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Abstract:

Purpose: We aim at “heavy traffic direction” and “light traffic direction” in two-way waterway

traffic and attempt to promote the transit capacity of  two-way waterway system. 

Design/methodology/approach: We propose overtaking rules, head-on rules and a cellular

automaton model for variable two-way waterway on AIS-based on the basis of  NaSch

(Nagel-Schreckenberg) model.

Findings: By numerical simulation to the two situations which allow changing lane and

prohibit changing lane, we obtain fundamental functions between traffic flux (speed) and

density and find that changing lane can promote traffic flux and average speed of  two-way

waterway system under the premise of  no impact to the traffic order, and when waterway ship

traffic is dense, flux of  waterway system has a visible promotion, and when traffic is sparse,

average speed of  waterway system adds significantly.
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Practical implications: As an implication, we can reach a compromise between traffic

efficiency and safety. When no collision risk incurred, the marine administrations should allow

involved ships to change lane for overtaking.

Social implications: As a suggestion, Rule 9 and Rule 10 of  COLREGs should make some

adjustments correspondingly.

Originality/value: The paper presents a method to analyze and promote transit capacity of

two-way waterway.  

Keywords: cellular automata, vessel traffic flow, variable two-way waterway, changing lane, numerical

simulation

1. Introduction

In general, two-way waterway is usually composed by inbound lane, outbound lane and

separation zone (or separation line). For the safety of navigation, Rules 9 and Rules 10 of

Convention on the International Regulations for the Preventing Collisions at sea, 1972

(COLREGs), in fact divides the two-way waterway into two isolated and independent navigable

lanes. However ship traffic is always in disequilibrium, and there exist “heavy traffic direction”

and “light traffic direction” (Tingting, Qin & Chaojian, 2013) in the waterway. The performance

of “traffic disequilibrium” is that, ship traffic is dense in one lane (or some sections of the

lane), but sparse in the other (or the others of the lane). As a result, traffic jam incurs in one

lane (or some sections of the lane), but in the other lane ship traffic is disengaged. Therefore,

we can make full use of the disengaged lane (or some sections of the lane) to promote the

capacity of overall waterway.

In marine traffic field, the original research of two-way waterway focused on calculating the

transit capacity and waterway width by empirical formulas (Fenghua & Xuefeng, 2007; Zhibang

& Xin, 2011). During the process of calculation, the two-way waterway is usually treated as

two independent waterways, which are hardly to embody the effect of human, machine,

environmental and management factors to the waterway capacity.

For its virtues which effectively reflect the ship’s response to human and environmental factors

in the trajectory (waterway width), ship handing simulator is widely used in waterway research

fields shortly after its birth (Inoue, 2000; Kobylinski, 2011; Seong, Jeong & Park, 2012;

Yuezong & Hongbo, 2014). However, single-ship handling simulator fails to carry out large-

scale, real-time and parallel simulation in hardware and software. So empirical formulas and

single-ship handling simulator are helpless in the aspect of complex systems problems.

Considering the integrity and systematicness of two-way waterway, Tingting et al. (2013) put
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forward the concept of “Tidal Reversible Channel”, but the effect of changing lane hasn’t been

solved and discussed in their works.

For the virtues of discretization in space, time and state, and easy implementation in algorithm

on a computer, cellular automata (CA) model has been widely developed and used in traffic

flow study. Feng (2013) presented a ship traffic CA model which took marine characteristics

into account. In order to simulate ship traffic from the micro view and reveal the effect of lane-

changing to waterway transit capacity, the paper establishes a variable two-way waterway CA

model on the basis of Feng (2013). The work can be applied to the optimization, organization

and management of ship traffic.

 

2. Cellular Automata Model on AIS-Based for Variable Two-way Waterway 

The model is formed by an inbound lane and an outbound lane. Each lane is divided into n

equal cells. Each cell is either occupied by a ship or empty. The velocity of ship i takes Vi,

and Vi  {0,1,2,…, Vmax}, where Vmax is the maximum speed of some type of ships. In the

discrete lane, ship i occupies Li 
cells from i to i + Li – 1 (when inbound) or to i – Li + 1

(when outbound), and Li  {1,2,…, Lmax}, where Lmax is length of the largest ship in

waterway.

