposed a branch

and bound algorithm to solve it (Levner, 1969). Calahan (1972) carried out a research in steel industry

on  no-wait  processes  and  used  the  line-up  algorithm for  analysis  of  several  problems.  He  then

evaluated his propositions using computational tests. Reddi and Ramamoorthy (1972) and Wismer

(1972)  were  among the  first  people  to  study  the  m machine  no-wait  flow shop  problem.  Their

evaluation  criterion  was  minimization  of  maximum jobcompletion  times.  Van Deman and Baker

(1974) developed a branch and bound method for the minimization of  the average time workflow to

solve the flow shop with no storage problem. Gupta (1976) developed the algorithm proposed by

Reddi  and  Ramamoorthy.  He  developed  a  more  efficient  innovative  algorithm  compared  with

Wismer’s.  Bonney and Gundry (1976) developed an innovative method known as inclined sorting

based on the shape of  the jobs. The algorithm creates shapes by drawing a line between the start and

end of  operations from one machine to another. The inclined sorting algorithm attempts to fit the

shapes of  two consecutive jobs. They also used TSP formulation based on floating time between jobs

and showed that the two methods developed by them have a better performance compared with the

two conventional innovative methods. 

Salvador  (1973)  developed  an  algorithm  originated  from  a  nylon  manufacturing  plant  for  the

minimization of  maximum job completion time objective function. He used dynamic programming to

find low limits for application in branch and bound algorithm. King and Spachis (1980) showed that
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algorithms,  which  do  not  perform  well  in  no-wait  environments,  will  not  necessarily  function

appropriately in unlimited storage environments. By investigation of  single step flow shop problem with

four machines, Papadimitriou and Kanellakis (1984) concluded that the problem was computationally

complicated. Goyal and Sriskandarajah (1988) processed the four-machine no-wait flow shop problem, in

which the processing time is linearly related to the waiting times of  jobs before processing the second car,

and proposed an innovative algorithm to minimize maximum job completion times. 

Rajendran (1994) investigated the no-wait flow shop problem using the maximum job completion time

criterion.  He proposed  an  innovative  algorithm based  on  the  priority  of  the  jobs.  Aldowaisan  and

Allahverdi  (1998)  studied the  no-wait  flow shop problem with separate  preparation times  using the

minimization  of  the  total  job  times  and  proposed  an  innovative  algorithm.  Sidney,  Potts  and

Sriskandarajah (2000) studied the two-machine no-wait flow shop problem using the evaluation of  the

performance of  the minimization of  job completion time and considering setup times. They considered

two parts in setup times such that no job should be performed on the machine in the first part, but the

job performance or lack thereof  is of  no importance in the second part.

Aldowaisan (2001) investigated a two-machine flow shop problem with separate setup and job processing

times using the evaluation of  the performance of  total time minimization criterion and proposed an

innovative algorithm based on general and regional governing relations. Allahverdi and Aldowaisan (2002)

studied the m machine no-wait flow shop problem using the assessment of  minimization of  the weight

sum and the sum of  maximum job completion time criteria.

Thornton and Hunsucker  (2004)  studied  the  multi-processor  no-wait  flow shop  problem using  the

minimization of  maximum job completion time criterion. They proposed an innovative algorithm and

compared it with other innovative algorithms to evaluate its efficiency. Kalczynski and Kamburowski

(2007) investigated the no-wait flow shop problem considering the lack of  working of  machines. They

used the minimization of  maximum job completion time criterion. They identified networks the longest

path of  which showed maximum job completion time. They simplified the no-wait flow shop problem as

a TSP problem. 

Pan, Tasgetiren and Liang (2008) proposed Discrete Particle Swarm Optimization (DPSO) algorithm for

no-wait  flow  shop  problem  using  the  assessment  of  minimization  of  the  sum  of  maximum  job

completion time and minimization of  maximum job completion time criteria. Their proposed algorithm

had  been  combined  with  Variable  Neighborhood  Descent  (VND)  algorithm  to  improve  response

qualities. Su and Lee (2008) studied the two-machine no-wait flow shop problem without considering the

stat-up times  using  one  server.  Only  one  setup is  performed at  each  moment  by  the  server.  They

considered the minimization of  maximum job completion time criterion. They proposed two innovative

and one branch and bound algorithms. Framinan and Nagano (2008) proposed an innovative algorithm
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for am m machine no-wait flow shop problem using the minimization of  maximum job completion time

criterion. They concentrated on obtaining the best response within the shortest period of  time. They

compared the problem with TSP problem for this purpose.

There  are  different  applications  for  metaheuristic  algorithms  in  optimization  fields  e.g.  (Jafarzadeh,

Moradinasab, Eskandari & Gholami, 2017). Qian, Wang, Hu, Huang and Wang (2009) proposed Hybrid

Differential Evolution (HDE) algorithm for no-wait flow shop problem. To solve the no-wait flow shop

problem by DE, the largest amount method was used in order to convert real vectors in DE to job

permutations. Tseng and Lin (2010) proposed a Hybrid Genetic Algorithm (HGA) to solve the no-wait

flow shop problem using the minimization of  maximum job completion time criterion. This algorithm

has been created by merging genetic algorithm with a new local search procedure. This new local search

procedure consists of  two local search types, each playing a different part. One of  these local search

procedures  searches  within  the  nearby  neighborhoods  while  the  other  one  searches  within  distant

neighborhoods. Wang, Li and Wang (2010) used Tabu Search (TS) algorithm to solve the no-wait flow

shop problem using the minimization of  maximum lateness time criterion. They stated that since TS

algorithm attempts to find the best neighborhood for each current response, it is an efficient algorithm

given its solution time.

