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Abstract:

Purpose: The aims of  this article are to develop a new mathematical formulation and a new

heuristic for the problem of  preemptive two-agent scheduling in open shops subject to machine

maintenance and eligibility constraints. 

Design/methodology: Using the ideas of  minimum cost flow network and constraint

programming, a heuristic and a network based linear programming are proposed to solve the

problem.

Findings: Computational experiments show that the heuristic generates a good quality schedule

with a deviation of  0.25% on average from the optimum and the network based linear

programming model can solve problems up to 110 jobs combined with 10 machines without

considering the constraint that each operation can be processed on at most one machine at a

time. In order to satisfy this constraint, a time consuming Constraint Programming is proposed.

Fo r n = 80 and m = 10, the average execution time for the combined models (linear

programming model combined with Constraint programming) exceeds two hours. Therefore,

the heuristic algorithm we developed is very efficient and is in need. 

Practical implications: Its practical implication occurs in TFT-LCD and E-paper

manufacturing wherein units go through a series of  diagnostic tests that do not have to be

performed in any specified order. 
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Originality/value: The main contribution of  the article is to split the time horizon into many

time intervals and use the dispatching rule for each time interval in the heuristic algorithm, and

also to combine the minimum cost flow network with the Constraint Programming to solve the

problem optimally. 

Keywords: scheduling, two-agent, open shop, machine availability and eligibility, constraint

programming

1. Introduction

Consider two agents who have to schedule two sets of jobs on an m-machine open shop. Each

job has k operations, k ≤ m, and each operation must be performed on the corresponding

specialized machine. The order in which the operations of each job are performed is irrelevant.

Operation preemption is allowed and the machine availability and eligibility constraints are

considered. The machine availability arises when machines are subject to breakdowns,

maintenance, or perhaps high priority tasks are prescheduled in certain time intervals. The

machine eligibility constraints are imposed when the number of operations of each job i can be

less than m. Each machine can handle at most one operation at a time and each operation can

be processed on at most one machine at a time. Two agents are called Agent A and B. Agents A

and B have na(nb) jobs. Let n denote the total number of jobs, i.e., n = na + nb, and each job j of

agent A (B) is denoted by . The processing time of a job j of agent A (B) on machine i is

denoted by . The release time of a job j of agent A (B) is denoted by . Each

machine i is available for processing in the given N(i) intervals, which are , i = 1, ..., m,

k = 1, ..., N(i) and , where  and  are the start time and end time of the kth

availability interval of machine i, respectively. The operations of job j of agent A (B) are

processed on a specified subset  of the machines in an arbitrary order. We use 

to denote the completion time of Jj for agent A (B) and  to

denote the makespan. The objective is to minimize makespan, given that agent B will accept a

schedule of cost up to Q. According to the notation for machine scheduling, the problem is

denoted as , where O indicates open

machines, NCwin means that the machines are not available in certain time intervals, pmtna(b)

signifies job preemption,  implies that each job has a release date,  denotes the

specific subset of machines to process job j, and  denotes agent B will accept a

schedule of time up to Q. 
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The multi-agent scheduling problems have received increasing attention recently. Baker and

Smith (2003) perhaps the first to consider the problem in which two agents compete on the

use of a single machine. They demonstrated that although determining a minimum cost

schedule according to any of three criteria: makespan, minimizing maximum lateness, and

minimizing total weighted completion time for a single machine, is polynomial, the problem of

minimizing a mix of these criteria is NP-hard. Agnetis, Mirchandani, Pacciarelli and Pacifici

(2004) studied a two-agent setting for a single machine, two-machine flowshop and

two-machine open shop environments. The objective function value of the primary customer is

minimized subject to the requirement that the objective function value of the second customer

cannot exceed a given number. The objective functions are the maximum of regular functions,

the number of late jobs, and the total weighted completion times. The problem in a similar

two-agent single machine was further studied by Cheng, Ng and Yuan (2006, 2008), Ng,

Cheng and Yuan (2006), Agnetis, Pacciarelli and Pacifici (2007), Agnetis, Pascale and Pacciarelli

(2009), Leung, Pinedo and Wan (2010) and Lee, Chung and Huang (2013). When release

times are further considered, see (Lee, Chung & Hu, 2012; Yin, Wu, Cheng and Wu, 2012; Yin,

Wu, Cheng, Wu & Wu, 2014; Wu, Wu, Chen, Yin & Wu, 2013). The multi-agent problems are

extended by considering variations in job processing time such as controllable processing time

