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Abstract:

Purpose: The potential of  diversified portfolio leads to the risk capital allocation problem.

There are many kinds of  methods or rules to allocate risk capital. However, they have flaws,

such as non-continuity, unfairness. In order to get a better method, we propose a new risk

measure to be the base of  risk capital allocation rule. 

Design/methodology/approach: We proposed two kinds of  allocation methods: one is

marginal risk contribution based on iso-entropic coherent risk measure(IE), the other one is to

combine the minimal excess allocation(EBA) principle and IE into risk capital allocation. The

iso-entropic coherent risk measure has many advantages over others; it is continuous and more

powerful in distinguishing risks, consistent with higher-order stochastic dominances than other

risk measures. And EBA is consistent with the amount of  risk, which means fairness for risk

capital allocation. 

Findings: Through cases, simulations and empirical application, it shows that these two

allocation rules satisfy some good properties, can be more efficient, more precise and fairer.

And the EBA based on IE may be the better one.
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Research limitations/implications: However, there are some problems still open. One is

how to treat the negative value of  allocation. Second is that the consistence between the

allocated risk capital and the amount of  the risk needs to be studied further.

Originality/value: A good risk measure is very important for risk capital allocation. We

proposed two methods to deal with risk capital allocation based on a new coherent risk

measure called iso-entropic risk measure, which is smooth and consistent with higher-order

stochastic dominance and has higher resolution of  risk. It shows that the risk capital allocation

rules based on iso-entropic risk measure are better than the other rules.

Keywords: risk capital allocation, marginal risk contribution, minimal excess principle, iso-entropic

coherent risk measure

1. Introduction

A financial institution faced with possibility of loss must hold an amount of money(risk capital)

to act as a buffer for the risky position. The risky position portfolio is composed of different

subportfolios, divisions, or lines of business. Because they are not perfectly correlated, some

hedge potential may come from the composed portfolio, which means that the total risk capital

for the composed portfolio can be less than the sum of all the risk capital of subportfolios. How

to allocate the total risk capital to each subportfolios fairly is very important, because it is the

key for performance evaluation as well as for pricing decisions (Van Gerwald, De Waegenaere

& Norde, 2012).

There are many papers involving this problem of risk capital allocation. Tasche (1999) argues

that the only ‘‘appropriate’’ way to allocate risk capital is to determine the marginal risk

contribution of each subportfolio. Cummins (2000) reviews different allocation methods in

insurance industry, he argues that the methods must be associated with instruments for

management decision. Overbeck (2000) apply the marginal risk contribution method based on

expected shortfall (ES) computation to allocate risk capital in a credit portfolio. Myers and Read

(2001) discuss the marginal risk contribution allocation rule based on game theory. Denault

(2001) argues that the essential of allocation is to allocate the benefit from the diversification

of portfolio into every sub-portfolio fairly. In the framework of game theory, he shows that

when business divisions are infinitely divisible, the only allocation that satisfies this fairness

condition is the marginal risk contribution, called Aumann–Shapley value. Overbeck (2000)

and Panjer (2002) propose a kind of marginal risk contribution allocation rule based on risk

measure of Expected Shortfall (ES). This is called Conditional Tail Expectation (CTE) rule, which

is a special case of Aumann–Shapley value. 
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Tasche (2004) studies the marginal risk contribution from the view of risk performance

management, and he points out that marginal risk contribution is the derivative of total risk

capital. Venter (2004) argues that besides ‘fairness’, the profitability of every division and its

potential benefit to the whole portfolio(company) must be considered in the goal of capital

allocation. 

Kalkbrener (2005) proposes a system of axioms that a good risk capital allocation rule must

satisfy. He points that the suitable allocation method satisfying all the axioms must be based

on the risk measure with the property of subadditivity and positive homogeneity. Dhaene,

Henrard, Landsman, Vandendorpe and Vanduffel (2008) proposes a kind of allocation rule

based on CTE rule, where the distribution of risk is elliptical, and presents the approximate

solutions for normal distribution and log-normal distribution. Kim and Hardy (2009) suggest an

allocation rule based on solvent capacity, which satisfies the requirement of the limited liability

of shareholders. 

Dhaene, Tsankas, Emiliano and Vanduffel (2012) view this allocation problem from another

perspective. In their rule, it requires that the weighted sum of difference between real loss and

the capital allocated to individual division must be the minimal. Based on this idea, Van

Gerwald et al. (2012) propose one kind of risk capital allocation method called Excess-Based

Allocation (EBA) rule. Expected excess loss of one subportfolio is the expected of the difference

greater than zero between the loss of the subportfolio and the risk capital allocated to it. The

goal of their method is to find a solution to minimize the excesses of all the subportfolios in a

lexicographical sense (Fishburn, 1974). This approach is inspired by the fact that allocated risk

capital based on the Aumann–Shapley value can lead to undesirable result in the sense that

the expected excess loss can differ substantially among subportfolios. Large differences in

expected excess losses could be perceived as unfair by managers who are evaluated. 