2.1. Navigational Rules

Under normal conditions, ships navigate in their lanes in compliance with “COLREGs 1972” and

other related traffic regulations, and no ships shall normally enter a separation zone or cross a

separation line. At this time, ships evolve in accordance with the NS ship traffic CA model in

Feng (2013).

2.2. Overtaking Rules 

Figure 1 is the sketch-map for overtaking. Suppose at time t, there is ship f1
 
locating in front

of ship i, and

(1)

Where d1(t) denote the distance from ship i to ship f1, dsafe1 denote the safety distance from

ship i to ship f1. 

-676-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1347

For the purpose of collision avoidance, ship i has to slow down or stop engine. At this time, if

there are enough navigable waters in front of ship f1 and neighbor lane is disengaged, ship i

can change to her neighbor lane and overtake ship f1, then goes back to her original lane.

Obviously the overtaking action would not impact the safety and traffic order of her neighbor

lane, and the transit capacity of overall waterway system promotes.

Figure 1. Sketch-map for overtaking

In the practice of mariner, overtaking vessel should adopt good seamanship. Specifically,

overtaking vessel would maintain communication with the overtaken vessel through VHF, make

clear her intention of overtaking, and require the overtaken vessel to decelerate or keep

speed. Once the overtaken ship agrees to be overtaken, overtaking ship should apply to VTS,

and inform her safety measures. With the approval from VTS, overtaking ship may implement

her overtaking on the premise of ensuring safety and no impact to the traffic order of her

neighbor lane. According to good seamanship, only one ship shall be overtaken each time.

Safety conditions to implement overtaking are as follows:

(2)

(3)

(4)

(5)

Where dsafe2 and dsafe3 respectively denote the safety distances between ship i and her fore ship

f2 and aft ship f1 when overtaking is finished; dsafe4 and dsafe5 respectively denote the safety

distance between ship i and her fore ship f1_0 and aft ship b1_0 which locate in her neighbor

lane; d12 denote the distance between the two nearest ships in front of ship i; d1_0 and db1_0

respectively denote the distances between ship i and her fore ship and aft ship which locate in

her neighbor lane; tovertake denote the time to overtake ship i’s fore ship f1; theadon denote the

time to head on ship i’s fore ship f1_0 in her neighbor lane.
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2.3. Reverse Navigational Rules for Overtaking

In mariner’s practice and in order to reduce the overtaking time, overtaking ship usually

accelerates and the overtaken ship decelerates. Therefore, we make the reverse navigational

rules for overtaking.

Overtaking ship accelerates at each time step, and then navigates at the maximum speed

when reaches the maximum. For the overtaken ship, she shall maintain her speed and

navigate with caution, so there is no random slowing-down during overtaking. 

(6)

(7)

(8)

(9)

Where pi and pf1, respectively, denote random slow probabilities of overtaking ship i and

overtaken ship f1.

2.4. Sailing-Back Rules for Overtaking Ship

Figure 2 is the schematic diagram of overtaking vessel sailing back to her original traffic lane.

When overtaking ship i passes and keeps clear the overtaken ship f1, she shall sail back to her

original lane. At this time, the precaution and obligations of overtaking ship and overtaken ship

dismiss. Safety conditions to sailing back are as follows:

(10)

(11)

(12)

Where d1_0 and db1_0 respectively denote
 
the distances between ship i and the overtaken

ship and the ship in front of the overtaken ship before sailing back.
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Figure 2. Sketch-map for sailing back

3. Algorithm and Simulation

3.1. Algorithm

The algorithm of above-mentioned cellular automata model on AIS-based for variable two-way

waterway can describe as in Figure 3.