(Wan, Vakati, Leung & Pinedo, 2010), deteriorating job processing time (Cheng,  Wu, Cheng

and Wu, 2011; Liu, Yi & Zhou, 2011), and learning effect (Cheng, Cheng, Wu, Hsu and Wu,

2011; Lee & Hsu, 2012; Wu, Huang & Lee, 2011; Yin, Cheng and Wu, 2012). Yu, Zhang, Xu

and Yin (2013) considered a two agents problem to minimize an aggregate increasing

objection function of two agents’ objective function and a piece-rate maintenance which is

implemented once a fixed number of jobs is completed. Mor and Mosheiov (2010) considered

minimizing the maximum earliness cost or total weighted earliness cost of one agent, subject

to an upper bound on the maximum earliness cost of the other agent. They showed that both

minimax and minsum cases are polynomially solvable while the weighted minsum case is NP-

hard. 

As for the preemptive open shop problem, Gonzalez and Sahni (1976) proposed a polynomial

time algorithm to obtain the minimum makespan. Breit, Schmidt and Strusevich (2001)

studied a two-machine open shop where one machine is not available for processing during a

given time interval. The objective is to minimize the makespan. They showed that the problem

is NP-hard and presented a heuristic with a worst-case ratio of 4/3. When time-windows is

considered for each job on an open shop and the objective is to minimize makespan,

Sedeno-Noda, Alcaide and Gonzalez-Martin (2006) introduced a network flow procedure to

check feasibility and a max-flow parametrical algorithm to minimize the makespan.

Sedeno-Noda, Pablo and Gonzalez-Martin (2009) extended the same problem by considering

performance costs including resource and personnel involvement. 
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This two-agent problem under consideration arises in TFT-LCD and E-Paper manufacturing

wherein units go through a series of diagnostic tests that do not have to be performed in any

specified order. 

This paper is organized as follows: Section 2 formulates the problem and provides a heuristic.

Section 3 is devoted to describing the minimum cost flow network and its corresponding linear

programming model. Section 4 illustrates the effectiveness of the heuristic algorithm and

computational efficiency of the minimum cost flow network, and finally in Section 5, we

provide conclusions.

2. Problem Formulation and the Heuristic Algorithm 

First, we rank all , , , , and Q in nondecreasing order and put them into the time

epoch set E. Let el be the lth time epoch in E, i.e., E = {e1, e2, e3, ..., ev}, where el < el+1 and

. Let Tl be the lth time interval between two adjacent time epochs el and el +1,

where l = 1, …, |E|-1. Let m(l) be the set of machines that are available in Tl, i.e., m(l) =

{i|integer k, 1 ≤ k ≤ N(i), such that  and }. 

Numerical Example 1. There are two jobs for each agent to be processed on three machines.

The job and machine data are listed in Tables 1 and 2 and agent B will accept a schedule of

time up to Q = 17.

Job (j)

Release time 1 3 2 6

Processing time

i = 1 4 5 3 4

i = 2 3 0 6 0

i = 3 0 2 1 5

Eligible subset {1,2} {1,3} {1,2,3} {1,3}

Table 1. Job data

Machine (i) i = 1 i = 2 i = 3

Availability interval

Table 2. Machine data
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All values of , ,  and Q are ranked in ascending order. The corresponding time epoch set

E = {e1, e2, e3, ..., e11} = {0, 1, 2, 3, 6, 8, 9, 10, 17, 18, 20}, are shown in Figure 1.

We call operation  for job j of agent x, x = a or b, is available on its corresponding machine i

in the time interval Tl if  and i Î m(l), where  denotes the remaining

unscheduled processing time of operation .

Figure 1. Distinct time epochs in set E

The basic idea of the heuristic is to combine the rule of giving priority to agent B and the

rule of the largest remaining processing time first (LRPT) for assigning operations to

machines in each time interval. The rationale of giving priority to agent B is that agent B

only accepts a schedule of cost up to Q. The LRPT rule first selects job j of agent x, ,

which has the maximum remaining processing time and among the available operations of

this job, choosing the one which is to be processed on the machine that has maximum

remaining processing time to process. Within each time interval, say Tl, if the completion

time y of the selected operation is less than the time epoch el+1, a new time epoch is set

equal to y and a new time interval is created accordingly, i.e., Tl is split into two time

intervals. That is, if y < el+1, set el+1 = y, el+2 = el+1, el+3 = el+2, …, ev+1 = ev. The steps of the

heuristic algorithm are as follows.