Zheng and Chen (2012) propose a new coherent risk measure based on relative entropy, which

is obtained under the theory framework of coherent risk measure from Artzner, Delbaen, Eber

and Heath (1999). They call this new measure iso-entropic risk measure. And they proved that

the new risk measure is smooth and is consistence with higher-order stochastic dominance

than ES, so it has higher capacity of identification to risk. The application of it to portfolios

selection, it turns out that it has more powerful in identification the risk (Zheng & Chen,

2014a,b).

Based on the iso-entropic risk measure, we propose two kinds of risk capital allocation

methods: one is marginal risk contribution (or Aumann-Shapley value) based on iso-entropic

coherent risk measure (IE), the other one is to combine the minimal excess allocation (EBA)

principle and IE into risk capital allocation. We show that these two allocation rules satisfy

some good properties, can be more efficient, more precise and fairer. And the EBA based on IE

may be better. The methods are showed through examples and real data case.
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The rest of the paper are arranged as follows: in section 2, the iso-entropic coherent risk

measure is introduced; in section 3, we introduce two kinds of risk capital allocation rules

based on iso-entropic coherent risk measure; and give some examples to show their good

properties; in section 4, these risk capital allocation rules are applied to real data in Chinese

market; in section 5, the performance of these allocations are displayed; in the last section, we

conclude.

2. Iso-entropic Coherent Risk Measure

Here, we introduce briefly the main risk measures used for allocation of risk capital, especially

the iso-entropic coherent risk measure proposed by Zheng and Chen (2012). 

This paper focuses mainly on the allocation of risk capital to subportfolios. We consider a

portfolio consisting of N subportfolios, whose losses are random Xi, i = 1,..., N at a given future

data. So the whole portfolio is X P=∑
N i=1

X i . Throughout the paper we use some notations as

following:

ℕ={1, ...,N }  denotes the set of subportfolios.

Ω={ω 1,... ,ωm} denotes the set of states of the world.

p(w) is the probability of Xi(w) in the state w.

2.1. The Coherent Risk Measures

How to measure the risk of a position is one of the basic tasks in finance. Before allocating the

risk capital, the total risk capital requires must be computed by risk measure. The most widely

used methods in practice are standard deviation and subsequent VaR(Value at Risk). However,

both have serious drawbacks. At the final of last century, a new promising method to quantify

risk was proposed by Artzner et al. (1999). Since their seminal work, the theory of coherent

risk measures has rapidly been evolving (Acerbi, Nordio & Sirtori, 2001; Acerbi & Tasche,

2002). Recently, the most fashionable coherent risk measure is ES. Compared to VaR, it

measures not only the probability of loss but its severity as well. It is seemly that ES might be

the most important subclass of coherent risk measures. The four conditions a coherent risk

measure must satisfy is as follows:

• Monotonicity: if X ≥ Y, then r(X) ≥ r(Y).

• Translation invariance: if c ℝ , then r(X + c) = r(X) + c.
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• Positive Homogeneity: if l ≥ 0, then r(l X) = l r(X)·r(X + Y) ≤ r(X) + r(Y).

• Subadditivity: r(X + Y) ≤ r(X) + r(Y).

Apparently, standard deviation s as a risk measure is not a coherent one. It does not satisfy

monotonicity and translation invariance. 

VaR at level a  (0,1] defined for X on a probability space (W, F, P) is:

VaRa(X) = q1-a(X) (2.1)

where qa(X) is the 1- a -quantile of X. VaR does not satisfy subadditivity, so the total risk

capital for the composed portfolio can be more than the sum of all the risk capital of

subportfolios. This is not identical to the real intuitive feeling about risk diversification of

portfolio, so VaR is not a suitable risk measure for capital allocation.

ES at level a  (0,1] is defined as: 

ESa (X )= 1
a
∫

0

a

VaRu(X )du (2.2)

ES satisfies monotonicity, translation invariance and positive homogeneity, and subadditivity, it

is coherent. 

2.2. Iso-Entropic Coherent Risk Measure

It is seemly that ES might be the most fashionable king of coherent risk measures. However, it

has disadvantage that it depends only on the tail of the distribution, so it is not smooth

(Cherny & Madan, 2006). And it is consistence only with second-order stochastic dominance,

which will lower its capacity of identification to risk. 

Zheng and Chen (2012) propose a new coherent risk measure based on relative entropy, which

is obtained under the theory framework of coherent risk measure from Artzner et al. (1999).

They call this new measure iso-entropic risk measure. And they proved that the new risk

measure is smooth and is consistence with higher-order stochastic dominance than ES, so it

has higher capacity of identification to risk. The application of it to portfolios selection, it turns

out that it has more powerful in identification the risk (Zheng and Chen, 2014a,b).

According to the theorem of Artzner et al. (1999), any coherent risk measure r has basic

representation as follows:

ρ (X )=sup
Z D

eP [ZX ]

subjected t o :Z≥0,E P [Z ]=1
(2.3)
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with a certain set D of probability measures absolutely continuous with respect to P. Zheng

and Chen (2012) define the set D via relative entropy: 

D = {Z : Ha = EP[Z log Z]} (2.4)

Denote Z=dQ
dP'

, then EP[Z log Z] is relative entropy of Q = P. Relative entropy is also called

Kullback–Leibler divergence or information divergence. Denote Ha = g(a), a  (0,1]. By using

calculus of variations, the solution is Z✳=z (X ,a)=emX

c

where c = E [emX], E[·] = EP[·] (for simple, subscript is omitted thereafter). At the mean time it

must hold that m ≥ 0 and:

E [ (mX−logc)emX

c ]=Ha (2.5)

It means that m = m(X,a) is determined by X and a through formula(2.5) uniquely. Then, the

iso-entropic risk measure has the style as follows: 

ρ a(X )=E p[Z
✳ X ]=∫0

1
qu(X )zu(X ,a)du (2.6)

where Z u(X ,a)=emqu(X )

c
.