Shafaei,  Moradinasab and Rabiee (2011) investigated the no-wait two stage flexible flow shop with a

minimizing mean flow time performance measure. They developed six meta-heuristic algorithms to solve

the problem. Davendra, Zelinka,  Bialic-Davendra,  Senkerik and Jasek (2013) proposed Discrete Self-

Organising Migrating Algorithm to solve the no-wait  flow shop problem using the minimization of

maximum job completion time criterion. They used the problems in two Taillard small and medium sizes

to evaluate the efficiency of  the new algorithm and compared it with two efficient innovative algorithms.

Gao, Pan and Li (2011) developed Discrete Harmony Search (DHS) algorithm to solve the no-wait flow

shop problem using the minimization of  sum of  job completion time criterion. In this algorithm, the

permutation of  jobs is first determined using an innovative approach and another innovative approach

based on the well-known NEH approach is then used to initialize the harmony memory. Ramezani,

Rabiee and Jolai (2015) studied the no-wait flow shop with uniform parallel machines. They considered

sequence-dependent setup time constraint in each stage. Pang (2013) explained the two-machine, no-wait

flow  shop  scheduling  problems  in  which  the  setup  times  of  machines  are  class  dependent.  They

considered  minimization  of  the  maximum  lateness  as  objective  function  and  proposed  a  genetic

algorithm (GA) based heuristic approach to solve it. Liu and Feng (2014) proposed the classic Kuhn-

Munkres (KM) algorithm to solve two machine, no-wait flow shop scheduling problems. They considered

the processing times of  jobs are functions of  their positions in the sequence.
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In the following, the studies in which considered no-wait  flexible flow shop are studied.  In no-wait

flexible flow shop with identical machine, in each stage, there are similar machine in parallel. 

The number of  machines in each stage are shown by mi where i shows the stage number. It is assumed

that there is at least one machine in each stage and their number are not equal. The paper which are

studied this problem are as follow: Kuriyan and Reklaitis (1987) showed that the sequence resulting from

most innovative algorithms are almost similar to that generated by LPT, which completes with a search in

the neighborhood. They proposed two innovative algorithms for a non-stop, no-wait two-stage flexible

flow shop problem (Kuriyan & Reklaitis, 1985). Kuriyan (1987) considered a special case of  non-stop,

no-wait two-stage flexible flow shop problem with the same machinery in which mi = μ,   p1,j = … = pm,j

and i = 1, …, m, mi = μ,   p1,j = … = pm,j .The criterion considered for this problem was the minimization

of  maximum job completion time. He developed the worst case performance bound  and showed

that the limit approaches  if  the LPT list is used (Kurian, 1987). July et al. (2009) studied a

non-stop, no-wait, multi-stage flexible flow shop problem by considering the limitation of  job completion

within a pre-determined time period. Given the constraints considered, some jobs may be skipped in their

problem. They proposed a mixed integer linear programming model with maximum benefit objective

function to solve this problem. They proposed an efficient genetic algorithm to solve this problem and

compared it with mixed integer linear programming model (Jolai, Sheikh, Rabbani, & Karimi, 2009). 

The studies which are studied no-wait two-stage flexible flow shop are as follows: Ramudhin and

Ratliff  (1995)  solved  the  non-stop,  no-wait,  two  stage  flexible  flow  shop  problem,  shown  as

F2/no-wait, dj = d, m1 ≥ 1, m ≥ 1/∑wjUj, within a daily 8-hour shift using maximization of  the weight

sum of  customer orders. They formulated the problem as a math problem and used Lagrangian release

to convert the problem into several sub- problems. Some integral solutions are eliminated using a local

search algorithm. Sriskandraja (1993) used a to solve the problem and an arbitrary sequence to solve

F2/no-wait,  m1 ≥ 1,  m2 = μ  ≥ 2/∑wjUj, problem.  In  this  scheduling  algorithm,  jobs  are  randomly

generated. The algorithm will provide better responses if  the ordered jobs are sorted in a non-ascending

fashion (for the  second step processing time).  Gupta,  Strusevich and Zwaneveld (1997)  proposed a

comprehensive categorization of  the complexity of  no-wait two-stage flexible flow shop problem with

constraints of  preparation time and variation of  the place and evaluation criterion in order to minimize

the sum of  job completion times.

Liu, Xie, Li and Dong (2003) studied the no-wait two-stage flexible flow shop problem with one machine

in the first station and more than one machine in the second station. They presented an innovative

algorithm known as least deviation (LD) using minimization of  maximum job completion time objective

function to solve this problem.
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Chang,  Yan  and  Shao  (2004)  studied  the  hybrid  no-wait  two-stage  flexible  flow  shop  problem

considering start-up and transfer times separately.  Given that  the  problem was NP-complete  and

there was no known algorithm for solving this  problem with exponential time,  they proposed an

approximate  solving  approach  and  two  innovative  algorithms  to  solve  the  problem.  In  order  to

evaluate their proposed approach, they compared the responses obtained with the lowest developed

limit.  Xie  and  Wang  (2005)  proposed  an  innovative  algorithm  known  as  Minimum  Deviation

Algorithm (MDA)  for  the  no-wait  two-stage  flexible  flow  shop  problem  using  minimization  of

maximum job completion time and compared it with algorithms previously reported. Wang, Xing and

Bai (2005) studied the no-wait two-stage flexible flow shop problem considering the constraint of

lack of  using machines in the second station. 

