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Abstract:

Purpose:  The goal of this paper is to develop a pragmatic system of a production throughput

forecasting system for an automated test operation in a hard drive manufacturing plant. The

accurate forecasting result is necessary for the management team to response to any changes in

the production processes and the resources allocations.

Design/methodology/approach: In this study, we design a production throughput forecasting

system in an automated test operation in hard drive manufacturing plant. The proposed system

consists of three main stages. In the first stage, a mutual information method was adopted for

selecting  the  relevant  inputs  into  the  forecasting  model.  In  the  second  stage,  a  generalized

regression neural  network (GRNN) was  implemented in the  forecasting  model  development

phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter

which selected from comparisons result among three optimization algorithms: particle swarm

optimization (PSO), unrestricted search optimization (USO) and interval halving optimization

(IHO).

Findings:  The  experimental  result  shows  that  (1)  the  developed  production  throughput

forecasting system using GRNN is able to provide forecasted results close to actual values, and to

projected  the  future  trends  of  production  throughput  in  an  automated  hard  disk  drive  test
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operation; (2) IHO algorithm performed as appropriate optimization method better  than the

other two algorithms. (3) Compared with current forecasting system in manufacturing, the results

show that the proposed system’s performance is superior to the current system in prediction

accuracy and suitable for real-world application.  

Originality/value: The production throughput volume is a key performance index of hard disk

drive manufacturing systems that need to be forecast. The production throughput forecasting

result  is  useful  information for management team to respond to any changes in  production

processes  and  resources  allocation.  However,  a  practical  forecasting  system  for  production

throughput has not been described in detail yet. The experiments were conducted on a real data

set from the final testing operation of hard disk drive manufacturing factory by using Visual Basic

Application  on  Microsoft  Excel© to  develop preliminary  forecasting  system for  testing  and

verification process. The experimental result shows that the proposed model is superior to the

performance of the current forecasting system. 

Keywords: forecasting  system,  general  regression  neural  network,  production  throughput,  interval

halving, hard disk drive manufacturing

1. Introduction

Recently,  hard  disk  drive  (HDD)  manufacturing  systems  have  become  more  complex  because  all

manufacturers have implemented fully or partially automated equipment in most production areas. The

most complicated area in an HDD manufacturing system is automated test operation, which includes the

final quality inspection processes for over 20 testing lines. Each testing line consists of more than 10

automated testing machines, each containing over 2,000 slots for testing individual disk drives. All the

testing machines are able to test different hard drives simultaneously using the specific test criteria for

each product, which include over 200 categories. Considering these complexities, the development of a

monitoring  and controlling  system for  this  operation  is  very  difficult  and  challenging  for  academic

research.  In  addition  to  the  problem of  complexity,  the  production volume of  any  automated  test

operation directly affects the ability to ship the product on schedule.

Generally, delivery time was scheduled by estimating the production throughput of the HDD automated

test operation,  which is  based on a deterministic  estimation or derived from the average value of  a

production parameter. Many parameters are characterized as random values, including the required test

time, which varies according to the individual HDD capacity and quality. Furthermore, mixed loading
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with different types of HDD configurations present in a single automated testing line is a major cause of

bottleneck events inside an automated testing machine. With this inherent complexity in the automated

test operation and daily uncertainties in the HDD manufacturing environment, it is difficult to estimate or

approximate the throughput of an automated testing machine using traditional methods or even advanced

analytical methods (Sukthomya & Tannock, 2005; Azizi, Ali & Ping, 2012). Consequently, the estimation

of production throughput for highly complex manufacturing systems has become an important issue.

Several forecasting models have been developed to predict or estimate different production performance

indices (Stoop & Bertrand, 1997; Huang, 1999; Sivakumar & Chong, 2001; Shanthikumar, Ding & Zhang,

2007; Hillberg, Sengupta & Til, 2009; Pradhan & Damodaran, 2009). Only a few forecasting models have

been developed for predicting production throughput,  and none of  these address the forecasting of

production  throughput  in  HDD manufacturing.  A  subset  of  the  reviewed  papers  deals  with  other

production performance index predictions, such as yield rate, cycle-time, flow time, overall equipment

effectiveness, production time, and completion time.