Apparently, iso-entropic risk measure is coherent. It satisfies all the four axioms: monotonicity,

translation invariance, positive homogeneity and convexity or subadditivity. And because it

depends not only on the tail of the distribution, but the whole information, it is not a 0-1 risk

measure, so it is smooth.

According to Zheng and Chen (2014a), one good risk measure must have high resolution of

risk, besides that it satisfies the four axioms above mentioned. The resolution of risk is the

discrimination capacity of risk. The theory of stochastic dominance may be the most important

method to test the discrimination capacity of risk measure by now. The relationship between

the risk measure and stochastic dominance determines the resolution of risk for the risk

measure. In general, the order of risk measure consistent with stochastic dominance

determines the resolution of risk, higher the order, higher the resolution is.

It is pointed out that VaR is consistent with first-order stochastic dominance but ES is

consistent with second-order stochastic dominance (Wong & Ma, 2008; Ma & Wong, 2010).

Zheng and Chen (2014a) proved that iso-entropic risk measure is consistent with higher-order

stochastic dominance as the following theorem:
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Theorem 2.1 

For all X and Y that have continum supports and are atomless and absolute integrable, and

have n-2-order continuous differentiable distribution function then for a  (0,1], it must hold

true that

X ≾
nSD

Y⇒ρ a (X )≤ρ a (Y ),

∀a  ( 0,1 ] ,n=1,2,3. ..
(2.7)

Here X ≾
nSD

Y is denotes that X stochastic dominates Y with n-order (simplified as nSD). 

It must be pointed that when n > 2, the condition of continuous differentiable distribution

function is not be needed, which means that iso-entropic risk measure are at least consistent

with higher-order stochastic dominances the first-order and second-order. 

Consistence with stochastic dominance in n-order means that risk measure can rank the two

risks X and Y with the same order stochastic dominance, correctly. However, if the two risks X

and Y have not the same order stochastic dominance with that of the risk measure, it cannot

rank them rightly. So, the iso-entropic risk measure has higher resolution of risk. It is more

suitable as a risk measure. Zheng and Chen (2014b) use portfolios selection model based on

this iso-entropic risk measure in Chinese stock market, it turns out that this risk measure has

the most powerful higher resolution of risk, comparing with other risk measures like standard

error, VaR and ES. In this paper, we will allocate the risk capital based on this iso-entropic risk

measure.

3. Risk Capital Allocation Models

In this section, we define risk capital allocation problem and its rules, and then introduce some

methods for risk capital allocation, especially the method based on iso-entropic risk measure.

3.1. The Problem of Risk Capital Allocation

Given a coherent risk measure r, the risk capital needed is ρ (X P)=ρ (∑i=1

N
X i) , and according

to Subadditivity, it implies that: 

 ρ (∑i=1

N
X i)≤∑i=1

N
ρ (X i)

This means that the amount of risk capital for the aggregate portfolio is weakly less than the

sum of the amounts of risk capital for every individual subportfolio because of diversification
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effects. There are gains from diversification, and the allocation problem is how to allocate

these gains over the subportfolios properly. 

Denote that the total risk capital for the portfolio is ap, for arbitrary allocation A(R) = {a1,...,aN},

it satisfies

ap=∑
i=1

N

ai=ρ(X P) (3.1)

Here R = R(X, p, r) is one certain allocation problem. p(w) is the probability of Xi(w) in the

state w. W = {w1,...wm} denotes the set of states of the world. X = {X1,...XN} denotes the

losses of the n subportfolios. r is one certain risk measure. 

Van Gerwald et al. (2012) argue that a good allocation rule the following properties:

• No Diversification: if ρ (X P)=∑
i

N

ρ(X i ) , then ai = r(Xi).

• Riskless Portfolio: if Xi = c, then ai = c.

• Symmetry: if Xi = Xj, then ai = aj.

• Translation Invariance: if X̂={X 1,... , X i+c ,X N } , then â j=a j+ce i , where ei is the unit

vector for portfolio i.

• Scale Invariance: if X̂=cX , then â j=ca j

In the following subsection, we will introduce some methods of risk capital allocation, and their

drawbacks, then introduce our methods based on iso-entropic risk measure.

3.2. Marginal Risk Contribution Methods and Iso-Entropic Coherent Risk Measure

The marginal risk contribution rule has received considerable attention in the literature. In

game-theoretic framework, it is also called Aumann-Shapley value (Denault, 2001). Let

r : [0,1]N  R be given by:

r (s1,... , sN)=r (s)=ρ (∑
i=1

N

s i X i) (3.2)

The marginal risk contribution (Aumann–Shapley value) is defined as:

ai=
∂ r (s)
∂s i

∣s=(1,. ..,1 ) forall i ℕ (3.3)
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This means that the risk capital ai allocated to a subportforlio i ℕ is its marginal risk

contribution to the aggregate risk ρ (∑
i=1

N

si X i) .