Step 1. Rank , ,  and Q in ascending order, and put into the time epoch E. Let

E = {e1, e2, e3, ..., ev}, . Set l = 1, , and .
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Step 2. If no operation is available to the time interval Tl, set l = l + 1 and return to Step 2. If

any operation of agent b available to the time interval Tl([el, el+1]), set x = b, otherwise set x = a.

Use the LRPT rule to find the operation  of agent x to be processed on the machine, say

machine i, in the time interval Tl. S e t , , ,

 and . If  for  j = 1, 2, …, nx, x = a, b; the heuristic algorithm

is terminated and . If , go to Step 3 to create a new interval; otherwise

i f , then go to Step 2 until the available operations of agent x in this time interval Tl

have been considered. If x = b, then continue the assignment of operations in the same

manner for x = a in time interval Tl. Set l = l + 1 and go to Step 2.

Step 3. Let el+1 = , el+2 = el+1, el+3 = el+2, ..., ev+1 = ev, E = {el+1, el+2, ..., ev+1, }, and go to Step 2.

We demonstrate the heuristic algorithm using the data of Numerical Example 1.

Numerical Example 2. The values of the total remaining unscheduled processing time of job j

for both agents are  = 7,  =7,  =10 and   = 9.

Iteration 1 

Step 1. The corresponding time epoch set E = {e1, e2, e3, ..., e11} = {0, 1, 2, 3, 6, 8, 9, 10, 17, 18, 20} is

shown in Figure 1. Set l = 1.

Step 2. Since there is no available operation in [e1, e2], set l = 2. In [e2, e3], no operation for

agent B is available and thus  is selected to be processed on m1 due to the maximum value

of  and the maximum machine load of m1. Since y = 1, update the values of ,  and 

a s 3, 6 and 2, respectively. Since there is no more available operation in the time interval

[e2, e3], we set l = 3. Using the same manner, the time interval [e3, e4], [e4, e5], [e5, e6], [e6, e7] and

[e7,e8] are scheduled. In the time interval [e8, e9], the available jobs for agent B are  and

 is selected to be processed on m3. Since y = 3, update the values of ,  and  as 0, 3

and 13, respectively. Since   E, therefore return to Step 3. 

Step 3. Let e9 equal to  = 13 and re-index time epochs in E. That is [e10, e9], [e11, e10], [e12, e11],

E = {13, 17, 18, 20} and go to Step 2. 
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Iteration 2

Step 2. In [e8, e9],  is selected to be processed on m2, however,  is not in set E, therefore go

to Step 3.

Step 3. Let e9 equal to  = 11, E = {11, 13, 17, 18, 20}, and return to Step 2.

Proceed in the same manner, the heuristic solution with Cmax = 18 is obtained and shown in

Figure 2.

Figure 2. Gantt diagram for heuristic solution
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3. The Exact Algorithm

In this section, we develop a linear programming model based on minimum cost flow network

to test the effectiveness of the heuristic. For the problem of the parallel-machine scheduling

problem, P, NCwin|pmtn, rj, Mj|Cmax, Liao and Sheen (2008) solved the problem by first

formulating a base problem with respect to a given Cmax as a maximum flow problem. They

then proposed a binary search algorithm to test the feasibility of the problem and to

determine the optimal makespan by solving a series of maximum network flow problems. Su,

Cheng and Chou (2013) revised their maximum flow model to the minimum cost flow model

for the same problem with makespan and maximum lateness criteria. We further extend their

network for the two-agent open shop problem to test the effectiveness of our heuristic

algorithm. 

First, we set U, the solution of the heuristic algorithm, as an upper bound on the makespan.

Next, we rank all , , , , Q and U in increasing order and put them into the time epoch

set E as previously described. E = {e1, e2, e3, ..., ev}, where el < el+1 and ev = U. The time epochs

in the time interval from U to  are redundant and can be discarded. Using the data of

the Numerical Example 1, the diagram of the time epoch set E and the time intervals Tl is

shown in Figure 3.

Figure 3. Distinct time epochs in set E for Numerical Example 1

Upon obtaining E, Tl and m(l), we formulate the problem with U as a minimum cost flow

network problem on a tripartite network G(U).
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The network consists of a set of nodes and a set of arcs connecting certain pairs of the

nodes.

The node set in G(U) includes a source node s, a sink node t, and the following three node

sets.

(i) Job nodes, , j = 1, 2, …, nx, x = a, b.