Forecasting systems for production throughput have been tested for small production system using an

approximate method and analytical formula (Baker & Powell, 1995; Popova & Wilson, 2000; Blumenfeld

& Li, 2005). However, current production systems have become larger and more complicated with co-

utilization of resources and various uncertainties. As a result, the use of an analytical formula and an

approximate  method  has  become  difficult,  and  this  approach  is  inadequate  for  generating  accurate

forecasts.

Perkinson,  McLarty,  Gyurcsik  and  Cavin  (1994),  Sivakumar  and  Chong  (2001),  Backus,  Janakiram,

Mowzoon,  Runger  and  Bhargava  (2006),  Shanthikumar  et  al.  (2007),  Azizi,  Ali,  Ping  and

Mohammadzadeh (2011)  and Azizi,  Ali,  Ping and Mohammadzadeh (2012)  have  also  studied  other

forecasting  models  such  as  simulation  models,  queuing  models,  regression,  Bayesian  methods,  data

mining, and neural network models. The main disadvantage of these models is consumption of resources,

especially in the data collection process before the model is built, and in the computational time, which

may require several hours to run, even on a powerful computer. Another problem is the difficulty in

modifying the model when the conditions and the assumptions of the actual system are changed.

Although  these  models  can  be  used  as  prediction  models  for  handling  both  linear  and  nonlinear

relationships, the development process is rather difficult and impractical for the current research problem.

Additionally, the accuracy of this prediction model fits only the specified data set. Thus, this approach

results in overfitting and an inability to generalize for another input data set (Huang, 1999). Furthermore,

the calculation time of the forecasting model is also important and should focus on current research.

(Sun, Lang, Wang & Liu, 2014)
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These previous forecasting models can also only provide precision for the data set used during the model

development.  Unfortunately,  these  models  are  impractical  to  manage  real  production  due  to  rapid

changes in production data and other variables in current manufacturing lines, as mentioned previously.

Therefore, it is not feasible to use these historical forecasting models because none of them are able to

produce the required precision in the acceptable range over time. Moreover, the development of a new

forecasting model may require a considerable amount of time and may not produce the forecasted result

for a decision making process in time to adjust production plan in response to changes. (Van Til, Hillberg

& Sengupta, 2003; Chien, Hsiao, Meng, Hong & Wang, 2005; Li, Fang, Liu & Juang, 2012; Chien, Hsu &

Hsiao, 2012)

In this work, production throughput is defined as the number of HDDs tested per hour. Production

throughput of test operation in an HDD manufacturing line directly affects on-time delivery. Production

throughput also measures the production capacity of each product and is the most important index for

controlling and monitoring shop floor operations in HDD manufacturing, as mentioned earlier.

Therefore, this article proposes a forecasting system for production throughput in an automated HDD

manufacturing test operation which can be practically implemented. The proposed forecasting system

includes three main stages: the input variable selection stage, the forecasting model construction stage,

and  the  forecasting  accuracy  improvement  stage.  The  proposed  system  will  forecast  production

throughput  using  historical  shop  floor  data  taken  from  the  actual  database  servers  of  an  HDD

manufacturing factory.

The remainder of this paper is arranged as follows. In Section 2, the proposed forecasting system and the

theoretical background of the selected forecasting methodology are presented. Section 3 explains the

details of the forecasting system development process. Section 4 presents the results of a comparative

study  among three  selected  optimization  methods  for  improving  of  forecasting  accuracy  which  are

conducted on the actual data from a real HDD manufacturing, to demonstrate the pros and cons of the

selected methods and to illustrate the applicability and accuracy of each approach. Section 5 presents

discussion and conclusions for further study and for practical applications.

2. Methodology

As  described  previously,  we  have  identified  a  model  for  developing  a  forecasting  system  for  the

production performance index, in which only production throughput is emphasized as a measure that can

be feasibly used in a real factory. Therefore, the aim of this research is to develop a forecasting system

with three important characteristics. First, the system must be able to decide on and select the input data
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that are most viable to the forecasted result. Second, the system itself must be able to automatically select

the format or parameters of the forecasting model. Lastly, in the future, if the system outputs a highly

imprecise forecast, it will be able to immediately and automatically adjust the forecasting model.