Haouari, Hidri and Gharbi (2006) applied the branch and bound approach for the no-wait two-stage

flexible flow shop problem with identical and parallel machines using minimization of  maximum job

completion time. Huang, Yang and Huang (2009) investigated the no-wait two-stage flexible flow shop

problem by considering setup time’s separately using minimization of  total job completion time. They

proposed a non-linear mixed integer programming model and ant colony optimization algorithm to solve

this  problem.  This  problem was  analyzed  by  Wang  and  Liu  (2013)  and the  genetic  algorithm was

proposed for solving it. 

Moradinasab,  Shafaei,  Rabiee  and Mazinani,  (2012)  consider  a  no-wait  two-stage  flexible  flow shop

scheduling problem by considering unit setup times and rework probability for jobs after second stage

and solved this problem with ICA and DPSO. Moradinasab, Shafaei, Rabiee and Ramezani (2013) studied

a no-wait two-stage flexible flow shop scheduling problem with setup times aiming to minimize the total

completion time. They used an adaptive imperialist competitive algorithm (AICA) and genetic algorithm

(GA) to solve this problem and the performance of  their proposed AICA and GA algorithms were tested

by  comparing  with  ant  colony  optimisation,  known  as  an  effective  algorithm  in  the  literature.

Abdollahpour and Rezaian (2016) solved no-wait flexible flow shop scheduling problem with capacitated

machines and mixed make-to-order and make-to-stock production management policy restrictions. They

used the minimization of  the sum of  tardiness cost, weighted earliness cost, weighted rejection cost and

weighted incomplete cost as objective functions. 

Literature survey shows that very few researchers have studied the no-wait two-stage flexible flow shop

problem in a multi-objective. Allahverdi and Aldowaisan (2004) were the first to propose hybrid simulated

annealing  and hybrid  genetic  algorithms for  the  no-wait  two-stage  flexible  flow shop problem with

measurement of  minimization of  maximum job completion time and minimization of  maximum lateness

criteria. Tavakkoli-Moghaddam, Rahimi-Vahed and Mirzaei (2007) proposed hybrid immune system to
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find  Pareto  responses  for  the  no-wait  two-stage  flexible  flow  shop  problem with  measurement  of

weighted sum of  average job completion time and sum of  average lateness criteria.

Pan, Wang and Qian (2009) developed a novel differential evolution algorithm for bi-criteria, no-wait flow

shop scheduling problem. Jolai, Asefi, Rabiee and Ramezani (2013) solved a bi-objective problem of  two-

stage no-wait flexible flow shop by considering the minimization of  make span and maximum tardiness

as  objective  functions.  They  developed  three  optimization  methods  based  on  simulated  annealing

including  classical  weighted  simulated  annealing  (CWSA),  normalized  weighted  simulated  annealing

(NWSA), and fuzzy simulated annealing (FSA).

In this work, the multi-objective no-wait two stage flexible flow shop problem has been investigated

considering sequence related setup time for each job, probable rework, ready times for all jobs and

rework  times  in  both  stations  as  well  as  non-uniform  machinery  constraints  and  simultaneous

consideration of  minimization of  maximum job completion time and average lateness time objective

functions.  Because  to  achieve  a  global  optimal  solution  and guarantee  the  maximum amount  of

overall profit in each system, all these aspects should be considered in a single model. The novelty of

this work is considering these two functions simultaneously at one model and designing a Discrete

Multi Objective Invasive Weed Optimization (DMOIWO) algorithm to solve the described general

problem. (Hasani,  Jafarzadeh & Khoshalhan, 2013). For instance, if  the model just minimizes the

maximum job completion time, therefore the jobs that should be completed soon will be ignored and

this results in loosing the customer’s satisfaction. On the other hand, if  the model optimizes the

average lateness time objective, then some of  the existing machines will be working for a longer time

which  is  not  pleasant.  Because  this  imposes  unwanted  depreciation  to  producer.  Given the  high

complexity of  no-wait two stage flexible flow shop problem, all precise algorithms to obtain optimal

response for this problem require a long time to solve even for small size problems and this solving

time increases exponentially by increasing problem size. In addition, adding new assumptions such as

rework on pieces and machinery setup times make the problem more complicated. Therefore, this is

an NP-hard problem (Sriskandarajah & Ladet, 1986). Thus, meta-heuristic methods have been used

to solve the problem in this work. Discrete multi-objective invasive weed optimization (DMOIWO)

algorithm, which is the adaptive algorithm of  multi-objective invasive weed optimization (MOIWO)

algorithm, developed by Kundu, Suresh, Ghosh, Das, Panigrahi and Das (2011), has been proposed

to solve the given problem. Invasive Weed Optimization (IWO) is a novel swarm algorithm that is

inspired by agriculture. Recently, it has been successfully applied to solve traveling salesman problem,

multi-objective portfolio optimization problems, the inverse Stefan problem, lot-streaming flow-shop

scheduling problems, and so on. Because IWO is a robust and efficient algorithm, and it has shown

its  ability  in solving numerous optimization problems we will  propose a DMOIWO to solve  the

problem considered in this paper (Sang, Duan & Li, 2016). To evaluate the proposed algorithm, it has
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been  compared  with  Non-Dominated  Sorting  Genetic  Algorithm  (NSGA-II),  Pareto  Archives

Evolutionary  Strategy  (PAES)  and  Multi-Objective  Particle  Swarm  Optimization  (MOPSO)

algorithms. Finally, the results of  the comparison of  the algorithms considering the defined criteria

have been given.

