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Abstract: In this study, we predict the daily volatility of the S&P CNX NIFTY market 

index of India using the basic ‘heterogeneous autoregressive’ (HAR) and its variant. In 

doing so, we estimated several HAR and Log form of HAR models using different 

regressor. The different regressors were obtained by extracting the jump and continuous 

component and the threshold jump and continuous component from the realized volatility. 

We also tried to investigate whether dividing volatility into simple and threshold jumps and 

continuous variation yields a substantial improvement in volatility forecasting or not. The 

results provide the evidence that inclusion of realized bipower variance in the HAR models 

helps in predicting future volatility.  

Keywords: realized volatility, forecasting, time series analysis, autoregressive model 

 

1  Introduction 

Volatility plays an indispensable role in the theoretical development and application 

of asset and derivative pricing, optimal portfolio choice and the risks associated 

with holding various financial instruments (Andersen et al., 2003). Moreover, it is 

one of the key components used in investment decision-making and various 

trading systems. However, volatility is latent and cannot be observed directly as 

other variables like prices or volume. So measuring and modelling the volatility is a 

pre-eminent issue in financial markets (Poon & Granger, 2003). This task gets 

complex, as world financial markets get increasingly interconnected and 
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interdependent. So both academics and practitioners have emphasised on volatility 

over the past three decades. Poon and Granger (2003) gave a comprehensive 

review of the related literature, concentrating on two important questions. Is 

volatility forecastable? If it is, which method will provide the best forecasts? The 

authors conclude that financial market volatility is clearly forecastable. However, 

the debate is on how far ahead one could accurately forecast and to what extent 

volatility changes could be predicted. 

Various statistical and econometrics models are available for forecasting time 

series volatilities. The simplest one based on historical price is the Random Walk 

model. The extension of the idea of Random Walk model is the Historical Average 

method, the simple Moving Average method, the Exponential Smoothing method 

and the Exponentially Weighted Moving Average (EWMA) method. The Riskmetrics 

model uses the EWMA method. The second group of models belongs to the 

regression family. Under which are the Simple Regression, Autoregressive 

Integrated Moving Average (ARIMA), Autoregressive Fractionally Integrated Moving 

Average (AFRIMA) and Threshold Autoregressive models (Poon & Granger, 2003).  

A third and more sophisticated group of time series models is the ARCH family, 

extensively used by many researchers. ARCH (Engle, 1982) and GARCH 

(Bollerslev, 1986) models have been used by many academicians and practitioners, 

to estimate volatility. They have helped understand empirical properties such as 

volatility clustering, leverage effects in volatility and fat-tails of many financial time 

series.  

A popular and fourth group for modelling changing volatility persistence is the 

Hamilton (1989) type regime switching (RS) model. Afterwards, the base RS model 

was extended by coupling the GARCH type heteroskedasticity in each state and the 

probability of switching between states to be time dependent. Moreover, a regime 

switching ARCH with leverage effect and a bivariate RS model was also developed 

that produced better forecasts (Hamilton & Rauli Susmel, 1994; Hamilton & Gang 

Lin, 1996). 

The fifth group is centered on the stochastic volatility (SV) modelling, in which 

volatility is subject to a source of innovations that may or may not be related to 

those that drive returns. Ghysels et al. (1996) in their survey showed the work 

related to stochastic volatility. 
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In addition to the time series volatility forecasting models, option Implied Standard 

Deviation (ISD) as a volatility forecast is also used. Lamoureux and Lastrapes 

(1993) and George Vasilellis and Nigel Meade (1996) in their study found implied 

ISD predicts equity volatility better than forecasts produced from other time series 

models. 

Various methods for estimating volatility of asset returns also exist. These models 

and estimators, which assume volatility to be constant, are the oldest ones and 

they estimate the “unconditional volatility”. Traditional estimates such as standard 

deviation, close-to-close volatility, extreme value estimator of Parkinson (1980) 

and Garman and Klass (1980) are examples of unconditional volatility. However, 

they do not incorporate time-varying characteristics. Work of Engle (1982) on 

ARCH model led to the development of conditional volatility, which incorporates the 

time-varying characteristics. Afterwards, many variants of ARCH model have been 

developed (see Poon & Granger, 2003 and Pandey, 2003).  

Robustness of volatility estimates rely severely on the parametric model 

specification, as well as particular distribution assumptions. An alternative to proxy 

the volatility is the use of daily squared returns. However, the study by Anderson 

and Bollerslev (1998) reveals that because of microstructure frictional effects in the 

dataset, the volatility estimates based on the model-free method can be very 

noisy. Thus, the estimate based on daily squared returns is not better than the 

parametric models mentioned before. 