To accomplish the above objectives, the proposed approach in this research will develop a forecasting

system  by  following  three  main  stages:  the  input  variable  selection  stage,  the  forecasting  model

construction stage, and the forecasting accuracy improvement stage, as shown in Figure 1.

Figure 1. Proposed procedure for development of a forecasting system
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As shown in Figure 1, all historical data from a factory database are collected by the system in the first

stage. These data include the number of products that enter and exit the process during various time

periods (e.g., by hour, shift, and day). Next, each of the input variables enters the screening process,

which is carried out using the mutual information (MI) method.

The MI method (Shannon, 1948) was chosen as an appropriate method for input variable selection in this

study because it contains the required characteristics. MI is able to select variables that have either linear

or non-linear correlation, and therefore, determination of the correlation before selection is not necessary.

This method is also able to screen all data sets quickly without requiring pre-processing of inputs. The

applied theory and calculation procedures are elaborated in the next section.

2.1. Mutual Information (MI)

The mutual information method does not require the development of a forecasting model before use and

can be considered a model-free method (unlike a model-based method, which requires the model to be

developed beforehand). The model-free method is simpler because it requires less time to screen the data

because there is no need to run a model. MI has been developed based on the principles of information

theory and the notion of entropy proposed by Shannon (1948). The mutual information equation for

bivariate data is shown below.

(1)

where xi and yi are the bivariate sample pair, N is the sample size, Px,y (xi, yi) is the join probability density

at the sample point, and Px (xi) and Py (yi) are the univariate marginal probability densities at the sample

point, respectively. Equation (1) shows that probability density is necessary to determine the MI score. As

a result, Gaussian kernel density estimation was chosen as the appropriate and applicable method because

it is  more stable and better suited for calculation efficiency. The equation for kernel density for the

multivariate density function is shown below.

(2)

which can be simplified into the following equation.

(3)
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where   is the multivariate kernel density estimation,  d  is the dimension of the variable,  N  is the

sample size, and λ is a smoothing parameter that can be estimated by the following equation.

(4)

Then, substitution of all values in Equation (1) is used to obtain the MI score for each variable. This MI

score is then applied in the next step of the input variable selection method. The principle of Hampel

distance is applied in this work using the following calculation principle (May, Maier, Dandy & Fernando,

2008). Hampel distance is defined as follows.

(5)

where  s represents the modified Z-score scale and is defined as  s  = 1.4826*median{|MIi– MI0.5|}, and

MI0.5 = the median value of {MIi}. After obtaining the Hampel distance for each variable, those variables

that have a Hampel distance greater than three are selected because they are considered to be crucial for

the forecasting output.

This approach to detecting data outliers was proposed by Fernando, Maier and Dandy (2009). The MI

value  can  be  calculated  from the  statistical  relationship  between  the  input  and  output  variables  as

described in Equations (1) - (4).

Next, the Hampel distance is calculated using Equation (5). If an input variable has a Hampel distance

greater than three, it will be removed from the data set.

In the second stage, all the data for the selected variables are used to train and test the forecasting model

using the neural network approach. Actually, in the literature relating to the application of the neural

networks  in  forecasting  models  (Chtioui,  Panigrahi  & Francl,  1999;  Cigizoglu  & Alp,  2006;  Firat  &

Gungor, 2009; Turan & Yurdusev, 2009), only two architectural formats are considered to be appropriate

for the development of a forecasting model. One is the multilayer perceptron (MLP) format, which is a

time-lag feed-forward neural network (TLFN), and the other is the generalized regression neural network

(GRNN) format.