The structure of  the paper is as follows: The problem will be defined in the second section. Adjusted

Discrete multi-objective invasive weed optimization (DMOIWO) will be defined in the third section. The

criteria for the comparison of  multi-objective approaches will be expressed in the fourth section. Finally,

sections 5 and 6 will deal with numerical results and conclusion.

2. Problem Definition 

In this section, the assumptions of  the mentioned problem in the former section and simulator of  the

fitness evaluation are explained.

2.1. Assumptions

The following assumptions are made in solving the no-wait  two-stage flexible flow shop scheduling

problem with sequence dependent setup times and probable reworks in both stages. Here, it is assumed

that n jobs with different processing times have to be scheduled sequentially on two stages with unrelated

parallel machines each.

• The processing of  each job has to be different, continuous and deterministic.

• That is, once a job is started on the first machine, it must be processed through all machines

without any pre-emption and interruption.

• On each time, the number of  jobs, which are processed on each machine, are not more than one.

• Each job has to visit each machine exactly once. It means the machines are not available at each

time for processing.

• The setup time of  each machine is considered sequence dependent.

• For both operations of  each job after processing, an inspection is considered, inspection time

being added to processing time in both stages.

• After inspection, with predetermined probability (rpi,j) of  each job, it may be needed to rework the

procedure. 

• The breakdown or preventive maintenance for machines are not considered.

• The machine skipping is not considered and for each job, the same job sequence is assumed. 
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2.2. Simulator of  Fitness Evaluation

The  objective  is  to  find  the  best  sequence  of  jobs  in  this  problem by  simultaneously  considering

minimization  of  maximum  job  completion  time  and  average  lateness  time.  Adjusted  Discrete

Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which is the adaptive algorithm of

Multi-Objective Invasive Weed Optimization (MOIWO) algorithm developed in (Kundu et al., 2011), has

been proposed to solve the problem. This algorithm will be discussed in details in the next section.

The notations which is used in Simulator of  fitness evaluation are as follow:

n The number of  jobs to be scheduled ( j = 1, 2, …, n)

m i The number of  parallel machines at stage i

mi,u The uth machine in stage i

p j
i,u Processing time for job j at stage i (i = 1, 2) on uth machine

s i
k,j Sequence-dependent setup time from job k to job j at stage i

π Permutation of  the given jobs 

rpi,j Rework probability for job j in stage i

rti,j Rework time for job j in stage i

t1,h Machine time for job j in stage 1(h = 1, …, m 1)

t2,g Machine time for job j in stage 2 (h = 1, …, m 2)

T1 Time of  earliest available machine in stage 1

T2 Time of  earliest available machine in stage 2

rand Random number between zero and one, which is generated using a uniform distribution

Cj Completion time of  job j

Cmax Maximum completion time of  jobs: max{C1, C2, …, Cn}

rπK
Ready time for job j

The addressed problem with mentioned assumptions is solved by the simulator, which is demonstrated in

Figure 1.
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Figure 1. Simulator of  fitness evaluation

The following provides a brief  explanation about the proposed simulator. T1 and T2 i.e. the time of  the

earliest available machine in stage 1 and stage 2 respectively, are calculated according to t1,h and t2,g. Also,

s 

i
k,j which shows the sequence-dependent setup time can be found and updated in each stage based on

T1 = t1,y + S1
πk

,πk–1,y. In the first stage, if  T1 is less than rπk
 then T1 will be assigned value rπk

. Now, if  the

processing time for job j(p j
i,u) is bigger than T (i.e. T = T2 – T1) then  t1,y = t1,y + p j

1,y otherwise t1,y = t2,l and
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all  t2,g will  be updated.  Regarding the reworking,  in the first  stage for instance a random number is

generated and if  it would be less than rp1,j then t1,h is updated based on the reworking time and the process

is same in the second stage.

3. Adjusted Discrete Multi Objective Invasive Weed Optimization (DMOIWO)

Recently, the quite popular methods for solving complex combinatorial optimization problems such as

manufacturing  scheduling  problems  have  been  metaheuristic  over  the  other  approximate,  exact  or

heuristic  methods (Hmida,  Haouari,  Huguet, & Lopez,  2011;  Marinakis,  Migdalas,  & Pardalos,  2008;

Tapkan, Özbakır, & Baykasoğlu, 2012). The multi-objective invasive weed optimization (MOIWO) is a

population based metaheuristic algorithm, which is proposed by Kundu et al. (2011) (Kundu et al., 2011).

MOIWO, which has been described by Mehrabian and Lucas (2006), mimics the natural behavior of

weeds in colonizing and finding a suitable place for growth and reproduction similar to IWO.

In the proposed DMOIWO framework, first a population of  weeds are randomly generated in a small

region of  the search space. Then fuzzy dominance sorting, which is described in the next subsection, is

used to rank weeds. Each weed produces a number of  seeds with respect to its rank (the weed with the

highest ranked produces the maximum number of  seeds). The seeds, which are produced randomly, are

spread across the neighborhood of  the parent weed. Humans have recently created the resistant weeds,

which are produced by mutation in this algorithm. Then three populations including weeds, seeds and

resistant weeds are merged together. Afterwards, the population is then again ranked and the best weeds

by size of  initial population are chosen as the updated population. This continues until the stopping

criterion is met. The structure of  this algorithm will be presented below.

3.1. Initialize Initialization of  a Population

A  limited  number  of  weeds,  called  pop  size,  is  randomly  produced  and  considered  as  the  initial

population. In addition, the values of  two fitness functions of  each weed are calculated as soon as it is

generated.  In  this  study,  the  two  fitness  functions  are  the  minimization  of  make  span  and  the

minimization of  average tardiness. The weed structure is shown in Figure 2. 