Moreover, in a seminal paper, Andersen and Bollerslev (1998) developed a new 

methodology to estimate the volatility using intraday high frequency returns. They 

defined this new measure of volatility as Realised Volatility (RV) and proposed to 

use it as a proxy for the ex-post realisation of the daily volatility. The basic idea of 

RV is that a reliable measure of the asset volatility can be proxied by the 

summation of squared returns over the relevant horizon. Anderson and Bollerslev 

(1998) found that RV furnishes a less noisy estimate than the squared returns to 

the latent volatility. 

RV’s use has been advocated in a number of recent studies (Andersen et al. 

(2001a, b) and Barndorff- Nielsen and Shephard (2002a, 2002b)). Bollerslev and 

Zhou (2002) and Fleming et al. (2003) in their study have illustrated the 

usefulness of this measure in finance. Moreover, Chung et al. (2008) in their study 
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states that RV is a convenient method of circumventing certain data complications, 

while retaining much of the relevant information within the intraday data for 

measuring, modelling and forecasting volatility levels over both daily and longer 

horizons. 

Since RV is non-latent, it has not only been used to estimate the predictive 

performance and adequacy of existing forecasting models (Andersen & Bollerslev, 

1998), but also to explore the predictability of RV (Andreou & Ghysels, 2002, 

Maheu & McCurdy, 2002 , Andersen et al., 2003, Martens et al., 2004, Andersen et 

al., 2005, Koopman et al., 2005). 

However, the main disadvantage of earlier studies using pure time series 

specifications of RV is that they ignored the benefits of model averaging and did 

not include additional volatility proxies, which may be advantageous in increasing 

the accuracy of the time series forecasting models. 

Barndorff-Nielsen and Shephard (2004, 2006) in their research have presented 

various new measures of volatility and associated estimators. They decomposed 

the RV into continuous sample path variations and jumps. The authors extended 

the theory of quadratic variation of semi martingales and provided an asymptotic 

statistical foundation for this decomposition procedure, under very general 

conditions. They developed the most popular Realised Power Variation (RPV) and 

Realised Bipower Variation (RBV). The idea is to examine the role of jumps and 

continuous component of volatility in volatility forecasting. RPV is built from the 

sum of powers of the absolute value of high frequency returns, while RBV is 

defined as the sum of the products of intraday adjacent returns (Barndorff-Nielsen 

& Shephard, 2004, 2006). 

These estimates motivate a wide range of useful specifications using RV, RPV of 

several orders, RBV, a jump and an asymmetric term. Moreover, few studies have 

also been benefited from the concept of model averaging. Corsi (2004) proposed 

the heterogeneous autoregressive (HAR) model for RV. The HAR-RV model uses 

independent variables that are past daily RVs averaged over different horizons 

(typically a day, a week and a month). The idea is to exploit the slow-decay 

patterns in autocorrelations exhibited in the RV series. Afterwards Corsi et al. 

(2005), Bollerslev et al. (2005), Andersen et al. (2007a) formulated new variants 

of HAR-RV models. 
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In a recent study, Corsi et al. (2009) introduced the concept of threshold bipower 

variation, which is based on the joint use of bipower variation and threshold 

estimation. Empirical analysis (on the S&P500 index, single stocks and US bond 

yields) shows that the proposed techniques improve significantly the accuracy of 

volatility forecasts especially in periods following the occurrence of a jump. In most 

recent studies (Ghysels et al. (2006), Andersen et al. (2007), and Forsberg & 

Ghysels (2007)), it has been shown that taking volatility measure which is immune 

to jumps—that is, RPV or BPV measures—provides a good regressor for predicting 

future volatility. 

In this study, we use the basic HAR-RV and its variant to empirically investigate 

the dynamic behaviour of the daily RV of the S&P CNX Nifty Index of India. This 

paper contributes to a growing literature that investigates time series models of RV 

and their forecasting power in a number of ways. The HAR model proposed by 

Corsi (2004) and logarithmic version (log-HAR) models are popular methodologies, 

very successful at modelling the long-term behaviour of volatility in a very simple 

and parsimonious way. Moreover, while exhibiting good out-of-sample forecasting 

performance, the HAR-RV model has also been found to substantially outperform 

several other standard models. The first contribution of the study is to examine 

whether the use of RBV increases the accuracy volatility forecast. In doing so, we 

construct RV and RBV at a daily frequency using high frequency intraday 

observations on returns.  

Andersen et al. (2007), Forsberg and Ghysels (2007), Giot and Laurent (2007) and 

Busch et al. (2006) etc have found that jumps have a null impact in determining 

future volatility. However, a recent study by Corsi et al. (2009) showed that jump 

component estimated through the concept of threshold bipower variation 

significantly improves the accuracy of volatility forecasts. Overall, the results are 

mixed. So the role of jump and continuous component in volatility forecasting 

models needs to be re-examined. So our research strives to examine whether 

forecasting power increases by adding repressor’s like jumps and continuous 

component, as estimated by the model of Corsi et al. (2004) and Corsi et al. 