(ii) Combination nodes  consisting of job ， j = 1, 2, …, nx, x = a, b and time

interval Tl, where Tl satisfies el+1 ≤ U and  ≤ el for agent A and el+1 ≤ Q and  ≤ el

for agent B. 

(iii) Combination nodes (i, Tl) consisting of machine i and time interval Tl, where Tl satisfies

el+1 ≤ U and i Î m(l).

The arc set consists of directed arcs that are generated as follows.

(i) An arc  with capacity  for j = 1, 2, …, nx, x = a, b.

(ii) An arc  from node  to node  with capacity (el+1 – el).

(iii) An arc  from node  to (i, Tl) with capacity (el+1 – el) if and only if

i Î   m(l).

(iv) An arc ((i, Tl), t) from node (i, Tl) to the sink t with capacity (el+1 – el), i = 1, 2, …, m.

(v) Finally, there is an arc (s, t) from node s to node t with capacity ∞.

The source node s consists of n + 1 emanating arcs. Let f(x, y) denote the flow in the arc from

node x to node y, i.e. node x and node y are a pair of nodes connecting this arc. A positive f(s, t)

indicates that an amount of flow equal to f(s, t) cannot be assigned to the machines under the

upper bound U, i.e. there exists no feasible schedule in which the completion time of each job

is no greater than U. This happens if U is a trial value which is incorrectly set or the heuristic

algorithm is incorrectly calculated. Denote the latest arrival times of agent A and B and the

time epochs Q and U as eu, ew, ez and ev, respectively. 
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The corresponding directed tripartite network G(U) using the data of Numerical Example 1 is

shown in Figure 4. Figure 4. The optimal solution for Numerical Example 1

Using the convention that summations are taken only over existing arcs, we formulate

O, NCwin|pmtna, ,  : pmtnb, , |Cmax :  ≤ Q as a linear programming problem, called LP,

as follows:
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Minimize

(1)

Subject to

(2)

(3)

, for  node

, for  node
(4)

, for  node (5)

(6)

(7)

(8)

(9)

(10)

(11)

and all variables ≥ 0.
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In the first term of the objective Function (1), we assign an arbitrarily large cost M to the

arc f(s, t) to ensure that the maximum feasible flow goes through all the other arcs , j =

1, 2, …, nx, x = a, b. The summations in the latter terms ensure the assignment of jobs to time

intervals as early as possible, where ε denotes an arbitrarily small number. As an illustration,

refer to Numerical Example 1 and Figure 4. The latter term of the objective Function (1) for

Numerical Example 1 i s , in which the cost is given to the time

intervals from T6 to T9. The time epochs from the last arrival time to the upper bound of  is

e5 to e10, associated with time intervals from T5 to T9.  Since e5 is the last arrival time and some

operations will definitely be scheduled in T5, therefore the cost is imposed to the time interval

from T6 to T9. We give cost ε, 2ε, 3ε and 4ε to the time interval T6, T7, T8 and T9, respectively, to

ensure the assignment of operations to these time intervals as early as possible. Constraints

(2) guarantee that the total processing times of all operations of both agents should be

assigned to machines in different time intervals. Constraints (3)-(6) are the mass balance

constraints. Constraints (7)-(11) represent the capacity constraints. 

I f f(s, t) is zero, then the opt imal makespan is , where

 such that f((i, Tk), t) > 0 for i = 1, 2, …, m}. For illustration, as Figure

4 shows, the basic variables of the optimal solution are depicted by the thick lines.

 such that f((i, Tk), t) > 0 for i = 1, 2, 3} = 9, and  =

e9 + 1 = 17 + 1 = 18.

The linear programming model with 1 + n × v + m × (n + 1) × (v – 1) variables, including n for arcs

, n ×(v – 1) for arcs , m × (v – 1) for arcs ((i, Tl), t), and one for arc (s, t), and

3 + 2 × v (n + m) + m ×(n × v – 2) constraints for all functional constraints from (2) to (11). 

The corresponding optimal operations in each time interval for Numerical Example 1 are shown

in Figure 5.
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Figure 5. Gantt diagram of the optimal solution for Example 1

As Figure 5 shows, operation  is processed on machines 1 and 2, operation  is processed

on machines 1 and 3, and operation  is processed on machine 2 and 3 in time interval T4. In

order to satisfy the constraint that each operation can be processed on at most one machine at

a time, we use Constraint Programming (Brailsford, Potts & Smith, 1999; Van Hentenryck,

2002) to solve this problem. Constraint Programming generates a schedule that satisfies the

above constraint in each time interval. The model in Figure 6 is coded for this purpose.