Each response (country) is an array of  1 × N integers, where N shows the number of  jobs. Each array

country indicates the order of  the sequence of  tasks for the allocation to the earliest available machine in

both stations. The structure of  a response (country) for a problem with seven jobs and two machines in

the first station and three machines in the second station is shown in Figure 2.
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6 5 7 2 1 3 4

Figure 2. The structure of  a response for a problem with seven jobs and two 

machines in the first station and three machines in the second station

3.2. Fuzzy Dominance Based Sorting

The first step of  fuzzy dominance sorting in the DMOIWO is to compute the fuzzy dominances of  the

weeds  in  the  population.  The  weeds  are  then  sorted  by  fuzzy  dominance  in  ascending  order.  The

structure of  the fuzzy dominance calculation is shown in Figure 3.

The first step for sorting based on fuzzy dominance in the proposed algorithm is the calculation of  the

fuzzy  dominance  of  responses  in  the  population.  The  responses  are  then  sorted  based  on  fuzzy

dominance in ascending order. This approach is exactly  opposite of  sorting the responses based on

crowding distance. After sorting the responses based on fuzzy dominance, the undefeated responses are

stored in the archive. Pseudo-code algorithm, which is used for the calculation of  the fuzzy dominance of

each response, has been shown in figure 3. According to Figure 3, xi and xk are two responses, these two

responses either both defeat each other or neither one defeats the other in conventional multi-objective

algorithm. However, the concept of  the possibility of  one defeating the other does not exist in the

algorithms.  In  fact,  in  conventional  multi-objective  algorithms,  there  is  zero  or  one  state  and  an

intermediate state does not make sense.  Fuzzy dominance approach covers this  concept as  well.  To

understand the concept of  fuzzy dominance approach, four definitions must be first given:

Definition 1: Suppose that the minimization problem consists of  m objective functions ( yi = 1, 2, 3, …, m).

The answer, which includes a collection of  possible responses,  is  shown by  P  Rm,  where  m is  the

dimension of  the problem.

Definition 2 (i th fuzzy dominance by one response): i  {1, 2, 3, …, m} and μi
dom = yi(P) → [0,1] show

the monotonous non-decreasing membership. If  yi( )  yi( ),   P response is called the i th dominate

response on   P. This relationship may also be shown by   i
F . If    i

F , the i th degree of  the

defeated response equals μi
dom = ( yi( ) – yi( )) ≡ μi

dom (   i
F ). Fuzzy dominance can be shown as   i

F

 fuzzy relationship between  and v responses.
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Definition 3  (fuzzy dominance by one response):    P  response  is  called  the  fuzzy  response

defeating    P. If  and only if  i  {1, 2, 3, …, n} for each i, the relationship   i
F  exists, which is

shown by   F ). If    F ), the μi
dom (   F ) fuzzy dominance is obtained by calculating   i

F 

fuzzy share relations for each response i. Fuzzy share operator is shown by  using one of  t-form family

relationships: 

(1)

Consider S  A response population. A Definition 4 (fuzzy dominance in the population): response   P

is said to be defeated in S from fuzzy view point of  view if  the fuzzy dominance is performed by any other

  P response. Thus, fuzzy dominance can be performed by  union operator as follows:

(2)

The pseudo-code algorithm used to calculate fuzzy dominance is as follows.

Figure 3. Pseudo-code algorithm for fuzzy dominance
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In this model,  n solutions are assumed and for each of  these solutions  μ(k)  k  {1, 2, …, n}, i.e. a

membership function, is calculated. To calculate  μ(k), based on the objective function values, a mutual

comparison between the kth solution and all the other solutions are made and μ(k) is updated accordingly.

If  for the i th objective function yi( j) – yi( k)  0, then μ(k) is set to zero, but if  yi( j) – yi( k)  pi, in

which pi is a positive number that shows the difference between maximum and minimum value of  the

fitness function, μ(k) is updated based on, otherwise μ(k) will be set to one. 

Finally, after calculating fuzzy dominance, the fuzzy responses are sorted in ascending order based on

membership function.

3.3. Reproduction

Every seed grows to become a new plant (Weed). These weeds then produce other seeds with respect to

their fitness function. The maximum possible seed (Smax) will be produced by the weed with minimum

fitness function and the minimum possible seed (Smin) will be generated by the weed with maximum

fitness function. The number of  seeds, which is produced by other weeds, is obtained using a linear

function varying in a range between Smin and Smax and is dependent on the value of  these fitness

functions. Figure 4 depicts the relationship between the number of  seeds and value of  fitness function.

Figure 4. relationship between the number of  seed and value of  fitness function (Mehrabian and Lucas, 2006)

For this purpose, the sigma value of  each iteration is obtained in the first of  each iteration as follows:

(3)
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Where itermax is the maximum number of  iterations and iter is the current iteration. In addition, σinitial and

σfinal are the initial sigma and the final sigma, respectively. n is the non-linear modulation index. The value

of  σfinal is equal to two and the value of  σinitial is equal to the percent of  job numbers (η) obtained as

follows:

(4)

The number of  weeds in each repetition is equal to parameter “PopSize”. Weeds had been sorted based

on fuzzy dominance in the previous step.

Each weed generates some seeds based on its rank in the population. The number of  seeds, which are

generated by each weed, is obtained using the following equation.

(5)

The maximum possible and minimum possible seeds, which are produced by one weed, are shown by

parameters “Smax” and “Smin”, respectively. In this algorithm, ranki shows the rank of  ith weed. Smin

has been assumed zero in this algorithm.