A special case is that when the risk measure is Expected Shortfall (Dhaene et al., 2008). In

that case, the marginal risk contribution, if it exists, is given by

aes i=
1
a

E [X i1Xp>q1−a (Xp )
+β X i1X p=q1−a (X p)

] (3.4)

Where β ={a−E [1Xp>q1−a (xp )
]

E [1Xp=q 1−a (x p)
]

E [1Xp=q1−a (x p)
]>0.

0, else

.

This method is also called to CTE (conditional tail expectation) allocation. When the portfolio Xp

is continuous, b = 0, then (3.3) changes into:

aes i=E [X i ∣X p>q1−a (X p)] (3.5)

It can be seen that marginal risk contribution rule satisfies all the five properties above

mentioned. Denault (2001) and Tasche (1999) identify the marginal risk contribution rule as

the unique rule that satisfies some desirable properties. 

However, It has been argued that one of the drawbacks of the Aumann-Shapley value is that it

requires differentiability of r(·) (Fischer, 2003). Van Gerwald et al. (2012) shows that even

when the differentiability condition is satisfied, allocating risk capital based on the Aumann-

Shapley value may lead to undesirable allocations. For example, when the risk measure is

Expected Shortfall, because it only considers a little part of information of the loss distribution,

the amount of risk capital allocated to a portfolio depends only on the distribution of its loss in

those particular states of the world. This can lead to allocations that the more risky portfolio

gets allocated less risk capital and would be perceived as unfair. 

For this reason, we propose risk capital allocation methods based on iso-entropic coherent risk

measure. Iso-entropic coherent risk measure used all the information of the loss distribution,

so the amount of risk capital allocated to a portfolio depends on the distribution of all the

states of the world. And, it is not a 0-1 risk measure, it is a smooth one.

According to the marginal risk contribution rule, we can induce the marginal risk contribution

rule or the Aumann-Shapley value based on iso-entropic coherent risk measure. From Equation

(2.5-2.6) and Equation (3.2), we have

r (s1,. ..,sN)=r (s)=
E [ems X Ps xPs]

Eem
s
X

Ps

(3.6)
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Where ms satisfies:

E [ (ms
X

Ps
−log(Eem

s
X

ps))em
s
X

Ps

Eem
s
X

Ps ]=Ha (3.7)

and X Ps=(∑
i=1

N

s i X i) . 

Through Equation (3.7), Equation (3.6) can be rewritten by:

r (s1,. ..,sN)=r (s)=
Ha+logE [ems XPs ]

ms

(3.8)

So we have

∂ r (s)
∂si

=
E [emPs X Ps s i X i]

Eem
Ps

X
Ps

(3.9)

So the marginal contribution based on iso-entropic risk measure is as follows:

aiei=
∂ r (s)
∂s i

∣s=(1,... ,1) =
E [emP X P X i ]

Eem
P
X

P

(3.10)

Where X P=(∑
i=1

N

X i) , and mP satisfies:

E [ (mP
X

P
−log(Eem

P
X

P))em
P
X

P

Eem
P
X

P ]=Ha (3.11)

It can be seen that marginal risk contribution rule aiei satisfies all the five properties above

mentioned. This is very easy to be proved.

As above mentioned, because the iso-entropic coherent risk measure is better than ES, the

Aumann-Shapley value based on iso-entropic coherent risk measure is better than that based

on ES measure. To show this, we give an example, which is the same as Van Gerwald et al.

(2012).

Example 3.1. 

Consider a risk capital allocation problem defined by W = {w1,...w4}, and ℕ={1,2 }

π =[0,1
0,1
0,4
0,4

], X1=[ 60
0
30
−15

] ,X 2=[ 6
60
γ
30]

where γ ℝ . 
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So 

X
p
=X

1
+X

2
=[ 66

60
30+γ
15

]  

Firstly, we compute the expected shortfall (ES) and iso-entropic risk measure (IE, hereafter)

for every subportfolio Xi and portfolio XP at a = 0.15 level. The distribution of X1 is known, so

its risk amount is fixed with any risk measures, and ES(X1) = 50, IE(X1) = 41.6. However, the

risk amount of X2 and XP depend on parameter γ ℝ . Their expected shortfall amounts are:

ES (X 2)=50✳ 1γ≤30+(40+γ
3
)1>30

ES (X P)=64✳1γ≤30+(54+ γ
3
)1

 (30,36 ]+(30+γ )1>36  

This means that when g < 30, the risk amount for X1 and XP with ES measure are fixed. But, it

is obvious that the risk amounts will be decreased with the parameter g decreasing. Because

the ES risk measure only considers part of the information of the distribution, it can not show

this decreases at all! But, the iso-entropic risk measure can show this. We calculate the risk

amount IE(X2) and IE(XP) with iso-entropic risk measure. Because there are no analytic

solution for iso-entropic risk measure, we just compute the numerical value, and the results

are showed in Figure 1. From Figure 1, we can see that, IE(X2) and IE(XP) vary with parameter

g, which is consistent with the real sense. For example, if g = -15, X2 is riskier than X1, but

ES(X1) = ES(X2), which means expected shortfall can not distinguish them. However, iso-

entropic risk measure can do, because IE(X1) < IE(X2).