(2009). Prior studies have mainly compared the predicting power between single 

models. So our study also wants to examine the forecasting power of the two 

different HAR models. 
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Although there are studies addressing the issue of forecasting financial time series 

such as stock market index, most of them are about developed financial markets 

(UK, US and Japan) but not emerging markets. Nowadays, many international 

investment bankers and brokerage firms have major stakes in overseas markets. 

Harvey (1995) found emerging market returns are more likely to be influenced by 

local information than developed markets; in fact, emerging market returns are 

generally more predictable than developed market returns, and are more volatile 

as well. Indian stock markets have received relatively little attention until recently. 

Now there is more interest and research on Indian market data due to the 

country’s rapid growth and potential opportunities for investors. Since the 

establishment of National Stock Exchange (NSE), the financial markets in the 

world’s second-most populous nation have attracted considerable global 

investments. It is believed that our investigation using the Indian stock market 

data would provide a useful assessment of whether the results reported in the 

earlier studies apply to stock markets in developing nations as well. 

The remaining portion of this paper is organized as follows. Section 2, explains the 

theory of realized volatility, realized power variation and realized bipower variation. 

The sample period and methodology used for developing and testing the 

forecasting models are presented in section 3.  The experimental results of the 

study are discussed in section 4. Section 5, concludes with a discussion. 

2 Theoretical framework: RV, RBV and jump component extraction 

As discussed in Chung et al. (2008) the variation and jump components are 

extracted as follows. Suppose that, along day t, the logarithmic prices denoted as 

Pt

𝑃𝑡 = 𝑃0 + µ(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑤𝑡 + 𝜅(𝑡)𝑑𝑞(𝑡), 0 ≤ 𝑡 ≤ 𝑇     (1) 

 of a given asset follow a stochastic-volatility process, as  

 

Where μ(t) is a continuous and locally bounded variation process, σ(t) is the 

stochastic volatility process, W(t) denotes a standard Brownian motion, dq(t) is a 

counting process with dq(t) = 1 corresponding to a jump at time t and dq(t) = 0 

corresponding to no jump and k(t) is the jump size. 

Our interest is to predict the increments in quadratic variation over certain 

horizons. The increment in quadratic variation from time t to t + 1 is defined as 
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𝑄𝑉𝑡,𝑡+𝐻 = ∫ 𝜎2(𝑠)𝑑𝑠 + ∑ 𝜅2(𝑠)𝑡<𝑠<𝑡+𝐻
𝑡+𝐻
𝑡       (2) 

The quadratic variation increments can be decomposed into two distinct 

components: integrated volatility (continuous) and discrete jumps. Barndorff-

Nielsen and Shephard (2004) define integrated power variation of order p as 

∫ 𝜎𝑝(𝑠)𝑑𝑠𝑡+𝐻
𝑡          (3) 

, where 0 < p ≤ 2  

Although the volatility measures present in equation (2) are unobservable, they can 

nevertheless be estimated from the data. Let the discrete daily returns be denoted 

by 

𝑟𝑡,𝑡−1 = 𝑃𝑡 − 𝑃𝑡−1, where t refers to daily sampling    (4) 

The intra-daily return is then  

𝑟𝑡,𝑗
𝑀 = 𝑃𝑡,𝑗/𝑀 − 𝑃𝑡,(𝑗−1)/𝑀    (5) 

Where M is the number of observations within a trading day.  

The daily RV is calculated by summing the corresponding M intra-daily squared 

returns as 

𝑅𝑉𝑡,𝑡+1
𝑀 = ( )

2

1
,∑

=

M

j

M
jtr    (6) 

According to the quadratic variation theory, the 𝑅𝑉𝑡,𝑡+1
𝑀   will converge uniformly in 

probability to the QVt+1

We define RPV and BPV (introduced by Barndorff- Nielsen & Shephard, 2004; 2006) 

as 

 with M → ∞.  

𝑅𝑃𝑉𝑡,𝑡+1
𝑀 = ∑

=

M

j

M
jtr

1
,    (7) 

𝐵𝑃𝑉𝑡,𝑡+1
𝑀 (𝑘) = µ1−2 ∑

+=

M

kj

M
jtr

1
,

M
kjtr −, , k ≥ 0   (8) 
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Where µ1 = �2
𝜋

= 𝐸(𝑍) denotes the mean of the absolute value of the standard 

Gaussian random variable, Z. 

It is possible to reveal that for M → ∞ 

lim𝑀→∞ 𝑅𝑃𝑉𝑡,𝑡+1
𝑀 → ∫ 𝜎(𝑠)𝑑𝑠𝑡+1

𝑡 ≡ 𝜎𝑡,𝑡+1      (9) 

lim𝑀→∞ 𝐵𝑃𝑉𝑡,𝑡+1
𝑀 → ∫ 𝜎2(𝑠)𝑑𝑠 ≡ 𝜎2𝑡,𝑡+1

𝑡+1
𝑡      (10) 

It should be noted that 𝐵𝑃𝑉𝑡,𝑡+1
𝑀 converges to the continuous path component of the 

quadratic variation and is unaffected by jumps. 