When the number of  seeds generated by each weed is determined, the seeds of  each weed are produced

according to the following process: Having produced the job sequences in the weed’s array, as shown in

Figure 4, a number in the range of  2 and  σiter is randomly generated, which  is named nmove, nmove

positions are then randomly selected from the given weed. Afterwards, the sequence of  these positions is

changed randomly.

This producer is carried out for an example with seven jobs. Assume that nmove is equal to 3 and the

selected jobs are 2, 7 and 5 (see Figure 5). In addition, the random sequence for these jobs is 5, 7 and 2.

Therefore, the mutated weed is depicted in Figure 6.

3 2 4 5 1 6 7

Figure 5. Given solution with three random selected positions

3 5 4 7 1 6 2

Figure 6. Random produced seed around the given weed
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Notice that if  the random number generated in the second step is equal to 2, exchange will be done to

produce new seeds.

3.4. Mutation on the Weeds

Humans have recently generated an entirely new category of  very nasty weeds, which is called herbicide

resistant  weeds.  The  resistant  weeds  are  produced by  mutation  of  the  initial  weeds.  Two operators

including insertion and reversion are applied as mutation operators. Furthermore, this operation is done

on the percent of  population shown by pm each iteration. The structures of  insertion and reversion

operators are as follows: Having Figure 5, assuming that two jobs have been selected randomly (jobs 2

and 1).

3 1 5 4 2 6 7

Figure 7. Reversion

3 2 1 4 5 6 7

Figure 8. Insertion

Reversion: In this policy, the positions of  selected jobs are exchanged. The jobs located in between the

swapped jobs are then reversed, too (Figure 7).

Insertion:  In this  case,  the  job in the second position is  inserted immediately after  that  in  the  first

position. The other jobs are then shifted to right hand side accordingly (see Figure 8).
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Figure 9. DMOIWO Flowchart

3.5. Competitive Exclusion

Three populations including initial weeds, produced seeds and mutated weeds are merged together in

each  iteration.  The  fuzzy  dominances  for  all  the  merged  population  members  are  then  calculated.

Afterwards, the weeds or seeds with minimum fuzzy dominances are selected by the population size.

Finally, selected population is the final population used in the next iteration.
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3.6. Archive Adaption

In each iteration, after competitive exclusion, the non-dominated solutions are selected and added to the

archive. The fuzzy dominances of  the archive members are then computed and the members are sorted

by fuzzy dominance in ascending order. Afterwards, the stages including reproduction and mutation are

carried out on the archive members. Finally, the non-dominated solutions are selected in the archive and

the other solutions are removed. If  the number of  solutions in the archive is more than the archive size

(nArchive), the solutions in archive are sorted based on crowding distance and then the number of  the

best archive solutions with size of  “nArchive” is selected.

3.7. Stopping Criteria

The processes of  weed generating are stopped when a fixed number of  generations are satisfied. This is

shown by parameter “MaxIt”. Figure 9 gives the DMOIWO in pseudo-code.

4. Criteria for Comparison of  Multi-Objective Approaches

Four criteria are considered for the comparison of  multi-objective approaches in this work:

• Diversification metric (DM): The spread of  solution set is measured by this metric and calculated by:

(6)

• Mean ideal distance (MID): This metric is used to determine the closeness between Pareto solutions

and ideal point . MID is calculated by:

(7)

Where n is the number of  non-dominated solutions and  and  are the maximum and

minimum values of  each fitness function among all non-dominated solutions obtained by the

algorithms, respectively. According to this definition, better performance belongs to the algorithm

with the lowest value of  the MID 

• The rate of  achievement of  two objectives simultaneously (RAS): At first, the ideal points are calculated,

followed by RAS calculation:
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(8)

• Quality metric (QM): For calculation of  this algorithm, the non-dominated solutions obtained by

the algorithms are first put together. Afterwards, the non-dominated solutions are chosen. Finally,

the percentage of  the non-dominated solutions belonging to each algorithm is obtained as QM

(Tapkan et al., 2012).

5. Computational Experiments

In this section, firstly, the procedure for data generation and parameter setting approach is described,

followed by the description of  performance evaluation for proposed DMOIWO with NSGAII , PAES,

and MOPSO. It is noticeable that all algorithms are implemented in MATLAB 2011a and run on a PC

with 2.53 GHz Intel Core 2 Duo and 4 GB of  RAM memory. 

5.1. Simulation model parameters

The required data for the problem include the number of  jobs, the number of  machines in each of  the

two  stations,  processing  time  for  each  job  in  both  stations,  rework  probability  in  both  stations,

preparation times for all  jobs and rework times in both stations. The number of  jobs and machines

produced for  test  problems as well  as  processing  times,  sequence related preparation times in  both

stations, rework probability for each job and rework times in each station are generated based on Table 1.

It is notable that the provided data to examine the designed algorithm is produced arbitrarily and not

based on a real case.
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Number of  jobs
Small: 5, 10, 15, 20, 25

Large: 40, 80, 120, 160, 200

Number of  machines
Small size (M1 = 2, M2 = 3), (M1 = 2, M2 = 2), (M1 = 3, M2 = 2) 

Large size (M1 = 8, M2 = 10), (M1 = 8, M2 = 8), (M1 = 10, M2 = 8) 

Processing time U(1, 30)

Setup times U(1, 30)

Rework probability EXP(λ = 20)

Preparation time U(1, 99)

Rework time round(unif(0.3, 0.6) × pi,j)

Table 1. Parameters and their levels

5.2. Parameter Setting

Appropriate  design  of  parameters  and operators  has  a  meaningful  impact  on the  efficiency  of  the

algorithms used. Taguchi parameter setting has been used for setting the parameters of  the proposed

algorithm. For this purpose,  parameter setting has been performed for an algorithm for a particular

problem consisting of  80 jobs, 8 machines in the first station and 10 in the second and the results are

given below:

DMOIWO algorithm consists of  7 control factors including η, PopSize, nArchive, MaxIt, n, Smax, and

pMutation. In order to reduce the number of  parameters, the product of  MaxIt and PopSize has been

considered here. Therefore, there will be 6 parameters. There are three levels for each factor shown in

Table 2. In addition, each factor is represented by a symbol shown in Table 2.