Both  of  these  approaches  have  advantages  and  limitations.  Considering  the  main  objective  of  this

research, the TLFN is more complicated in terms of programming and calculation methods and is also

highly time-consuming for identifying the appropriate architectural format for the forecast. In contrast,

the GRNN contains a general architectural format that requires less time for developing the forecasting

model from all available input data. However, certain parameters are required to improve the precision of

the forecast. The details of the GRNN are discussed in the next section.
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2.2. Generalized Regression Neural Network (GRNN)

The  GRNN was  first  proposed  in  a  study  by  Specht  (1991)  and  can  be  considered  as  a  type  of

probabilistic neural network that is different from other types of neural networks. The GRNN does not

require  an iterative  training procedure  because  it  can  formulate  the  forecasting  model  from a  large

amount  of  input  data  in  a  single  run.  The  error  in  the  forecasting  results  is  also  consistent.  The

architectural  structure  of  the  GRNN consists  of  four  layers:  the  input  layer,  the  pattern  layer,  the

summation layer, and the output layer, as shown in Figure 2.

Figure 2. GRNN architecture

The input layer is a layer of the input parameters obtained from the selection method and is linked with

the pattern layer. The pattern layer is a layer of the forecasting model that is used for testing and consists

of the output data collected in the past. The pattern layer is linked to the summation layer in which the

numerator and denominator of the forecasting equation are calculated. This calculated result is the  Y

value in the output layer, which is the last layer, as shown in Equation (6).

(6)

where σ is the smoothing parameter (sigma- weight), N  is the sample size, and   is

the Euclidean distance. A randomized initial value for the smoothing parameter was adopted in this stage,

as shown in Equation (6). The forecasting accuracy is improved in the third stage and the last stage. In the
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last stage, the smoothing parameter is  adjusted to reduce the forecasting error using an optimization

method. As mentioned, the smoothing parameter (σ) must be optimized to ensure maximum precision

from the forecasting model.

2.3. Optimization Methods for GRNN

We have studied three optimization methods selected based on their initial characteristics,  which are

primarily consistent with the research objectives: simple, less time-consuming, and more practical that

mean should move towards the best solution with requires only the common control parameter. These

three methods are: 1) particle swarm optimization, 2) the unrestricted search method, and 3) the interval

halving method. The calculation procedures for each method are explained in detail by Rao (2009) and

are summarized below.

2.3.1. Particle Swarm Optimization

Particle swarm optimization (PSO) mimics the behavior of a colony or swarm of insects (e.g., ants or

bees) or a flock of birds. For example, each particle represents a bird in a flock or a bee in a swarm. Each

particle in a swarm behaves using its own knowledge as well as the group intelligence. If one particle finds

a good path to food, the rest of the swarm will follow that path instantaneously, even if their locations in

the swarm are far away. The general concepts of PSO are listed below.

1. Each particle is located initially at random.

2. Each particle is assumed to have two characteristics, a position and a velocity.

3. Each particle travels throughout the design space and remembers the best position.

4. The particles  inform each other  of  good positions  and adjust  their  individual  positions  and

velocities to follow the best position.

2.3.2. Unrestricted Search Method

The unrestricted search method uses the concept of the range of an optimum solution that is unknown in

the most pragmatic optimization problem. As a result, the search steps must be carried out with no

restrictions on the  values  of  the  variables  to find the  optimal  solution.  The simplified steps of  the

unrestricted search method are described below.
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1. Initial estimate point = x1

2. Find f1 = f(x1)

3. Set a step size = s and an accelerated step size = a; find x2 = x1 + (a × s)

4. Find f2 = f(x2)

5. If f2 < f1 then xi = x1 + (i – 1)s. This process continues until f(xi) increases; after that, x(i-1)  or xi

can be taken as the optimum.

6. If  f2 >  f1 then the search direction will be reversed by  xi =  x1 – (i –  1)(a  ×  s).  this process

continues until f(xi) increases; after that, x(i-1) or xi can be taken as the optimum.

2.3.3. Interval Halving Method

In the interval halving method, approximately one-half of the range of the current interval will be deleted

in every iteration of the process. The simplified procedure can be described as follows:

1. Divide the initial interval of the restricted range  L0 = [a,b] into four equal parts and label the

middle point as x0 and the quarter-interval points as x1 and x2.

2. Calculate the evaluation function of f1 = f(x1), f0 = f(x0) and f2 = f(x2) .

3. Delete one half of the interval depending on f1, f0 and f2 values.

4. Stop when (b-a) is less than or equal to the target value.

Iteration of  the optimization process in  the last  stage will  continue until  the forecasting error  has

reached a minimum point. At this instant, the forecasting model will promptly forecast the output.