Figure 1. Risk amount dynamics with g based on different risk measures

-540-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1375

Secondly, we compute the marginal risk contribution (Aumann-Shapley value) based on these

two risk measures. For expected shortfall (ES), according to Equation (3.4), when g = 30, or

g  = 36, ES(s1X1 + s2X2) is not differentiable, which means that Aumann-Shapley value based

on ES does not exist at g  = {30,36}. The other Aumann-Shapley values are as follows: 

 aes(X1)=40 ✳1γ <30+50 ✳1γ <(30,36)+30 ✳1γ >36

aes(X 2)=24 ✳1γ <30+(4+
γ
3
)1γ <(30,36)+γ 1γ >36

As Van Gerwald et al. (2012) pointed, at g  = {30,36}, Aumann-Shapley values for both X1 and

X2 have significant change. For example, with a marginal increase in g  from just below 30 to

just above 30, the amount of risk capital allocated to subportfolio X2 jumps down by 41.7%;

and with a marginal increase in g  from just below 36 to just above 36, the amount of risk

capital allocated to subportfolio X2 jumps up by 125%, it is so big! 

But, when we use iso-entropic risk measure to compute Aumann-Shapley values, the

indifferentiable point does not exist, there are no such abrupt changes, the Aumann-Shapley

values varies with g  smoothly. The results are showed in Figure 2. From Figure 2, we can

conclude that iso-entropic risk measure is more suitable for risk capital allocation than

expected shortfall. Iso-entropic risk measure can reflect the real change of risk sensitively; and

it is smooth, there are no differentiability problems. 

Figure 2. Aumann-Shapley values dynamics with g  based on different risk measures
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In addition, Van Gerwald et al. (2012) pointed out that, the amount of risk for X2 is bigger than

X1, but when g  < 36, the risk capital allocated to X2 smaller than that to X1. This implies that

the more risky subportfolio gets allocated less risk capital. It may be unfair. We can see from

Figure 2 that Aumann-Shapley values based on Iso-entropic risk measure can not solve this

problem, neither.

Another drawback of allocating risk capital based on Aumann-Shapley value is that it can lead

to the situation that certain portfolios are allocated a negative risk capital. Though, negative

risk capital shows that the corresponding portfolio provides some hedge potential. However,

when it is used in a ratio of return over allocated risk capital-type performance measure, it will

yield a bad result, because a slightly negative risk capital would yield a largely negative risk

adjusted performance measure (Denault, 2001). Let us see another example, which is the

same as that in Van Gerwald et al. (2012).

Example 3.2. 

Consider a risk capital allocation problem defined by W = {w1,...w3}, and ℕ={1,2,3 }

 π =[1 /3
1 /3
1 /3] , X1=[−5

25
−5] ,X 2=[ 10

10
−5] ,X 3=[ 0

10
60]

So 

 X P=X 1+X 2+X 3=[ 5
45
50]

We can compute the Aumann-Shapley values for all the three subportfolios based on ES and

iso-entropic risk measure, at any level, a = 0.1 for example:

(aes(X1), aes(X2), aes(X3)) = (-5, -5, 60), and (aie(X1), aie(X2), aie(X3)) = (-4.6, -4.8, 59.3)

We can see that there are negative risk capital allocation both based on expected shortfall and

iso-entropic risk measures. Because there are several drawbacks, marginal risk contribution

(Aumann-Shapley values) may be not a good allocation rule. So, Van Gerwald et al. (2012)

proposed a new allocation rule called Excess based allocation. In next subsection, we will

introduce it, and discuss its property, especially this method based on iso-entropic risk

measure.
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3.3. Excess Based Allocation Rule and Iso-Entropic Coherent Risk Measure

To avoid the draws of marginal risk contribution rule, Van Gerwald et al. (2012) proposed one

allocation rule based on excess of loss over the risk capital, called EBA. They point out that

because part of the probability distribution of the individual losses is ignored, it can lead to

error allocations, which in turn implies that the expected losses of portfolios in excess of the

amount of risk capital allocated to them can differ substantially across portfolios. So, they try

to find an alternative allocation rule to minimize the excess risks in some rational sense, such

as lexicographical ordering.

Suppose that S  2n, for an allocation problem R(X, p, r), as is the risk capital allocated to S,

and XS is the loss variable, then the excess of S respect to as is defined: 

e(S ,a,R)=E [(X S−as)1X
S
>a

S
] (3.12)

And then EBA (Excess based allocation) is defined as:

EBA={a∣θ [ ē(a ,R)]≤lex θ [ ē(y ,R)] }
aF (R)and∀ y F (R)

(3.13)

Where F(R) is the set of all feasible risk capital allocations for a risk capital allocation problem

R, it requires that F(R) must satisfy Equation (3.12) and min
ω Ω

X i (ω )≤ai≤ρ (X i) . And e(a, R) is

the vector that contains the excesses of all subsets of portfolios S  2n with respect to the

allocation a. And q[x] is a descending permutation of vector x = {x1, x2,...}. Equation (3.13) is

to determine the feasible allocation that minimizes the excesses in lexicographical sense. 