3.2. Simulation

Considering the actual traffic situation, suppose there are 3 types of ships sailing along the

two-way waterway, where small-size ship Ls  [30, 89] (m), Vs  [0, 6] (knot), medium-sized

ships Lm  [90, 200] (m), Vm  [0, 16] (knot), and large-size ships L1  [201, 300] (m),

V1  [0, 12] (knot). The three types of ships mix in the two-way waterway in length of 30 n

miles.
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Figure 3. Cellular automata model for variable two-way waterway on AIS-based

3.2.1. Determination of Cell Size and Other Parameters 

Determination of cell size is usually on the compromise consideration of calculation accuracy

and computational complexity by expert judgment (Qu & Meng, 2012). This study takes each

cell length of 30 m, and then waterway has 1852 cells in length; and therefore small-size ship

Ls  {1,2} (cell) , Vs  {0,1,2,…,6} (cell/t), medium-sized ships Lm  {3,4,5,6} (cell),

Vm  {0,1,2,…,16} (cell/t), large-size ships L1  {7,8,9,10} (cell), V1  {0,1,2,…,12} (cell/t).

-680-



Journal of Industrial Engineering and Management – http://dx.doi.org/10.3926/jiem.1347

3.2.2. Safety Distance

According to the discussion in paper (Feng, 2013), the minimum safety distances between ship

i and other ships are determined by the following formulas:

(13)

(14)

(15)

(16)

(17)

Where Lf1 and Lf2 respectively denote the lengths of her two nearest ships in front of overtaking

ship;  Lf1_0 and  Lb1_0 respectively denote the lengths of fore ship and aft ship which locate in

her neighbor lane; and K = {0,1} denote the running direction of overtaking ship relative to

another ship, 0 means inbound and 1 outbound.

3.2.3. Time and Distance Parameters Between Overtaking Ship and Other Ships

(18)
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(19)

(20)

(21)

(22)

(23)

(24)

(25)
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3.2.4. Fundamental Characteristic Parameters of Ship Traffic Flow

In order to explicit the kinetic properties of traffic flow; we define two-way channel system and

its average density, speed and traffic flux (Rong-Sen, Hui-Li, Ling-jiang & Mu-ren, 2005). 

(26)

(27)

(28)

Where Ns, Nm, Nl and s, m, l respectively denote the number and density of small-size ship,

medium-size ship and large-size ships, and N is the number of all ships in system. 

Ship density, speed and flux of one-way direction are determined as follows:

(29)

(30)

(31)

Here we introduce ship type mixed proportion coefficient s, m and l, where 0  s  1,

0  m  1 and 0  l  1, s + m + l = 1. Then we can get s = s, m = m and l = l,

lane traffic density ratio coefficient

(32)

Where 0 < 1  1 and 0 < 0  1. So density of overall waterway system

(33)

Where 1 and 0 respectively denote the original density of lane 1 and lane 0. Obviously, if

f = 1, original density of the two lanes is equal, otherwise unequal. Because the result of f > 1

is accordant with that of f < 1, we can discuss the situation of f  1 only.
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3.2.5. Ship Generation Model 

According to on-the-spot observation of ship traffic flow, ship arrival rate obeys Erlang

distribution, bow distances between ships follow negative exponential distribution, and ship

lengths as well as velocity meet normal distribution.

3.2.6. Simulation Conditions

In the next section, we would carry out simulation to explore the relationship between traffic

flux (speed) and ship arrival rate. In the simulation, the original status of waterway is

unoccupied and random slow probability take 0.25. The input parameter is ship arrival rate,

and the simulation of each parameter would repeat for 20 times in order to eliminate the

random effects. During each simulation, and for the purpose of equal original simulation

conditions, we proceed the situation which allow changing lane first, and at the same time

record the ship arrival at entrance, then proceed the situation which prohibit changing lane

with former records. Ship arrival rate hereon is the quantity of arrival ships in 1 minute.