Combining the results of equations (2) and (8), the quadratic variation process can 

be separated into the continuous path and jump path components by: 

𝑅𝑉𝑡,𝑡+1
𝑀 − 𝐵𝑃𝑉𝑡,𝑡+1

𝑀 = )(2

1
s

tst
∑

+<<

κ     (11) 

BPV consistently estimates the integrated variance, even in the presence of jumps. 

Thus, the difference between RV and BPV is the sum of the squared jumps. Using 

the results developed by Barndorff-Nielsen and Shephard (2004, 2006) and 

Andersen et al. (2007), the significant jumps and the continuous element is defined 

as 

𝐽𝑡,𝑡+1
𝛼 = 𝐼�𝑍𝑡,𝑡+1 > 𝛷𝛼�(𝑅𝑉𝑡,𝑡+1 − 𝐵𝑃𝑉𝑡,𝑡+1)+    (12) 

𝐶𝑡,𝑡+1
𝛼 = 𝑅𝑉𝑡,𝑡+1 − 𝐽𝑡,𝑡+1

𝛼    (13) 

 

Where I(•) denotes the indicator function, and Zt, t +1 is normally distributed 

under the null hypothesis of no jumps with a significance level, α, and critical value, 

Φα, based on N(0,1) distribution  

Similar to Huang and Tauchen (2005), the significance level of the jump test is α = 

0.001.Corsi et al. (2009) introduced the concept of threshold multipower variation, 

essentially a combination of multipower variation (Barndorff-Nielsen & Shephard, 

2006) and the threshold method of Mancini (2009). 
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Based on a threshold function ( )MΘ , Mancini (2009) provides alternative 

estimators of squared and fourth power integrated volatility. Threshold RV is 

defined as  

𝑇𝑅𝑉𝑡,𝑡+1
𝑀 =







 Θ≤=

∑
)(1

2

, 2
, Mr

M

j

M
jt M

jt

Ir    (14) 

Where the threshold functions have to satisfy 

lim𝑀→0 𝛩(𝑀) = 0, lim𝑀→0
𝑀𝑙𝑜𝑔 1

𝑀
𝛩(𝑀)

= 0      (15) 

Mancini (2009) also establishes a central limit theorem for TRV. Extending the 

concept, Corsi et al. (2009) developed the threshold multi power variation and 

threshold bipower variation. He defines threshold bipower variation as  

𝑇𝐵𝑃𝑉𝑡,𝑡+1
𝑀 = 𝜇1−2 ∑

+=

M

kj

M
jtr

1
,

M
kjtr −,







 ≤







 −≤− jrkjr M

jt
M

kjt

II
νν

2
,

2
,

   (16) 

Where 𝜈 is the positive random threshold function. 

The jump component is estimated as 

𝑇𝐽𝑡,𝑡+1
𝛼 = 𝐼{𝐶−𝑇𝑧>𝛷𝛼}(𝑅𝑉𝑡,𝑡+1 − 𝑇𝐵𝑃𝑉𝑡,𝑡+1)+   (17) 

And the corresponding continuous part as  

𝑇𝐶𝑡,𝑡+1
𝛼 = 𝑅𝑉𝑡,𝑡+1 − 𝑇𝐽𝑡,𝑡+1

𝛼     (18) 

Hence, in this study we employ the concept of RBV and threshold RBV to estimate 

the jump and continuous component.  

3 Data and models 

We obtained the intraday data on the S&P CNX Nifty Index for this study from the 

Bloomberg database. The S&P CNX Nifty is a value-weighted stock index of NSE, 

derived from prices of 50-largest capitalisation stocks. The sample period is from 1 

January 2007 to 15 July 2009.  
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It is commonly cited in literature (Atchison et al., 1987, Lo & Mackinlay, 1988, 

Andersen & Bollerslev, 1998) that non-synchronous trading induces serial 

correlation in the returns process that, in turn, would render the cumulative 

squared returns measure biased. Moreover, the high frequency data are subjected 

to the market microstructure effects, due to price discreteness and bid-ask 

bounces. To remove the effect of microstructure noise and biasness, it is a 

common practice to sum returns over five or 30 minutes (Andersen et al., (2001, 

2005), Barndorff-Nielsen & Shephard, 2004). Hence, in this study, the five-minute 

returns were constructed using the nearest neighbour to the five–minute tag 

excluding the overnight returns.  

The data is split into two periods. The first period runs from 1 January 2007 to 31 

October 2008, used for model estimation and is classified as in-sample; while the 

second period runs from 1 November 2008  to 15 July 2009, reserved for out-of-

sample forecasting and evaluation. Table 1 lists the descriptive statistics of RV 

levels. These levels include RV, RBV, the continuous element (C) and the jump 

element (J) and their log-transform. Table 2 shows the descriptive statistics of the 

threshold bi-power variance, the threshold continuous element (TC) and the 

threshold jump component (TJ) and their log-transform. 