While the forecasting model is in use, a periodic check process will operate to determine whether the

forecasting error  is  in  the  acceptable  range.  The forecasting model  will  continue to run while  the

forecasting error is in range. Otherwise, the forecasting process will be halted and will return the first

procedure of Stage 1.

The proposed forecasting system differs from previous forecasting systems in the following ways.

• The forecasting system using GRNN is suitable for real world application, especially in HDD

manufacturing environment, unlike the other throughput forecasting systems that use another

forecasting model in their applications.

• The optimization algorithm using the interval halving method is simple and applicable, and only

requires a short run time to find optimal parameter.
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• The  proposed  system  is  developed  using  real  manufacturing  data  and  is  based  on  useable

conditions so that it can be used as a real-time monitoring system.

• The model can self-formulate and adjust (via  diagnostics) to the required accuracy threshold

within a short time period and does not need to go off-line to construct new model architectures.

3. Development of a Production Throughput Forecasting System

To improve the applicability and performance of the proposed procedure, the forecasting system was

developed using  the  Visual  Basic  Application (VBA) programming in Excel  because  of  the  ease of

importing data from the factory database and the simplicity of programming all algorithms using the cell

operation format. Furthermore, VBA is still widely used for production planning system in the factory for

several  reasons  including  the  ability  to  perform  rapid  prototyping  and  especially  in  familiarity  of

production planner (McKay & Black, 2007), so new production planning software will not be required to

implement this system. The forecasting system can be separated into three modules, as described in the

following subsections.

3.1. Input Selection Module

The input selection module was developed to calculate the MI score and the Hampel distance for the

input  variable  selection process.  A screen capture of  the module output is  shown in Figure 3.  The

highlighted areas are the crucial input variables that have Hampel distances greater than three. The details

of the algorithm in this module are shown below.

Figure 3. Output screen capture of the input selection module
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1. Count the number in the data set

2. For each input variable x

3. Calculate smoothing parameter (λ) using Equation (4)

4. Estimate multivariate kernel density  using Equation (3)

5. Calculate the MI score using Equation (1)

6. Calculate the Hampel distance using Equation (5)

7. If (Hampel distance > 3), then

8. Select that input variable for the forecasting module

9. End if

10. Repeat Steps 3-9 for all input variable x values

3.2. Forecasting Module

The forecasting module developed to train and test the GRNN algorithm was implemented to forecast

the output with a randomly selected initial smoothing parameter as shown in the screen capture of

Figure 4. The details of the algorithm in this module are shown below.

Figure 4. Output screen capture of the forecasting module using GRNN calculation
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1. Choose the initial random smoothing parameter (σ)

2. For all input data in the set (number of the collected data set)

3. For all input variables from the 1st module

4. Calculate the Euclidean distance 

5. Next input variable

6. Sum up for only part of the numerator in Equation (6)

7. Next data set

8. Use final summation result of step 6 to estimate  using Equation (6)

3.3. Accuracy Improvement Module

In the accuracy improvement module for the comparative studies, three optimization algorithms were

developed  to  find  the  ideal  smoothing  parameters  to  minimize  forecasting  error:  particle  swarm

optimization, the unrestricted search method, and the interval halving method. Of the three, the interval

halving method showed the best result (the interval value is the smoothing parameter), so only the screen

capture of the interval halving method is shown in Figure 5. The highlighted cells shown in column N,

rows 3 and 4, represent the optimum points of the algorithm.

Figure 5. Output screen capture of the accuracy improvement module 

using the interval halving method
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Since the interval halving method showed the best results in the comparative study section, only the

details of this method’s algorithm are show below.