4. Simulation and Discussions

4.1 Characteristic of Traffic Flux (Speed) when Inbound and Outbound Traffic is

Symmetrical

4.1.1. Spatial-Temporal Spot Diagram of Two-Way Waterway

Figures 4 and 5 are respectively inbound spatial-temporal spot diagram of allowing changing

and prohibiting changing when inbound and outbound ship arrival rate are both 3. Figures 6

and 7 are respectively outbound spatial-temporal spot diagram of allowing changing and

prohibiting changing when inbound and outbound ship arrival rate are both 3. From Figures 4

to 7 we can find that the spatial-temporal spot diagram of allowing changing are more uniform

than that of prohibiting changing. During the simulation 16 times changing occur in inbound

lane and 35 times in outbound lane, and the trajectories of target lanes are both in order, so

the changing actions do not impact waterway traffic order; compared with prohibiting

changing, traffic flux and average speed of allow changing promote 4.4 % and 2 %

respectively.

Because large number of ships in waterway system, increasing quantities of traffic flux and

average speed do not seem huge. However for those overtaking ships, economic benefit from

the addition of speed and the saving of navigation time and social benefit from the promotion

of ship traffic flux are matter-of-course.
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Figure 4. Inbound spatial-temporal spot 

diagram when allow changing

Figure 5. Outbound spatial-temporal spot 

diagram when prohibit changing

Figure 6. Outbound spatial-temporal spot 

diagram when allow changing

Figure 7. Outbound spatial-temporal spot 

diagram when prohibit changing
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4.1.2. Characteristic of Traffic Flux (Speed) when Inbound and Outbound Traffic is

Symmetrical

Figures 8 and 9 are respectively the relationship between traffic flux and ship arrival rate when

inbound ship arrival rate is symmetrical. In the diagram, changing-lane would promote the

traffic flux when inbound or outbound ship arrival rate is big (ship arrival rate is 3, 4, 5 or 6);

in the simulation, when ship arrival rate of both lanes are low at the same time (ship arrival

rate is 5 or 6), average speed of waterway system would promote 17% at most.

Figure 8. Traffic flux and ship arrival rate as a 

function when inbound and outbound ship arrival 

rates are symmetrical

Figure 9. Average speed and ship arrival rate as 

a function when inbound and outbound ship 

arrival rates are symmetrical

4.2 Characteristic of flux (speed) when inbound traffic and outbound traffic is

unsymmetrical

In the marine practice, the common traffic density in two-way waterway is dynamic and

unsymmetrical. So the discussion of unsymmetrical ship density is more significant. 

4.2.1. The Relationship Between Traffic Flux and Ship Arrival Rate when Inbound and

Outbound Traffic is Unsymmetrical

Figures 10 and 11 are respectively the relationship between the flux of waterway system and

outbound ship arrival rate at different inbound ship arrival rate when allow changing and

prohibit changing. We can find that the flux of waterway system decrease as ship arrival rate

increase; when ship traffic flow in waterway is in a free status (ship arrival rate is 4, 5 or 6),

traffic flux decreases monotone; and when ship traffic flow is dense, a phenomenon in which

ship arrival rate is low and however the traffic flux is low too, occurs in some areas of the
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relational diagraphs. The phenomenon is caused by low-speed ship. When there are a large

amount of low-speed ships locating in waterway, or when two or more low-speed ships sail one

after the other, it’s hard for fast-speed ships to overtake.

Figure 10. Traffic flux of waterway system and 

outbound ship arrival rate as a function at variable 

inbound ship arrival rate (when allow changing)

Figure 11. Traffic flux of waterway system

and outbound ship arrival rate as a 

function at variable inbound ship arrival 

rate (when prohibit changing)

4.2.2. Compare of Unsymmetrical Inbound and Outbound Traffic when Allow

Changing and Prohibit Changing

Figures 12 to 17 are respectively the relationship between traffic flux and outbound ship arrival

rate when inbound ship arrival rate is determined. In the diagram, changing-lane would

promote the traffic flux significantly when inbound or outbound ship arrival rate is both low