Series 
 

Mean Standard 
Deviation 

Skewness Kurtosis 

Panel A 
RV 0.00082 0.00149 8.1147 90.603 
RBV 0.00047 0.00054 4.4027 30.274 
C 0.00047 0.00054 4.4048 30.267 
J 0.00035 0.00130 11.860 165.52 
Panel B 
Ln (RV) -7.59612 0.84104 1.0946 4.4115 
Ln (RBV) -7.96711 0.71770 0.8016 3.9977 
Ln (C) -7.97595 0.72051 0.8101 3.9957 
Ln (J) 0.00035 0.00129 11.813 164.54 

Table 1. “Descriptive statistics of realized volatility levels”. Source: Own contribution 

Panel A reports the descriptive statistics of the RV and its variants. The mean of RV 

is .00082. The sample skewness coefficient is positive, meaning that the 

distribution of RV is skewed to the right. Moreover, the sample kurtosis coefficient 

is 90.603, larger than the normal value of 3 implying that the distribution is highly 

leptokurtic. The results of RBV, the continuous and jump component series are 

similar to the RV, implying the distribution of these series is also skewed to the 

right and leptokurtic. Panel B reports the descriptive statistics for the log-
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transformation of RV, RBV, the C and J. Again the skewness and kurtosis are higher 

than the standard normal. However, the skewness and kurtosis value have reduced 

in magnitude compared with the original series. 

Series Mean Standard 
Deviation 

Skewness Kurtosis 

Panel A 
RV 0.00082 0.00149 8.1147 90.603 
TRBV 0.00038 0.00045 5.3142 46.220 
TC 0.00044 0.00137 10.511 136.11 
TJ 0.00038 0.00045 5.3271 46.346 
Panel B 
Ln (TRV) -8.19814 0.74471 0.6092 3.8141 
Ln (TRBV) -8.20383 0.74450 0.6243 3.8315 
Ln (TC) 0.00044 0.00136 10.461 135.09 
Ln (TJ) 0.00038 0.00045 5.3142 46.220 

Table 2. “Descriptive statistics of threshold realized Volatility levels”. Source: Own 

contribution 

Panel A reports the descriptive statistics of the threshold RV and its variants. The 

values of threshold RBV, the threshold continuous and threshold jump component 

series are similar to the RV, implying the distribution of these series is also skewed 

to the right and leptokurtic. Panel B reports the descriptive statistics for the log-

transform of the threshold RBV, the threshold continuous and threshold jump 

component. The values of skewness and kurtosis are higher than the standard 

normal. However, the skewness and kurtosis value have reduced in magnitude 

compared with the original series 

3.1 Modelling RV–HAR model 

The HAR model developed by Corsi (2004) provided empirical evidence that it is 

able to reproduce the observed hyperbolic decay of the sample autocorrelations of 

RV. The result of the forecasting performance of HAR model suggests that it is 

strong and similar to that of ARFIMA models. Corsi (2004) suggests that since the 

performance of ARFIMA and HAR models are similar and given the straightforward 

estimation of the latter, the HAR model may be preferable in practice. Moreover, 

Corsi (2004) also suggests that the HAR model can capture the long-term property 

of RV in a very simple and parsimonious way. Hence, in this study, we have used 

HAR model to forecast the RV.  
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HAR-RV model of Corsi (2004), including the daily, weekly and monthly RV 

components, is given by 

𝐻𝐴𝑅 − 𝑉 − 𝑅𝑉𝑡 = 𝛼0 + 𝛼𝑑𝑉𝑡−1 + 𝛼𝑤𝑉𝑡−5:𝑡−1 + 𝛼𝑚𝑉𝑡−20:𝑡−1 + 𝜀𝑡   (19) 

Where 𝑉𝑡−ℎ:𝑡 = 1
ℎ+1

(𝑉𝑡−ℎ−1 + 𝑉𝑡−ℎ + 𝑉𝑡) and V=RV, RBV and TRBV 

We follow the HAR-RV model introduced by Corsi (2004) and use different 

repressors such as RV, BPV and TRBV for predicting RV. 

In addition to the HAR-RV model, we also use the following model suggested by 

Chung et al. (2008). 

𝐻𝐴𝑅 − 𝐶𝐽 − 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−5:𝑡−1+𝛽𝑐𝑚𝐶𝑡−20:𝑡−1 + 𝛽𝑗𝑑𝐽𝑡−1 + 𝛽𝑗𝑤𝐽𝑡−5:𝑡−1 + 𝛽𝑗𝑚𝐽𝑡−20:𝑡−1 + 𝜀𝑡 

   (20) 

Where Ct-h and Jt-h

We use the continuous and jump component elements of RV, as separated by the 

jump test of Barndorff-Nielsen and Shephard (2006). 

 are the continuous and jump component respectively.  