Lexicographical ordering is defined as: for k ℕ , and any two vectors x ,y ℝk , x is

lexicographically strictly smaller than y, denoted as x <lex y if there exists an i ≤ k such that xi <

yi and for all j<i it holds that xi = yi. Moreover, x is lexicographically smaller than y, denoted as

x≤lex y if x = y or x <lex y .

Van Gerwald et al. (2012) have proved that EBA of Equation (3.13) is unique. And they show

that EBA satisfies all the five properties above mentioned. Further, they show that it satisfies

continuity on R, which means that when the distribution of loss is discrete, the allocation of

EBA is continuous, not as the allocation of CTE. And EBA is not negative, which will be very

suitable for performance evaluation.

To solve the allocation problem of EBA easily, Van Gerwald et al. (2012) propose a linear

programming approach. Their approach is inspired by an approach to determine the nucleolus

of a cooperative game. Before the linear programming, some notations must be defined. 
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They denote b01, b02, b1, ..., bP as follows:

{ b01={ i∣ai=min X i(ω )} ,
b02={i∣ai=ρ(X i )} ,

b1={S∣eS=max {eT∣T⊆n}},
b

j
={S∣eS

=max {eT
∣T⊆n ,T∉b

1
∪...∪b

j−1}}

(3.14)

for every j ℕ, j≥2 such that b1∪...∪...b j−1≠2n . The number pℕ , such that b1∪...∪...bP=2n ,

and for all 1 ≤ k ≤ p，it holds bk ≠ . And eS = e(S, a, R).

Then solving the following linear program problem pk(b1, ..., bk-1, e1, ..., ek-1):

minv
k

s .t . ai
k≤ρ (X i) , i n ,

ai
k≥minX i (ω ), i n

aP
k=ρ (X P),

∑ π (ω )· λ k(S ,ω)=e j ,Sb j , j<k ,

∑ π (ω )· λ k(S ,ω)≤vk ,S2n∖(b1∪...∪bk−1),

λ k (S ,ω)≥X S (ω )−aS
k ,S2n,

λ(S ,ω )≥0,S2n,ω Ω

(3.15)

Denote the a feasible solution to the linear program (3.15) by the tuple ak ,vk ,λ kRNxRxRmx2N

,

and the optimal solution of pk(b1, ..., bk-1, e1, ..., ek-1) is (ak, vk. lk). For the optimal solution,

denote 

b̄k={S 2n∣es=v̄k } ,
b̄01={ i n∣ā i

k=min X i(ω )},
b̄02={ i n∣āi

k=ρ(X i )}.
(3.16)

Then according to the Lemma 4.3 in Van Gerwald et al. (2012), it shows that if vk = 0, then

EBA = ak; if vk  0, then EBAS = ak where S = bk.

At last, the algorithm of the linear program problem is given as follows:

(1) Set k = 1.

(2) Obtain an optimal solution ( ak, vk, lk) to pk(b1, ..., bk-1, v1, ..., vk-1).

(3) If vk  0 go to Step 4, if vk = 0 else stop.

(4) If b̄1∪...∪... b̄k≠2n , let k = k+1, else stop.

After Several times of iteration, we can get the final result: a = EBA.

For the EBA allocation rule, Van Gerwald et al. (2012) proved that if the risk measure used in

EBA is a coherent one, it satisfies all the five properties: No Diversification, Riskless Portfolio,
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Symmetry, Translation Invariance and Scale Invariance. In addition, they pointed out that EBA

also has continuous property and it can solve the problem brought by marginal risk

contribution rule mentioned above, such as abrupt changes, unfairness and negative values in

allocation.

Now, let’s use the Examples 3.1 and 3.2 again to show the advantages of EBA. Firstly, let’s see

Example 3.1, we compute the EBA based on expected shortfall and iso-entropic risk measure.

The results are showed in Figure 3. In the figure, EBAES means that EBA based on expected

shortfall for X1 and X2 are the same EBAES(X1) = EBAES(X2) when g  32.4, and when g  32.4,

EBAES(X1)  EBAES(X2); namely EBAES(X1)  EBAES(X2) for all g  R. 

For EBA based on iso-entropic risk measure, the things are the same: when g  32.4

EBAIE(X1) = EBAIE(X2), denoted by EBAIE; when g  32.4, EBAIE(X1)  EBAIE(X2), so EBAIE(X1)

 EBAIE(X2) for all g  R. Because, when g  32.4, EBAIE(X2) almost equals EBAES(X2), we use

EBA2 to denote them. 

From the Figure 3, we can conclude that: Firstly, both EBA based on expected shortfall and iso-

entropic risk measure are continuous, there are no abrupt changes. 

Secondly, both methods are consistent with the amount of risk, namely, r(X1)  r(X2)  EBA(X1) 

EBA(X2), which means fairness for all the subportfolios.