Number Factors Symbol Level 1 Level 2 Level 3

1 (MaxIt, PopSize) A (250, 40) (200, 50) (100, 100)

2 N B 2 3 4

3 Smax C 8 10 12

4 η D 0.2 0.25 0.3

5 pMutation E 0.2 0.3 0.4

6 nArchive F 50 75 100

Table 2. Factors and their levels

The orthogonal array for this algorithm is L27. Table 3 shows L27 orthogonal array.

The quality index has been used for the comparison of  the results.
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Trial A B C D E F

1 A(1) B(1) C(1) D(1) E(1) F(1)

2 A(1) B(1) C(1) D(1) E(2) F(2)

3 A(1) B(1) C(1) D(1) E(3) F(3)

4 A(1) B(2) C(2) D(2) E(1) F(1)

5 A(1) B(2) C(2) D(2) E(2) F(2)

6 A(1) B(2) C(2) D(2) E(3) F(3)

7 A(1) B(3) C(3) D(3) E(1) F(1)

8 A(1) B(3) C(3) D(3) E(2) F(2)

9 A(1) B(3) C(3) D(3) E(3) F(3)

10 A(2) B(1) C(2) D(3) E(1) F(2)

11 A(2) B(1) C(2) D(3) E(2) F(3)

12 A(2) B(1) C(2) D(3) E(3) F(1)

13 A(2) B(2) C(3) D(1) E(1) F(2)

14 A(2) B(2) C(3) D(1) E(2) F(3)

15 A(2) B(2) C(3) D(1) E(3) F(1)

16 A(2) B(3) C(1) D(2) E(1) F(2)

17 A(2) B(3) C(1) D(2) E(2) F(3)

18 A(2) B(3) C(1) D(2) E(3) F(1)

19 A(3) B(1) C(3) D(2) E(1) F(3)

20 A(3) B(1) C(3) D(2) E(2) F(1)

21 A(3) B(1) C(3) D(2) E(3) F(2)

22 A(3) B(2) C(1) D(3) E(1) F(3)

23 A(3) B(2) C(1) D(3) E(2) F(1)

24 A(3) B(2) C(1) D(3) E(3) F(2)

25 A(3) B(3) C(2) D(1) E(1) F(3)

26 A(3) B(3) C(2) D(1) E(2) F(1)

27 A(3) B(3) C(2) D(1) E(3) F(2)

Table 3. L27 orthogonal array for ICASA algorithm

The results of  Taguchi tests are converted to S/N rate. The results of  parameter setting carried out are

given in Table 4. Considering Figures 10 and 11, the optimal levels for A, D and E factors are A(2), D(2)

and E(2), respectively. Figure 10 has been used to determine the optimal level of  B, C and E factors. C(3),

B(2) and F(1) levels are the best levels for these factors, according to Figure 11. 
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Parameters
Scales

Small Large

(MaxIt, Pop Size) (100,50) (200,50)

n 3 3

Smax 10 12

η 0.2 0.25

PMutation 0.3 0.3

nArchive 40 50

Table 4. Parameter setting values for the proposed DMOIWO algorithm

Figure 10. Average S/N rate for each level of  the factors

Figure 11. Average RPD for each level of  the factors

-909-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.2348

More data are shown in Figure 12 for further analysis. Considering the table, the factor with greater delta

value has a greater impact on the algorithm. Thus, factor MaxIt, PopSize has the greatest impact on the

algorithm, followed by η, PMutation, n, nArchive and Smax, respectively.

Figure 12. S/N values

5.3. Calculation Results

In order to evaluate the efficiency of  the proposed algorithm, it has been compared with conventional

MOPSO,  NSGA-II  and PAES algorithms.  Following the  implementation  of  the  algorithms  for  the

desired problems, DM, RAS, MID and QM indices were calculated for the algorithms and are shown for

small and large size problems in Tables 5 and 6, respectively. According to the results given in Tables 5

and 6, DMOIWO algorithm is observed to be more efficient compared with NSGA-II, MOPSO and

PEAS algorithms. DMOIWO algorithm achieves more Pareto responses in most small size and all large

size problems compared with other algorithms. In addition, in most small and large size problems, MID

and  RAS  values  are  smaller  in  the  proposed  algorithm  compared  with  those  in  other  algorithms,

indicating the efficiency of  DMOIWO algorithm. Moreover, high DM values in various problems also

show the efficiency of  DMOIWO algorithm.
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Problem Quality metric Diversity metrice RAS metric MID metric

No.
Jobs

M1 × M2 DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II

5

2 × 2 0.33 0 0.66 0 65.19 68.69 62.36 82.2 95.4 103.16 50.5 110.6 73.79 79.49 45.09 87.33

2 × 3 0.5 0 0.125 0.375 44.59 77.01 53.36 44.59 31.5 59 35 34.33 27.93 46.21 33.54 31.69