We modify the HAR-CJ-RV model of Chung et al. (2008) using the continuous and 

jump component of RV as separated by the jump test of Corsi et al. (2009) using 

threshold RBV measure. 

𝐻𝐴𝑅 − 𝑇𝐶𝐽 − 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝑇𝐶𝑡−1 + 𝛽𝑐𝑤𝑇𝐶𝑡−5:𝑡−1+𝛽𝑐𝑚𝑇𝐶𝑡−20:𝑡−1 + 𝛽𝑗𝑑𝑇𝐽𝑡−1 +

𝛽𝑗𝑤𝑇𝐽𝑡−5:𝑡−1 + 𝛽𝑗𝑚𝑇𝐽𝑡−20:𝑡−1 + 𝜀𝑡   (21) 

Where TCt-h and TJt-h

As suggested by Andersen et al. (2007) and Forsberg and Ghysels (2007) and 

Chung et al. (2008), we also model RV using log-transform. The logarithmic forms 

of the above equations are as follows: 

 are the continuous and jump component respectively. 

𝐻𝐴𝑅 − 𝑉 − 𝐿𝑜𝑔𝑅𝑉𝑡 = 𝛼0 + 𝛼𝑑𝐿𝑜𝑔𝑉𝑡−1 + 𝛼𝑤𝐿𝑜𝑔𝑉𝑡−5:𝑡−1 + 𝛼𝑚𝐿𝑜𝑔𝑉𝑡−20:𝑡−1 + 𝜀𝑡  (22) 

Where V=RV, RBV and TRBV 
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𝐻𝐴𝑅 − 𝐶𝐽 − 𝐿𝑜𝑔𝑅𝑉𝑡 =  𝛽0 + 𝛽𝑐𝑑𝐿𝑜𝑔𝐶𝑡−1 + 𝛽𝑐𝑤𝐿𝑜𝑔𝐶𝑡−5:𝑡−1 + 𝛽𝑐𝑚𝐿𝑜𝑔𝐶𝑡−20:𝑡−1 +

𝛽𝑗𝑑𝐿𝑜𝑔𝐽𝑡−1 + 𝛽𝑗𝑤𝐿𝑜𝑔𝐽𝑡−5:𝑡−1 + 𝛽𝑗𝑚𝐿𝑜𝑔𝐽𝑡−20:𝑡−1 + 𝜀𝑡    (23) 

Where Ct-h and Jt-h

𝐻𝐴𝑅 − 𝑇𝐶𝐽 − 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐿𝑜𝑔𝑇𝐶𝑡−1 + 𝛽𝑐𝑤𝐿𝑜𝑔𝑇𝐶𝑡−5:𝑡−1 +  𝛽𝑐𝑚𝐿𝑜𝑔𝑇𝐶𝑡−20:𝑡−1 +

𝛽𝑗𝑑𝐿𝑜𝑔𝑇𝐽𝑡−1 + 𝛽𝑗𝑤𝐿𝑜𝑔𝑇𝐽𝑡−5:𝑡−1 + 𝛽𝑗𝑚𝐿𝑜𝑔𝑇𝐽𝑡−20:𝑡−1 + 𝜀𝑡    (24) 

 are the continuous and jump components, respectively, as 

separated by the jump test of Barndorff-Nielsen and Shephard (2006) 

Where TCt-h and TJt-h

3.2 Measure of performance 

 are continuous and jump components, respectively, as 

separated by the jump test of Corsi et al. (2009) 

Following Forsberg and Ghysels (2007) and Chung et al. (2008) the prediction 

performance of the various models in this study is evaluated by considering mean 

square error (MSE), mean absolute error (MAE) and mean absolute percentage 

error (MAPE). However, Andersen et al. (2007) in their study compared the results 

of the different models using only adjusted R2. Forsberg and Ghysels (2007) 

suggested that, when transformed variable (such as log or square root) are used as 

dependent variable, adjusted R2

4 Empirical results 

 can not be used to compare different models. 

Hence, it is necessary to recover the transformed variable in its original form using 

suitable measure. Thus, after recovering the dependent variable to its original form, 

we have compared the in-sample and out-of-sample of different models using MSE, 

MAE and MAPE.  