Thirdly, EBA based on iso-entropic risk measure(EBAIE) is better than EBA based on expected

shortfall(EBAES), because it EBAIE is more sensitive and smoother in risk change than EBAES,

which is the main contribution of iso-entropic risk measure.

Figure 3. EBA dynamics with based on different risk measures
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Now let’s see Example 3.2. We compute the EBA based on expected shortfall and iso-entropic

risk measure. The results are:

(EBAES(X1), EBAES(X2), EBAES(X3)) = (10.06,2.43,37.5) 

and

(EBAIE(X1), EBAIE(X2), EBAIE(X3)) = (10.0,2.47,37.47).

We can see that there are no negative value any more. So, Van Gerwald et al. (2012) pointed

that it is one of the advantages of EBA compared with marginal risk contribution rule. But for

this point, I don’t think so. It is because that for any risk capital allocation rule, if it satisfies

the property of translation invariance, it can be negative. Translation invariance means that

EBA(Xi + c) = EBA(Xi) + c, we can always find many c to make EBA(Yi ) = EBA(Xi + c)  0. For

this point, negative allocation may be not a drawback.

4. Allocation of Risk Capital Based on Iso-Entropic Coherent Risk Measure in Chinese

Market

In this section, we use the risk capital allocation rule based on iso-entropic risk measure to

Chinese market. Firstly, we compute the amount of risk for the risk assets, especially the

whole portfolio, and check if there are potentials for risk capital allocation. Then, we compute

the risk capital allocation based on several allocation rules, and compare the results.

4.1. Computation of risk amount

In this subsection, we build a portfolio of assets and compute their risk amount. We select

composite index of Shanghai market (SCI), bonds index of Shanghai market (SBI) and funds

index of Shanghai market (SFI) to build the portfolio. The data period is 1.4.2003—30.3.2012,

the sample size is 2,187. We take the loss as:

xt = 1 - pt / pt-1, t = 1, ..., T

In which pt is the price of the real index. Denote the portfolio XP as

XP = XSCI + (-XSBI) + (-XSFI) (4.1)

Where XSCI, XSBI and XSFI are the losses of SCI, SBI and SFI. To show more risk diversified and

show negative allocation value, we adjust the proportion of some subportfolios in the portfolio,

XSBI and XSFI are negative. 
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Then we compute the amount of risk for the portfolio and its subportfolios based on several

risk measures. As a comparison, the standard error and covariance descriptive are computed

too, because we will use them to compute some other risk capital allocations. The computed

statistics of all the losses see Table 1. Where i = {SCI, SBI, SFI, P}. The confidence level is at

a = 0.03, other confidence levels are similar.

statistics SCI SBI SFI XP 

mean -3.33E-4 -1.24E-3 -7.46E-4 -1.66E-3
σ(Xi) 0.0157 0.0021 0.0164 0.0322
Cov(Xi,XP)  -1.76E-6 2.91E-6 11.94E-6 13.09E-6
ES 45.31 7.80 48.44 15.03
Iso-entropic 
measure

30.79 6.06 34.97 15.22

Table 1. The risk amount of portfolios based on different measures

From Table 1, it is showed that SCI is negative correlation with SBI and SFI, so they can hedge

each other, which leads to a large part of the risk are hedged. This can decrease the risk

capital of the whole portfolio largely. Apparently, ρ (X P)≤∑
i

N

ρ(X i ) , it is the source and drive of

risk capital allocation. For expected shortfall, ∑
i

N

ES(X i)−ES(X P)=96.52 ; and for iso-entropic

risk measure, ∑
i

N

IE (X i )−IE (X P)=56.6 .

4.2. Risk Capital Allocation Based on Several Allocation Rules

In this subsection, we introduce several risk capital allocation rules, and then compute the

allocation solution and do some analysis. The allocation rules include marginal risk contribution

rules based on expected shortfall (ES) and iso-entropic risk measures (IE), the excess based

allocation using expected shortfall (ES) and iso-entropic risk measures (IE), which are

introduced in previous section 3. As comparisons, we use the simple rules, such as

proportional allocation rule based on standard error and covariance allocation principle.

Here, the proportional allocation principle is based on standard error:

a(X i )=
σ (X i )

∑
i=1

N

σ (X i)

ρ (X P)
(4.2)
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Apparently, proportional allocation principle does not satisfy the properties of riskless portfolio

and translation invariance.

The covariance allocation rule (Overbeck, 2000 and Dhaene et al., 2012) is as follows:

a(X i)=
cov(X i ,X P)

cov(X P ,X P)
ρ (X P) (4.3)

Because VaR does not satisfy subadditivity, which is the important property for risk capital

allocation, it is not a suitable risk measure for capital allocation. We omit it here. However, it is

still be powerful in some fields (Wan, Yang & Wan, 2014). We just compute the capital

allocation based on coherent risk measures.