1. Divide the initial interval boundary into three values between 1 and 100

2. For all three initial boundary values

3. Calculate the evaluate function (RMSE value)

4. Store each RMSE for comparison

5. Next boundary values

6. Compare each RMSE of the three boundary values

7. Set a new outer boundary that is smaller than the initial value from the comparison

8. If (at least two of three boundaries are equal), then

9. Set the optimal value as the boundary point

10. Else

11. Go back to Step 2

12. End if

4. Evaluation of Forecasting System

In this section, we describe the data used for the study, and report the results from all three optimization

algorithms  in  the  forecasting  models.  Finally,  we  evaluate  the  results  using  the  three  criteria,  and

comparisons are made among them.

4.1. Data Description

The data used to develop the forecasting model in this research were obtained from a hard disk drive

manufacturing facility in Thailand. Only data from the automatic test operation were collected, because

the test process is considered to be the crucial step for product quality testing before sending the unit to

packaging and shipping.

The testing process operation is quite complex because it uses an automatic testing machine system.

Additionally, the transfer of products in this process requires a production conveyor and autonomous
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robots. The testing machine is also used for testing other products, which complicates the situation even

further.

In addition to the complexity of this automatic testing system, the nature of this industry is such that at

least 100 products of various types and storage capacities must be tested, all require different testing

periods and conditions. As a result, operations with different testing periods have resulted in increasingly

complex product testing procedures, thereby rendering operational management even more difficult.

This management difficulty also includes the need to predict the production throughput rate, or the

testing throughput rate,  as  stated in this  research.  This performance index is  critical  and affects the

product shipping date, which directly impacts customer satisfaction. Therefore we have selected data

from a production testing unit in this hard drive manufacturing facility to develop the forecasting model.

The data being used to develop this forecasting model are taken from the overall data recorded by the

factory’s data management system. The system collects data on a number of products that are fed into

various process lines for testing and the number of tested products. The tested products are classified as

‘Pass’ or ‘Fail’, and the data are collected hourly, as shown in the sample data in Table 1. The first column

on the left side of the table shows the time period in which the data were collected, and the subsequent

columns show the number of hard drives fed into the testing unit and the number of hard drives that

were tested, respectively, from the first process through the last.

Table 1. Real input data set sampled from manufacturing facility

In addition, the sample data from one product show the relationship between the drive input numbers

and the drive output (pass) numbers as depicted in Figure 6.
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Figure 6. Drive input numbers and output (pass) numbers for each hour

In  developing  the  forecasting  model,  the  main  purpose  was  to  minimize  the  complexity  of  these

processes in an automatic testing machine by using data from various products that can be tested by this

single testing machine.  Unfortunately,  these products require different numbers of  testing processes,

ranging from two processes up to five processes. As a result, the total testing time for each product is not

equal.

To minimize the complications inherent in developing a forecasting model specifically for each product,

we assumed that all automatic testing machines in the testing department were a “black box” with each

individual function at each time point not completely understood. Based on this assumption, only the

data from the number of products fed into the testing department at a particular hour will remain as input

data for the forecasting system, as shown in Figure 7.

Figure 7. Input and output variables for the forecasting model
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This simplifying assumption reduces the complexity of the forecasting system by minimizing the amount

of primary input data required for the system and also generalizes the forecasting system. Generalization

allows the testing of the forecasting ability of the system with all products, thereby ensuring that this

developed system will  be applicable for real manufacturing situations, which differs from forecasting

models developed in the past. Applicability of the forecasting model is the main goal of this research.

4.2. A Comparative Study of the Three Optimization methods

Comparison of the results obtained from the three methods for finding an optimal smoothing parameter

shows that the most appropriate method is the interval halving method. The numbers and characteristics

of the optimized values obtained by each method are shown in Table 2 through Table 4.

4.2.1. Particle Swarm Optimization (PSO)

The particle  swarm optimization  algorithm was  adopted  to  find  the  best  smoothing  parameter  for

minimizing forecasting error. The step-by-step details of the PSO algorithm for the comparison study are

presented below and the results from the PSO algorithm are shown in Table 2.