4.1 In-sample results 

All the daily forecasting models are estimated using in-sample data which runs from 

1st January 2007-31st

 

 October 2008. The results of the estimation of HAR and the 

transformed HAR i.e. LOG HAR model are presented in the Table 3 with the results 

of the HAR models being presented in Panel A, and the results of LOG-HAR model 

being presented in Panel B. 
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Panel A: HAR Models 

 HAR-RV 
Equation 19 

HAR-RBV 
Equation 19 

HAR-TRBV 
Equation 19 

HAR-CJ-RBV 
Equation 20 

HAR-TCJ-RBV 
Equation 21 

0α  0.00018 0.00020 0.00024** 
    

dα  0.34510*** 0.75607*** 1.04616*** 
    

wα  0.31534* 1.06918*** 1.38737*** 
    

mα  0.13785 -0.54013** -0.90073*** 
    

0β  
      

0.00023* 0.00024*** 

cdβ
 

      
-0.21855 -0.07841 

cwβ
 

      
0.77883*** 1.08498*** 

cmβ
 

      
-0.34119 0.27131 

jdβ
 

      
1.54556*** 1.32193*** 

jwβ
 

      
0.38930 -0.41835 

jmβ
 

      
-0.98928* -0.61641 

ADJ R2 0.34699 0.46150 0.51371 0.46660 0.61406 
MAPE 0.86091 0.53829 0.76599 0.51359 0.82446 
MAE 0.00056 0.00045 0.00050 0.00048 0.00051 
MSE 2.23E-06 2.15E-06 1.99E-06 2.02E-06 1.97E-06 

 
Panel B: LOG HAR Models 

 HAR-RV 
Equation 22 

HAR-RBV 
Equation 22 

HAR-TRBV 
Equation 22 

HAR-CJ-RBV 
Equation 23 

HAR-TCJ-RBV 
Equation 24 

0α  -1.0724* -0.7589 -0.8005 
    

dα  0.3346*** 0.4806*** 0.4929*** 
    

wα  0.4081*** 0.6973*** 0.7681*** 
    

mα  0.1276 -0.3231** -0.4385*** 
    

0β  
      

-0.2654 -0.5434 

cdβ
 

      
-171.11* -55.163 

cwβ
 

      
0.5418*** 0.5241*** 

cmβ
 

      
0.0168 0.1488** 

jdβ
 

      
0.7524** 0.6692*** 

jwβ
 

      
0.0114 -0.1844 

jmβ
 

      
-0.4171*** -0.3127* 

ADJ R2 0.52986 0.61293 0.62375 0.50740 0.62813 
MAPE 0.55778 0.85463 0.53834 0.85156 0.56993 
MAE 0.00045 0.00054 0.00046 0.00052 0.00046 
MSE 1.98E-06 2.17E-06 2.01E-06 2.01E-06 1.99E-06 

*** Significant at 1 % level, 

** Significant at 5 % level, 

* Significant at 10 % level 

Table 3: “In-sample Prediction Accuracy”. Source: Own contribution 
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The results for the coefficient of the HAR (equation 19-21) and LOG-HAR (equation 

22-24) model in Panel A and B suggests, RBV and the TRBV is the best regressor in 

the HAR and transformed Log HAR specification (equation 19 and 22). The daily, 

weekly and monthly coefficients of RBV and TRBV are significant at 1 % level. This 

confirms the existence of highly persistent volatility dependence. 

The coefficient (daily, weekly and monthly) of jump and continuous component as 

extracted using by Barndorff-Nielsen and Shephard (2004, 2006) and Corsi et al. 

(2009) are not significant in many cases (equation 20, 21, 23 and 24). The results 

also show that only the daily jump coefficient is positive and significant at 1 % 

level. This suggests that the daily jump may play a role in future volatility forecast.  

The results presented in Panel A and B also gives the adjusted R2 values for the 

HAR and the LOG HAR models. It is noticed that the adjusted R2

In the earlier subsection, we discussed that adjusted R

 is higher for the 

LOG HAR model which also confirms the findings of (Andersen et al. (2007) and 

Forsberg and Ghysels (2007) and Chung et al. (2008). 

2

A glance at the values of these performance measures suggests that no model 

emerges as winner in the in-sample data. The forecasting accuracy statistics 

provide very inconclusive results. The MSE measure suggests that an equation 19 

(HAR-TRBV) models is the best, while the two other performance measure i.e. MAE 

and MAPE suggests that the HAR-RV (equation 19) and HAR-CJ-RBV (equation 20) 

are the best.   

 cannot be used to compare 

different models. Hence, we resort to the various error measures to compare the 

in-sample performance of the RV forecasting model.  The study use three error 

measure namely, MAE, MAPE and MSE to compare various models.  

Since, the MAE is a linear score which means that all the individual differences are 

weighted equally in the average. The MAPE treats forecast errors above the actual 

observation differently from those below this value. The MSE is a quadratic scoring 

rule which measures the average magnitude of the error. Since the errors are 

squared before they are averaged, the MSE gives a relatively high weight to large 

errors. This means the MSE is most useful when large errors are particularly 

undesirable. Patton (2006) also in his work has shown that the MSE loss function is 

robust with regards to the volatility proxy used.  Hence, the study will place more 
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emphasis on MSE rather than MAE and MAPE. Thus, from an MSE perspective, the 

HAR-TRBV model is found to provide the best predictions in the in-sample period. 