(ship arrival rate is 1 or 2); what’s more, the bigger inbound and outbound lanes differ, the

more ship flux promotes. In the simulation, when ship arrival rate of one lane is 1 and the

other is 6, ship traffic of waterway system would promote 11.4% at most.
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Figure 12. Traffic flux of waterway system and     

ship arrival rate as a function 

(inbound ship arrival rate = 1)

Figure 13. Traffic flux of waterway system    

and ship arrival rate as a function 

(inbound ship arrival rate = 2)

Figure 14. Traffic flux of waterway system           

and ship arrival rate as a function 

(inbound ship arrival rate = 3)

Figure 15. Traffic flux of waterway system    

and ship arrival rate as a function 

(inbound ship arrival rate = 4)

Figure 16. Traffic flux of waterway system           

and ship arrival rate as a function 

(inbound ship arrival rate = 5)

Figure 17. Traffic flux of waterway system    

and ship arrival rate as a function 

(inbound ship arrival rate = 6)
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4.2.3. The Relationship Between Traffic Flux and Ship Arrival Rate when Inbound and

Outbound Traffic is Unsymmetrical

Figures 18 and 19 are respectively the relationship between traffic flux and outbound ship

arrival rate at different inbound ship arrival rate.

In the diagram, average speed of waterway system increase as ship arrival rate increases;

when ship traffic in waterway is dense (ship arrival rate is 1, 2 or 3), average speed increases

monotone; and when ship traffic is in a free status (ship arrival rate is 4, 5 or 6), the regularity

of average speed and ship arrival rate is unfirm and irregular in the diagram; explanation to

the phenomenon is that the interaction of ships is weak when waterway traffic is in a free

status.

Figure 18. Average speed of waterway system     

and outbound ship arrival rate as a function at 

variable inbound ship arrival rate (when allow 

changing)

Figure 19. Average speed of waterway system 

and outbound ship arrival rate as a function at 

variable inbound ship arrival rate (when 

prohibit changing)

4.2.4. Compare of Unsymmetrical Inbound and Outbound Average Speed when Low

Changing and Prohibit Changing

Figures 20 to 25 are respectively the relationship between average speed and outbound ship

arrival rate when inbound ship arrival rate is determined. In the diagram, changing-lane would

promote the average speed significantly when inbound or outbound ship arrival rate is big

(ship arrival rate is 3, 4, 5 or 6); in the simulation, when ship arrival rates of both lanes are

low at the same time (ship arrival rate is 5 or 6), average speed of waterway system would

promote 17% at most.
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Figure 20. Average speed of waterway system     

and ship arrival rate as a function 

(inbound ship arrival rate = 1)

Figure 21. Average speed of waterway system

and ship arrival rate as a function 

(inbound ship arrival rate = 2)

Figure 22. Average speed of waterway system     

and ship arrival rate as a function 

(inbound ship arrival rate = 3)

Figure 23. Average speed of waterway system 

and ship arrival rate as a function 

(inbound ship arrival rate = 4)

Figure 24. Average speed of waterway system     

and ship arrival rate as a function 

(inbound ship arrival rate = 5)

Figure 25. Average speed of waterway system 

and ship arrival rate as a function 

(inbound ship arrival rate = 6)
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5. Conclusions

This paper has proposed a cellular automaton model for variable two-way waterway on

AIS-based. By numerical simulation to the two situations which allow changing lane and

prohibit changing lane, fundamental functions between traffic flux (speed) and density are

obtained. That is, the flux of waterway system decreases and the average speed increases as

ship arrival rate increases. We so find that changing lane can promote traffic flux and average

speed of two-way waterway system under the premise of no impact to the traffic order. When

waterway ship traffic is dense, flux of waterway system has a visible promotion, and when

traffic is sparse, average speed of waterway system adds significantly.

As an implication, we can reach a compromise between traffic efficiency and safety. When no

collision risk incurred, the marine administrations should allow involved ships to change lane

for overtaking; and as a suggestion, Rule 9 and Rule 10 of COLREGs should make some

adjustments correspondingly.
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