Step 1: Choose the number of particles = 4 (to see swarm behavior)

Step 2: Set each initial particle value randomly (between 1 and 100)

Step 3: Calculate the evaluation function values for each particle

Step 4: Set the initial velocity of each particle = 0 (Table 2, cells B15:B18)

Step 5: Find Pbest and Gbest (Table 2, rows 20 to 23, in bold)

Step 6: Add one to the iteration number

Step 7: Find the velocities of the particles

Step 8: Find the new values for each particle

Step 9: Repeat Step 3 through 8 until all particle values converge
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Table 2. Result from the particle swarm optimization method

The criteria used to evaluate the results of PSO are shown in Table 2. These results show that even

though the optimal value can be reach at the 3rd or 4th iteration, the particle values still do not converge,

and therefore the stop condition cannot be met at this iteration. Therefore, the algorithm continues to

run without the convergence of the particle values after the 7th iteration. Moreover, the Gbest value (shown

in row 25) did not reach the optimal value, continuing to ramp up and progress to a new and impossible

optimal point, which demonstrates the main disadvantage of the PSO algorithm in our experiments.

4.2.2. Unrestricted Search Optimization (USO)

The unrestricted search optimization algorithm was implemented to find the smoothing parameter for

minimizing forecasting error. This method can be categorized as two search methods, one that searches

with a fixed step size and another that searches with an accelerated step size. In the proposed study, we

applied USO with accelerated step size due to the additional computational work that would be required

if a fixed step size ware adopted. The details of the USO algorithm for the comparison study in this

section are presented step-by-step below, and the results are shown in Table 3.

Step 1: Set estimated values for the step size and the accelerated step size

Step 2: Set the initial X1 point (row 6 on Table 3) randomly
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Step 3: Find the evaluation value of X1 (row 8)

Step 4: Calculate the X2 point (row 7)

Step 5: Find the evaluation value of X2 (row 9)

Step 6: Compare the evaluation values of X1 and X2

If (evaluation value of X2 < evaluation value of X1), then

Do while (evaluation value of X2 < evaluation value of X1)

Set X1 = X2

Set evaluation value of X1 = evaluation value of X2

Set X2 = X1 + (Accelerated step size * Step size)

Find the evaluation value of X2

Loop

Else if (evaluation value of X2 > evaluation value of X1) then

Do while (evaluation value of X2 < evaluation value of X1)

Set X1 = X2

Set evaluation value of X1 = evaluation value of X2

Set X2 = X1 - (Accelerated step size * Step size)

Find the evaluation value of X2

Loop

Step 7: Stop, if evaluation value of X2 increases

Step 8: Repeat Steps 1 through 7 for each run

The results of USO are shown in Table 3. Each run applies a different step size and an accelerated step

size. The results show that the optimized point with the smallest evaluation value is 16. However, the

unrestricted search method displayed inconsistencies in run 2 and run 10, which used the same step size

and accelerated size but differed in their number of iterations.
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Table 3. Result from the unrestricted search optimization method

4.2.3. Interval Halving Optimization (IHO)

The interval halving optimization algorithm was applied to find the smoothing parameter that minimizes

the forecasting error. As explained in Section 2, one half of the current interval is deleted at every stage.

The details of the IHO algorithm for the comparison study in this section are presented in Section 3.3.

The results  from the IHO are  shown in Table  4;  it  uses only  six  iterations,  which means  that  the

algorithm is able to reach the optimization point at 16 for minimization of the evaluation value. The result

also remains the same even if the runs are repeated many times, demonstrating that the IHO algorithm

performs with consistency.

Table 4. Result from the interval halving optimizations method

From  the  above  results  for  each  algorithm,  comparing  these  three  methods  shows  that  the  most

appropriate method is the interval halving method, with comparisons for the three criteria shown in

Table 5.
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Table 5. Comparison of the results among the three of the optimization algorithms

After deciding to use the interval halving method to find the optimal smoothing parameter, the root

mean square error (RMSE) was chosen as the evaluation value. The results prove that this approach is

able to find an optimal smoothing parameter that gives the smallest forecasting error, as shown in

Figure 8.