Model:

int Interval=...;

int nbJobs=...;

int nbMachines=...;

range Jobs=1..nbJobs;

range Machines=1..nbMachines;

range intervals=1..Interval; // number of unit time in the current interval

int resource[Jobs, Machines]=...; // total processing time of each jobs on each

// machine in the current interval

dvar int X[Machines, intervals] in 0.. 3; // input the number of unit time in the

// current interval, for example, the unit time of T4 in the example is 3

subject to {

// each operation cannot be processed on more than one machine at a time

forall(a in Machines, b in Machines, k in intervals:a!=b)

X[a,k]!=0 => X[a,k]!=X[b,k];

// total processing times of each job to be processed on each machine equal to

// the corresponding time obtained by the LP model

forall(j in Jobs, i in Machines)

sum(k in intervals)(X[i,k]==j) == resource[j,i]; 

}

Figure 6. The CPL model for rescheduling the operations of each job
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We coded the algorithm in ILOG OPL Studio 6.1 and ran it on a PC with AMD 2.91GHz. The

Gantt diagram of the optimal solution is shown in Figure 7, where the time interval T8 is

implemented using the same model.

Figure 7. Gantt diagram of the optimal solution for Example 1

4. Computational Results

The objective of the computational experiments described in this section is to evaluate both

the performances of the heuristic and the exact algorithms. All experimental tests were run on

a personal computer with AMD 2.91GHz CPU. The heuristic algorithm was coded in Visual

Basic, and the linear programming model and the constraint programming model were solved

by LINGO11.0 and ILOG OPL 6.1, respectively. The experiment involves the instances with the

number of jobs n = 40, 60, 80, 100 and 110 in which three pairs of na and nb are set as 

{(na = 20, nb = 20), (na = 25, nb = 15), and (na = 15, nb = 25)},

{(na = 30, nb = 30), (na = 35, nb = 25), and (na = 25, nb = 35)},

{(na = 40, nb = 40), (na = 45, nb = 35), and (na = 35, nb = 45)},

{(na = 50, nb = 50), (na = 60, nb = 40), and (na = 40, nb = 60)}, and

{(na = 55, nb = 55), (na = 60, nb = 50), and (na = 50, nb = 60)}, respectively. 
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The processing time of  are randomly generated from an uniform distribution U[0, 10]. The

job arrival time  refers to Chu (1992) and are generated from U[0, ], where

 is the mean processing time on each machine. The number of

machine m is set as m = 6, 8 and 10. To generate the upper bound of makespan for agent b, we

refer to Bank and Werner (2001) with 

,

where  and β Î {1.2, 1.5, 2, 2.5}. The rate of machine availability θ is

set as 0.7, 0.9 and 1.0. Five instances are generated for each combination of
 
n, m, , , θ,

Q, yielding 900 instances. In comparing heuristic performance, the following formula is used

to determine the deviation of the heuristic solution over the optimal solution.

Deviation (%) = [(heuristic-optimum)/optimum] × 100%. 

Table 3 shows the solution quality of the heuristic. The influences of m, n, na/nb and θ on the

solution quality of the heuristic are analyzed. 
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Table 3. The average solution quality of the heuristic algorithm
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Table 3 illustrates that the deviation of the heuristic from the optimal solution appears in

descending trend as the value of m increases. The reason is that the heuristic selects the

maximum total remaining processing time of each job, instead of that of each machine, to be

processed on the corresponding machine. For the rate of machine availability θ, the value of

1 showing that all machines are available at any times. Since none of , i = 1, ..., m,

k = 1, ..., N(i) incurred, the number of time intervals decreases and the span of time interval

increases, therefore more jobs are competing to be scheduled in each time interval and hence

the error increases. As to the number of jobs, the higher value that n is, the better the

performance of the heuristic. One reason is that the higher value for n implies more time

epochs  incurred and a smaller time span for each Tl making the heuristic easier to assigning

the operations correctly. Another reason is that the denominator increases, whereas the

deviation of the heuristic solution from the optimal solution may not increase in proportion to

the denominator. There is no significant difference in the performance of the heuristic on the

value of na/nb, but na/nb = 0.5 gives the best performance. When na/nb increases, the deviation

increases due to the fact that the heuristic gives priority to agent B and thus more operations

of agent A should compete to schedule in each time interval.

Based on this analysis, we found that decreasing machine number m and the value of na/nb

reduced the deviation of the heuristic, while decreasing job number n increased the deviation

of the heuristic. The heuristic generates a good quality schedule with a deviation from the

optimum of 0.25% on average. 