3 × 2 1 0 0 0 44.59 45.45 45.45 45.45 31.5 101 101 101 27.93 75.99 75.99 75.99

10

2 × 2 0 0 0 1 31.82 49.67 31.76 45.45 401.25 423.75 701.66 32 284.64 300.97 496.84 32

2 × 3 0 0.33 0 0.66 52.8 49.6 64.56 19.64 202.2 46.33 552.66 15 144.01 37.27 392.34 13.61

3 × 2 0.5 0.5 0 0 58.18 92.08 25.02 51.45 59.75 68 571 574 48.73 59.07 404.026 46.218

15

2 × 2 1 0 0 0 57.01 8.06 48.38 83.77 31.6 511.5 633.75 580.2 28.84 361.72 448.9 412.08

2 × 3 1 0 0 0 85.44 60.16 89.62 71.19 45 109.66 306 268.5 39.5 81.51 219.19 191.55

3 × 2 0 1 0 0 49.98 67.72 84 69.46 119.6 42 384 87.5 93.7 42 971.5 66.08

20

2 × 2 1 0 0 0 132.67 30.14 6.08 74.24 66.66 141.5 290.5 213 60.24 100.73 205.94 153.26

2 × 3 1 0 0 0 38.32 70.93 100.8 25 21.5 132.14 244 813 21.5 94.47 178.22 578.14

3 × 2 1 0 0 0 14.56 220 233 25 9 194 179 440 9 137.29 126.62 327.24

25

2 × 2 1 0 0 0 39.92 55.03 48.01 259 19 452.5 498.5 363 18.3 323.3 353.05 257.19

2 × 3 1 0 0 0 43.41 66.27 76.24 112.29 28.3 176.3 271.6 485 26.88 127.35 194.03 345.93

3 × 2 1 0 0 0 36.4 265 255 321 22.4 73 245 181 20.49 53 147.3 130.9

Table 5. Calculation results 

Problem Quality metric Divercity metrice RAS metric MID metric

No. Jobs M1 × M2 DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II DMOIWO PAES MOPSO NSGA-II

40

16 × 20 1 0 0 0 75.43 107.61 74.8 86.3 38.57 105.11 122.8 113.33 34.76 84.35 92.94 88.26

20 × 20 1 0 0 0 40.16 90.33 55.07 37.94 32.25 110 84.3 51 28.29 81.7 62.24 37.63

24 × 20 0.4 0.2 0 0.4 30.46 47.12 89.35 98.27 23 41.15 103.2 42 19.82 34.5 78.8 37.2

80

16 × 20 1 0 0 0 64.32 79.81 117.2 101.39 33.2 121.75 157.42 99.44 32.08 88.8 116.4 77.9

20 × 20 1 0 0 0 52.92 61.71 54.4 83.09 30.66 153.25 153 111.83 27.72 111.45 111.73 86.54

24 × 20 0.625 0.2 0 0.375 77.89 49.93 55.8 43.86 50.77 124.5 166.4 34 44.54 89.63 119.01 30.27

120

16 × 20 1 0 0 0 64.07 90.6 63.9 59.54 41.75 152.45 153 79.66 41.66 121.12 131.12 105.24

20 × 20 0.8 0 0 0.2 104.34 42.059 150.01 120.8 70.5 105.5 155.92 77.4 64.85 79.55 117.91 62.51

24 × 20 1 0 0 0 85.58 46.01 74.88 713.7 50.75 166.2 180.8 140.14 37.27 111.31 112.08 62.38

160

16 × 20 1 0 0 0 76.94 124.08 102.48 72.89 41 143.2 173.5 68.2 38.59 108.16 126.8 61.15

20 × 20 1 0 0 0 68.014 122.3 65.29 111.01 43.11 195.2 167.5 132.5 35.89 144.37 122.19 100.1

24 × 20 0.83 0 0 0.16 69.02 70.4 59.77 75.8 38.4 97.33 109.66 64.4 35.17 72.97 80.47 53.45

200

16 × 20 1 0 0 0 100.64 44.1 121.65 128.84 56.75 187.33 230.83 183.66 46.48 124.69 132.08 89.22

20 × 20 1 0 0 0 87.81 144.6 87.8 83.4 47.6 168.14 179.8 118.5 52.09 135.55 170.83 136.63

24 × 20 1 0 0 0 64.51 82.32 110.38 46.75 43.66 142.6 173.33 112.66 37.63 104.43 129.6 81.97

Table 6. Calculation results
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6. Conclusion

NWTSFFS problem has been investigated given the machinery start-up time, preparation of  jobs,

rework probability and non-identical machinery constraints considering minimization of  maximum

completion and average lateness times simultaneously in a multi-objective manner in this work. The

problem was  then solved using  the  proposed DMOIWO and conventional  NSGA-II,  PAES and

MOPSO algorithms. Ultimately, indices including DM, RAS, MID and QM were presented in order

to compare the efficiency of  the algorithms. The results of  the comparison indicated the efficiency

of  DMOIWO algorithm. Although the proposed algorithm is  efficient in term of  quality  of  the

obtained  solutions,  finding  appropriate  parameters  to  reach  a  high-quality  solution  needs  more

endeavor and is a time-consuming process. In this work, Taguchi parameter setting was used to solve

this problem, as a feature work it would be worthwhile to enhance the algorithm such that it can set

its  parameters  based on the  convergence  rate  and quality  of  the  best  solution.  Furthermore,  by

increasing the number of  decision variables the size of  the solution space grows exponentially. In

these cases, it would be beneficial to exploit a heuristic algorithm to generate some initial solutions

that have acceptable level of  quality. This hybrid algorithm can decrease the running time and the

number of  iterations as well.
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