Figure 8. RMSE of the GRNN forecasting model using the IHO method

4.3. Evaluation of Forecasting Performance

The forecasting model and its procedure were developed based on 500 data sets obtained from the

manufacture of a particular product in one HDD manufacturing facility in Thailand. The data sets were

divided into two parts: 400 sets for training and 100 sets for testing and validation. The forecasting

ability of this model is shown in Figure 9. To present the actual forecasting ability, the research team

selected five methods to measure the forecasting error and compare the forecasted results with the

results from traditional and currently used practical forecasting systems. These five metrics are defined

as follows.
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Figure 9. Production throughput forecasting using a IHO-GRNN: (a) training data set, (b) testing data set

Mean Absolute Deviation (MAD)

(7)

Mean Squared Error (MSE)

(8)

-351-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1464

Root Mean Squared Error (RMSE)

(9)

Mean Absolute Percentage Error (MAPE)

(10)

Mean Percentage Error (MPE)

(11)

where Yt is the actual value and Ŷt is the forecasted value.

4.3.1. Current Forecasting System in Manufacturing

Currently, in hard disk drive manufacturing, none of the commercial software products for production

throughput forecasting are used. The enterprise resource planning (ERP) system is well-known and is

used in large-scale industrial manufacturing sites, but only a subset of the ERP modules are used, e.g., the

material  planning module,  the customer services response module,  and the  financial  and accounting

module. The production planning and forecasting module is not useful because of difficulties in the

compatibility of the modified ERP with each specific manufacturing process, production strategy, and

policy for the facility.

This manufacturing case study used only one simple equation.

(12)

where xt-h is the actual number of hard disk drives that entered to the testing machine in the period of hth

hour, and h is the testing time of each hard disk drive configuration. That means the manufacturing just

simple forecasting production throughput base on testing time only.

The current forecasting systems are shown in Figure 10. The forecast values do not match actual trends,

especially between the 30th and 45th hours. The comparisons between the current and proposed systems

show that the proposed forecasting system developed in this study produces better forecasting accuracy

than the current system for all measurement criteria, as shown in Table 6.
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Table 6 shows that the RMSE, MAPE, and MPE values for the proposed system are smaller than those

of the current system by nearly a factor of ten. It also shows that the MAD and MSE measurement values

are smaller than those of the current system.

Figure 10. Current forecasting system in HDD manufacturing

Table 6. Comparison of the results among the three of the optimization algorithms

-353-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1464

5. Conclusions

In this research, a forecasting system for production throughput was developed to create a system that is

applicable to real manufacturing situations and can be objectively utilized. Real data from an actual factory

were  used to  develop the  system.  The complexity  of  the  production process,  which uses  advanced

technology, further increases the difficulty of data collection and analysis. Compared with the existing

method and the selected optimization tools used in this comparative study, the proposed system has

following advantages:

• The  mutual  information  method  is  used  as  the  input  variable  selection  method  due  to  its

simplicity and speed in working without corrections between data sets.

• The generalized regression neural network method is selected as the architectural format in this

study because it takes less time to develop the forecasting model from all input data available.

• The interval halving method is selected as the most appropriate optimization method for the

smoothing parameter due to its simplicity, minimal run time, and practicality.

• The principle of this developed forecasting system allows it to automatically modify and select the

best input data by using the mutual information method, and to improve its forecasting precision

by using a generalized regression neural network integrated with the interval halving method.

The comparative study results show that the developed forecasting system for production throughput is

able to provide forecasted results close to actual values, and to project the future trends of production

throughput.  This  information is  critical  for  decision making in production planning and to manage

unforeseen problems. This study provides compelling evidence that this system should be used for all

forecasting steps. The reason for the seeming disparity is that this system differs from similar systems that

have been studied previously.

This study began by using the mutual information method for input selection. This method can be used

for all kinds of input data. For the forecasting model, this study proves that GRNN with an interval

halving method is appropriate for this kind of forecasting problem. This combination between GRNN

and optimization with an interval halving method has not been studied previously.

The following recommendations are proposed regarding the model’s applicability. The diagnostic ability

of the proposed system relies on the established acceptable error range for the forecast. Once the error

exceeds the acceptable range, the system will adjust its forecasted result by starting over from the first

step of the input variables selection and retrieve new values for the forecasted result.
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However, this self-adjustment capability must not be overly time-consuming. Consequently, when being

applied to a real world situation, a high-speed data retrieval system and a large amount of computational

work may be necessary to determine the forecasted result.
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