As to the execution time of the heuristic, Table 4 shows the average execution time of the

network based linear programming and the heuristic. The average execution time of the

heuristic is small compared to that of the linear programming.

m n Lingo(ss) Heuristic(ss)

6 90 19.25 1.25 

6 100 37.75 1.75 

6 110 30.25 1.75 

8 90 32.25 1.75 

8 100 165.25 2.25 

8 110 71.25 2.50 

10 90 181.25 2.00 

10 100 629.00 3.00 

10 110 1002.75 3.00 

Table 4. Execution times of Lingo and Heuristic for small-size instances
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In Table 5, the average execution times in seconds for Linear Programming model, Constraint

Programming model, and Combined model (Linear programming and Constraint Programming)

are shown in columns lingo, OPL, and Total, respectively. For n = 80 and m = 10, the average

execution time for the combined model exceeds two hours. Therefore, an efficient heuristic

algorithm is in great need.

Table 5. Execution times of LP model, OPL model and those of both models
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5. Conclusion

In this paper, we have analyzed the preemptive open-shop with machine availability and

eligibility constraints for two-agent scheduling problem. The objective is to minimize

makespan, given that one agent will accept a schedule of time up to Q. This problem arises in

TFT-LCD and E-Paper manufacturing wherein units go through a series of diagnostic tests that

do not have to be performed in any specified order. We proposed an effective heuristic to find a

nearly optimal solution and a linear programming model based on minimum cost flow network

to optimally solve the problem. Computational experiments show that the heuristic generates a

good quality schedule with a deviation of 0.25% on average from the optimum.

References

Agnetis, A., Mirchandani, P.B., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with

two competing agents. Operations Research, 52(2), 229-242. 

http://dx.doi.org/10.1287/opre.1030.0092

Agnetis, A., Pacciarelli, D., & Pacifici, A. (2007). Multi-agent single machine scheduling. Annals

of Operations Research, 150(1), 3-15. http://dx.doi.org/10.1007/s10479-006-0164-y

Agnetis, A., Pascale, de G., & Pacciarelli, D. (2009). A Lagrangian approach to single-machine

scheduling problems with two competing agents. Journal of Scheduling, 12(4), 401-415.
http://dx.doi.org/10.1007/s10951-008-0098-0

Brailsford, S.C., Potts, C.N., & Smith, B.M. (1999). Constraint satisfaction problems:

Algorithms and applications. European Journal of Operational Research, 119(3), 557-581.
http://dx.doi.org/10.1016/S0377-2217(98)00364-6

Bank, J., & Werner, F. (2001). Heuristic Algorithms for Unrelated Parallel Machine Scheduling

with a Common Due Date, Release Dates, and Linear Earliness and Tardiness Penalties.

Mathematical and Computer Modelling, 33(4-5), 363-383. http://dx.doi.org/10.1016/S0895-

7177(00)00250-8

Breit, J., Schmidt, G., & Strusevich, V.A. (2001). Two-machine open shop scheduling with an

availability constraint. Operations Research Letters, 29(2), 65-77. http://dx.doi.org/10.1016/S0167-

6377(01)00079-7

Baker, K.R., & Smith, J.C. (2003). A multiple-criterion model for machine scheduling. Journal

of Scheduling, 6(1), 7-16. http://dx.doi.org/10.1023/A:1022231419049

Chu, C.B. (1992). A Branch-and-Bound Algorithm to Minimize Total Tardiness with Different

Release Dates. Naval Research Logistics, 39(2), 265-283. http://dx.doi.org/10.1002/1520-

6750(199203)39:2<265::AID-NAV3220390209>3.0.CO;2-L

-1121-

http://dx.doi.org/10.1002/1520-6750(199203)39:2%3C265::AID-NAV3220390209%3E3.0.CO;2-L
http://dx.doi.org/10.1002/1520-6750(199203)39:2%3C265::AID-NAV3220390209%3E3.0.CO;2-L
http://dx.doi.org/10.1023/A:1022231419049
http://dx.doi.org/10.1016/S0167-6377(01)00079-7
http://dx.doi.org/10.1016/S0167-6377(01)00079-7
http://dx.doi.org/10.1016/S0895-7177(00)00250-8
http://dx.doi.org/10.1016/S0895-7177(00)00250-8
http://dx.doi.org/10.1016/S0377-2217(98)00364-6
http://dx.doi.org/10.1007/s10951-008-0098-0
http://dx.doi.org/10.1007/s10479-006-0164-y
http://dx.doi.org/10.1287/opre.1030.0092


Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1352

Cheng, T.C.E., Ng, C.T., & Yuan, J.J. (2006). Multi-agent scheduling on a single machine to

minimize total weighted number of tardy jobs. Theoretical Computer Science, 362(1-3),

273-281. http://dx.doi.org/10.1016/j.tcs.2006.07.011

Cheng, T.C.E., Ng, C.T., & Yuan, J.J. (2008). Multi-agent scheduling on a single machine with

max-form criteria. European Journal of Operational Research, 188(2), 603-609.
http://dx.doi.org/10.1016/j.ejor.2007.04.040

Cheng, T.C.E., Cheng, S.R., Wu, W.H., Hsu, P.H., & Wu, C.C. (2011). A two-agent

single-machine scheduling problem with truncated sum-of-processing-times-based learning

considerations. Computers & Industrial Engineering, 60(4), 534-541. 

http://dx.doi.org/10.1016/j.cie.2010.12.008

Cheng, T.C.E., Wu, W.H., Cheng, S.R., & Wu, C.C. (2011). Two-agent scheduling with

position-based deteriorating jobs and learning effects. Applied Mathematics and Computation,

217(21), 8804-8824. http://dx.doi.org/10.1016/j.amc.2011.04.005

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Annals of

Operations Research, 23(4), 665-679. http://dx.doi.org/10.1145/321978.321985

Liao, L.W., & Sheen, G.J. (2008). Parallel machine scheduling with machine availability and

eligibility constraints. European Journal of Operational Research, 184(2), 458-467.
http://dx.doi.org/10.1016/j.ejor.2006.11.027

Leung, J.Y.T., Pinedo, M., & Wan, G.H. (2010). Competitive Two-Agent Scheduling and Its

Applications. Operations Research, 58(2), 458-469. http://dx.doi.org/10.1287/opre.1090.0744

Lee, D.C., & Hsu, P.H. (2012). Solving a two-agent single-machine scheduling problem

considering learning effect. Computers & Operations Research, 39, 1644-1651. 

http://dx.doi.org/10.1016/j.cor.2011.09.018

 Lee, W.C., Chung, Y.H., & Hu, M.C. (2012). Genetic algorithms for a two-agent single-machine

problem with release time. Applied Soft Computing, 12, 3580-3589. 

http://dx.doi.org/10.1016/j.asoc.2012.06.015

Lee, W.C., Chung, Y.H., & Huang, Z.R. (2013). A single-machine bi-criterion scheduling

problem with two agents. Applied Mathematics and Computation, 219, 10831-10841.
http://dx.doi.org/10.1016/j.amc.2013.05.025

Liu, P., Yi, N., & Zhou, X. (2011). Two-agent single-machine scheduling problems under

increasing linear deterioration. Applied Mathematical Modelling, 35, 2290-2296. 

http://dx.doi.org/10.1016/j.apm.2010.11.026

-1122-

http://dx.doi.org/10.1016/j.apm.2010.11.026
http://dx.doi.org/10.1016/j.amc.2013.05.025
http://dx.doi.org/10.1016/j.asoc.2012.06.015
http://dx.doi.org/10.1016/j.cor.2011.09.018
http://dx.doi.org/10.1287/opre.1090.0744
http://dx.doi.org/10.1016/j.ejor.2006.11.027
http://dx.doi.org/10.1145/321978.321985
http://dx.doi.org/10.1016/j.amc.2011.04.005
http://dx.doi.org/10.1016/j.cie.2010.12.008
http://dx.doi.org/10.1016/j.ejor.2007.04.040
http://dx.doi.org/10.1016/j.tcs.2006.07.011


Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1352

Mor, B., & Mosheiov, G. (2010). Scheduling problems with two competing agents to minimize

minmax and minsum earliness measures. European Journal of Operational Research, 206(3),

540-546. http://dx.doi.org/10.1016/j.ejor.2010.03.003

Ng, C.T., Cheng, T.C.E., & Yuan, J.J. (2006). A note on the complexity of the problem of

two-agent scheduling on a single machine. Journal of Combinatorial Optimization, 12(4),

386-393. http://dx.doi.org/10.1007/s10878-006-9001-0

Sedeno-Noda, A., Alcaide, D., & Gonzalez-Martin, C. (2006). Network flow approaches to

pre-emptive open-shop scheduling problems with time-windows. European Journal of

Operational Research, 174(3), 1501-1518. http://dx.doi.org/10.1016/j.ejor.2005.01.062