The HAR-TRBV model exploits the use of threshold realized bipower variation et al. 

(Corsi (2009)) to develop the HAR model.  

4.2 Out-of-sample results 

In order to compare the true performance of the forecasting models, it is necessary 

to evaluate them on previously unseen data. This situation is likely to be the closest 

to a true forecasting. To achieve this, all models were maintained with an identical 

out-of-sample period allowing a direct comparison of their forecasting accuracy. 

The predictive performance of the five models is summarized in Table 4.  

Panel A: HAR Model 
 HAR-RV 

Equation 19 
HAR-RBV 

Equation 19 
HAR-TRBV 

Equation 19 
HAR-CJ-RBV 
Equation 20 

HAR-TCJ-RBV 
Equation 21 

MAPE 0.92107 0.54698 0.85209 0.55539 0.98982 
MAE 0.00057 0.00044 0.00052 0.00044 0.00056 
MSE 4.39E-06 3.92E-06 3.98E-06 4.42E-06 4.10E-06 
Panel B: LOG HAR Models 
 HAR-RV 

Equation 22 
HAR-RBV 

Equation 22 
HAR-TRBV 

Equation 22 
HAR-CJ-RBV 
Equation 23 

HAR-TCJ-RBV 
Equation 24 

MAPE 0.67625 1.06432 0.62164 1.08352 0.70795 
MAE 0.00048 0.00063 0.00047 0.00061 0.00050 
MSE 3.98E-06 3.93E-06 3.97E-06 3.97E-06 3.99E-06 

Table 4: “Out-of-Sample Prediction Accuracy”. Source: Own contribution 

The forecasting accuracy statistics provide very interesting results. A glance at 

these values shows the superiority of HAR-RBV i.e.  Equation 19 with realized 

bipower variance as regressor. MAE, MSE and MAPE achieved by the HAR-RBV 

model are quite low indicating that there is a smaller deviation between the actual 

and predicted. Ghysels et al. (2006) and Forsberg and Ghysels (2007) in their 

study concluded that the choice of regressor is clearly more important than either 

the model or the weighting scheme selected for use. The results provided by the 

HAR-RBV models suggest that realized bipower variance has contributed more in 

terms of capturing the fluctuations in future volatility. 

The results of our study suggests that HAR models involving RBV are invariant to 

jumps (Barndorff-Nielsen and Shephard (2004, 2006)) and threshold jumps (Corsi 

et al. 2009)), which implies that, even with the presence of a jump at time t , there 

is no change in the model in terms of its ability to predict future volatility. Our 

results are consistent with the results shown in Ghysels et al. (2006), Forsberg and 

http://dx.doi.org/10.3926/jiem.2010.v3n1.p199-220�
http://www.jiem.org�


 
doi:10.3926/jiem.2010.v3n1.p199-220  JIEM, 2010 – 3(1): 199-220 – Online ISSN: 2013-0953 

 Print ISSN: 2013-8423 

 

Improving the accuracy: volatility modeling and forecasting using high- frequency data… 215 

A. Kumar 

Ghysels (2007) and Chung et al. (2008) but contradict the findings of Corsi et al. 

(2009). Thus, the out-of-sample performance measures clearly indicate that RBV 

based HAR model is the best model in terms of forecasting future volatility.  

5 Conclusion 

In this study, we investigated the volatility of the daily of S&P CNX Nifty Index 

realized volatility. We tried to examine whether dividing volatility into jumps and 

continuous variation yields a substantial improvement in volatility forecasting or 

not. In doing so, we estimated several HAR and Log form of HAR models using 

different regressor. The study contributes to the existing literature by comparing 

the performance of different HAR models and Log HAR models with regressor 

extracted from the Barndorff-Nielsen and Shephard (2004, 2006) and Corsi (2009) 

methodology. The experimental results obtained using Nifty data show that RBV is 

the preferred regressor for future volatility prediction. These results hold good for 

both the in-sample and out-of-sample data. The findings of our study are consistent 

with the results of Ghysels et al. (2006) and Forsberg and Ghysels (2007) and 

Chung et al. (2008) but contradict the results of Corsi et al. (2009).  

Traders can develop models using HAR-RBV to forecast the RV and use them for 

better investment decision making. Policy makers can explore the use of such 

model in predicting realized volatility and examine the impact on other economic 

indicators of the country. 

The study has used an out-of-sample period from November 2008 to July 2009 to 

examine the performance of the forecasting model. The global financial meltdown 

of 2008 has impacted the volatility of the various financial markets across the 

globe. Thus a logical extension of this study would be to examine the robustness of 

the HAR-RBV model on different test period. Future research can also be done by 

including a set of potential macroeconomic input variables model. Moreover, the 

use of nonlinear models can also enhance the predictability of the forecast. There is 

also scope to compare the performance of these models for different portfolio of 

stocks using different trading strategies.  
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