Limited to the length, here we only display the result of allocation at confidence level a = 0.03,

the result of other situation is the similar. The risk capital allocations are calculated under six

allocation principles above mentioned, see Table 2. The ratio of risk capital for each

subportfolios are listed in brackets. From the Table 2, it shows that the result of proportional

rule based on standard error and EBAs based on two kinds of coherent risk measures are near,

but proportional allocation principle does not satisfy the properties of riskless portfolio and

translation invariance. For same reason, covariance allocation rule does not satisfy the

properties of riskless portfolio and translation invariance. The EBA based on two kinds of

coherent risk measures are consistent with the amount of risk of each subportfolios, which

means fairness for all the subportfolios. But Aumann-shapley values and Covariance based

allocation are not consistent with the amount of risk of each subportfolios, and there are

negative values for them, which is not good for performance. Compare the two coherent risk

measures, it shows that the iso-entropic risk measure can display more information than

expected shortfall. So, we can conclude that the EBA based on iso-entropic risk measure may

be the best one in these allocation rules.

Allocation rule SCI SBI SFI

Proportional rule(standard error)
6.90

(45.9%)
0.92

(6.01%)
7.21

(48.09%)

Covariance based allocation -2.02
(-13.4%)

3.34
(22.2%)

13.71
(91.2%)

Aumann-shapley-ES based 
allocation

-5.10
(-33.9%)

3.27
(21.8%)

16.86
(125.5%)

Aumann-shapley-IE based 
allocation

-4.57
 (-30%)

-0.81
(-5.3%)

20.60
(135.3%)

EBA--ES based allocation
6.27

(41.7%)
1.09

(7.3%)
7.67

(51.0%)

EBA--IE based allocation 6.36
(41.8%)

1.10
(7.2%)

7.76
(51.0%)

Table 2. Risk capital allocation under different rules
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5. Performance of the Risk Capital Allocation Rules

In section 4, we just show the result of allocation, and compare them with simple property.

Here we apply a method to judge the performance of these allocation principles. It is RAROC

(Risk adjusted return on capital, James, 1996) method:

RAROC i=
R̄ i

ai

, i=1,... ,N (5.1)

Where Ri is the average return of subporfolio i. Liu, Yang and Zhou (2014) use similar indicator

to evaluate the performance of mutual fund portfolios, it turns this is a good indicator. Here we

apply the negative value of mean in Table 1. And then we compare the average

RAROC=1
N
∑
i=1

N

RAROCi . The results see Table 3. In brackets, it is the percentage reduction in

risk capital as compared to the risk capital, namely 1−
ai

ρ(X i )
. It is the indicator to judge

allocation principles used in Van Gerwald et al (2012). It shows that proportional rule may be

the best, if we apply reduction indicator and RAROC indicator; but it doesn’t satisfy some

properties required. As we know that, proportional rule (standard error) is not suitable for an

allocation rule because of its flaws. As it is pointed, when the risk capital allocation is negative,

the performance valuation can be meaningless. So we replace the value with a “*”, when there

is a negative risk capital. The EBA based on two kinds of coherent risk measures may be the

best. From the reduction indicator, EBA based on ES is a little higher than EBA based on IE.

However, from the RAROC indicator, EBA based on IE is a little higher than EBA based on ES.

With one word, combining the advantages of iso-entropic risk measure and EBA, the EBA

based on IE is strongly recommended.

Allocation rule SCI SBI SFI average

Proportional rule(standard error) 0.0483
(0.85)

1.348
 (0.88)

0.1035
(0.85)

0.50
(0.86)

Covariance based allocation
*

(1.04)
0.371
(0.57)

0.0544
(0.72)

*
(0.78)

Aumann-shapley-ES based 
allocation

*
(1.11)

0.379
(0.58)

0.0442
(0.65)

*
(0.78)

Aumann-shapley-IE based 
allocation

*
 (1.15)

*
(1.13)

0.0366
(0.41)

*
(0.9)

EBA--ES based allocation 0.0531
(0.86)

1.138
(0.86)

0.0972
(0.84)

0.4294
(0.85)

EBA--IE based allocation
0.0530
(0.79)

1.141
(0.82)

0.0972
(0.78)

0.4304
(0.80)

Table 3. RAROC of capital allocation under six rules
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6. Conclusion

There are two sides for a risk capital allocation problem. One is to quantify the risk of the

portfolio and its subportfolios with a good risk measure properly. Another is to allocate the risk

capital to each subportfolios properly. The former is the base of the later step. So a good risk

measure is very important for risk capital allocation. Now, the most fashionable risk is VaR and

expected shortfall (ES), but both have some drawbacks. VaR is not coherent, ES is. But ES is

only use a small part of information of the distribution, it is not smooth and is only consistent

with lower than second-order stochastic dominance, it can not distinguish the risk well. Zheng

and Chen (2012) proposed a new coherent risk measure called iso-entropic risk measure. This

new risk measure use all the information of the whole distribution, it is smooth, and consistent

with higher-order stochastic dominance. It has higher resolution of risk. Based on this new risk

measure, we propose two kinds of risk capital allocation methods: one is marginal risk

contribution based on iso-entropic risk measure, another is EBA based on iso-entropic risk

measure. We discuss their properties comparing with other allocation rules. It shows that the

risk capital allocation rules based on iso-entropic risk measure are better than the other rules.

And, the EBA based on iso-entropic risk measure is recommended strongly. However, there are

some problems are still open. One is how to treat the negative value of allocation. Second is

that the consistence between the allocated risk capital and the amount of the risk needs to be

studied further.
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