Sedeno-Noda, A., Pablo, de D.A.L., & Gonzalez-Martin, C. (2009). A network flow-based

method to solve performance cost and makespan open-shop scheduling problems with

time-windows. European Journal of Operational Research, 196(1), 140-154. 

http://dx.doi.org/10.1016/j.ejor.2008.02.031

Su, L.H., Cheng, T.C.E., & Chou, F.D. (2013). A minimum-cost network flow approach to

preemptive parallel-machine scheduling. Computers and Industrial Engineering, 64, 453-458.
http://dx.doi.org/10.1016/j.cie.2012.04.020

Van Hentenryck, P. (2002). Constraint and integer programming in OPL. Informs Journal on

Computing, 14(4), 345-372. http://dx.doi.org/10.1287/ijoc.14.4.345.2826

Wan, G.H., Vakati, S.R., Leung, J.Y.T., & Pinedo, M. (2010). Scheduling two agents with

controllable processing times. European Journal of Operational Research, 205(3), 528-539.
http://dx.doi.org/10.1016/j.ejor.2010.01.005

Wu, C.C., Huang, S.K., & Lee, W.C. (2011). Two-agent scheduling with learning consideration.

Computers & Industrial Engineering, 61, 1324-1335. http://dx.doi.org/10.1016/j.cie.2011.08.007

Wu, C.C., Wu, W.H., Chen, J.C., Yin, Y., & Wu, W.H. (2013). A study of the single-machine

two-agent scheduling with release times. Applied Soft Computing, 13, 998-1006.
http://dx.doi.org/10.1016/j.asoc.2012.10.003

Yin, Y., Cheng, S.R., & Wu, C.C. (2012). Scheduling problems with two agents and a linear

non-increasing deterioration to minimize earliness penalties. Information Sciences, 189,

282-292. http://dx.doi.org/10.1016/j.ins.2011.11.035

Yin, Y., Wu, W.H., Cheng, S.R., & Wu, C.C. (2012). An investigation on a two-agent

single-machine scheduling problem with unequal release dates. Computers & Operations

Research, 39, 3062-3073. http://dx.doi.org/10.1016/j.cor.2012.03.012

-1123-

http://dx.doi.org/10.1016/j.cor.2012.03.012
http://dx.doi.org/10.1016/j.ins.2011.11.035
http://dx.doi.org/10.1016/j.asoc.2012.10.003
http://dx.doi.org/10.1016/j.cie.2011.08.007
http://dx.doi.org/10.1016/j.ejor.2010.01.005
http://dx.doi.org/10.1287/ijoc.14.4.345.2826
http://dx.doi.org/10.1016/j.cie.2012.04.020
http://dx.doi.org/10.1016/j.ejor.2008.02.031
http://dx.doi.org/10.1016/j.ejor.2005.01.062
http://dx.doi.org/10.1007/s10878-006-9001-0
http://dx.doi.org/10.1016/j.ejor.2010.03.003


Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1352

Yin, Y., Wu, W.H., Cheng, T.C.E., Wu, C.C., & Wu, W.H. (2014). A honey-bees optimization

algorithm for a two-agent single-machine scheduling problem with ready times. Applied

Mathematical Modelling. http://dx.doi.org/10.1016/j.apm.2014.10.044

Yu, X., Zhang, Y., Xu, D., & Yin, Y. (2013). Single machine scheduling problem with two

synergetic agents and piece-rate maintenance. Applied Mathematical Modelling, 37,

1390-1399. http://dx.doi.org/10.1016/j.apm.2012.04.009

  

Journal of Industrial Engineering and Management, 2015 (www.jiem.org)

Article's contents are provided on a Attribution-Non Commercial 3.0 Creative commons license. Readers are allowed to copy, distribute

and communicate article's contents, provided the author's and Journal of Industrial Engineering and Management's names are included.

It must not be used for commercial purposes. To see the complete license contents, please visit

http://creativecommons.org/licenses/by-nc/3.0/.

-1124-

http://www.intangiblecapital.org/
http://www.intangiblecapital.org/
http://www.intangiblecapital.org/
http://www.intangiblecapital.org/
http://dx.doi.org/10.1016/j.apm.2012.04.009

	Two-agent Scheduling in Open Shops Subject to Machine Availability and Eligibility Constraints
	1. Introduction
	2. Problem Formulation and the Heuristic Algorithm
	3. The Exact Algorithm
	4. Computational Results
	5. Conclusion
	References

