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Abstract : It is well-known that the efficiency of mixed integer linear mathematical 

programming depends on the model (formulation) used. With the same mathematical 

programming solver, a given problem can be solved in a brief calculation time using one 

model but requires a long calculation time using another. In this paper a new, unexpected 

feature to be taken into account is presented: the order of the constraints in the model can 

change the calculation time of the solver considerably. For a test problem, the Response 

Time Variability Problem (RTVP), it is shown that the ILOG CPLEX 9.0 optimizer 

returns a ratio of 17.47 between the maximum and the minimum calculations time 

necessary to solve optimally 20 instances of the RTVP, according to the order of the 

constraints in the model. It is shown that the efficiency of the mixed integer linear 

mathematical programming depends not only on the model (formulation) used, but also 

on how the information is introduced into the solver. 

Keywords:  mixed integer linear mathematical programming, response time variability 

problem, combinatorial optimization 

 

1 Introduction 

Integer linear programming is a classical tool in practical operations research that 

can be applied to many problems (e.g. Salkin and Mathur, 1989) very effectively 

(e.g. in Corominas et al. 2008 it was applied to solve a real problem of a 
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motorcycle assembly line and in Pastor et al. 2008 it was applied to solve the case 

of a woodturning company). The technique is well-known and reliable but it must 

be handled carefully. It is known that its efficiency depends on the model 

(formulation) used: with the same mathematical programming solver, a given 

problem can be solved in a brief calculation time using one model but requires a 

long calculation time using another. Therefore, as stated by Billionnet (1999, p. 

105): “Given a problem with a few dozen of variables one cannot be confident that 

integer programming will work until it has been tried on realistic instances”. 

Several techniques have been used to improve the efficiency of this tool. A 

standard technique is the elimination of symmetries: Margot (2007), for example, 

presents techniques for handling symmetries in integer linear programs in which 

variables can take integer values, which extends previous research that dealt 

exclusively with binary variables. Tightening the definition of the data and 

introducing redundant constraints have also provided good results: Corominas et 

al. (2006), for example, demonstrated the importance of modelling, as well as the 

huge impact that redundant constraints and the elimination of symmetries have on 

the effectiveness of MILPs for solving the Response Time Variability Problem 

(RTVP), an NP-hard scheduling problem (Corominas et al., 2007); the total 

computation time taken to solve 20 instances dropped from 38,603 to 398 seconds 

and its practical limit to obtaining optimal solutions was increased from 25 to 

around 40 units to be scheduled. 

This paper argues that the order of the constraints in a model can have a 

considerable effect on the time that a mathematical programming solver takes to 

solve a problem optimally. Lets us, for example, take three sets of constraints (A, 

B and C) of a problem to be solved. To introduce the sets of constraints in the 

mathematical programming solver in the order A-B-C, A-C-B, B-A-C, B-C-A, C-A-B 

and C-B-A is not indifferent and can cause its efficiency to vary considerably. This 

new, unexpected feature that must be taken into account in mathematical 

programming has not been presented previously (to the best of the authors’ 

knowledge). 

For an integer programming formulation of a test problem, RTVP, it is shown that 

the ILOG CPLEX 9.0 optimizer returns a ratio of 17.47 between the maximum and 

minimum calculation times needed to solve optimally 20 instances of the RTVP, 

according to the order of the constraints in the model: with one permutation of the 
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sets of constraints the solver takes only 335 seconds, whereas with another one it 

takes 5,851 seconds. It is shown that the efficiency of the mixed integer linear 

mathematical programming depends not only on the model (formulation) used, but 

also on how the information is introduced into the solver. 

The rest of the paper is organized as follows. Section 2 presents the RTVP. Section 

3 describes the computational experiment carried out. Finally, Section 4 is devoted 

to the conclusions. 

2 The test problem: the Response Time Variability Problem 

The Response Time Variability Problem (RTVP) occurs whenever products, clients 

or jobs need to be sequenced so as to minimize variability in the time between the 

instants at which they receive the necessary resources. It was recently defined in 

the literature and first presented by Corominas et al. (2007), who proved that it is 

NP-hard. 

This problem has a broad range of real-world applications. For example, it can be 

used in the automobile industry to sequence the models to be produced on a 

mixed-model assembly line (Monden, 1983). Other contexts in which the RTVP 

appears are the computer multi-threaded systems and network servers 

(Waldspurger and Weihl, 1995), the periodic machine maintenance problem (Bar-

Noy et al., 2002), the scheduling of advertising slots for television (Brusco, 2008), 

the design of sales catalogs (problem introduced in Bollapragada et al., 2004) and 

the scheduling of waste collection (Herrmann, 2007). 

The abovementioned applications are examples of a very common situation in 

which a resource must be used successively by different units and it is important to 

schedule them in such a way that the different types of units share the resource in 

some fair manner. The RTVP proposes a measure of fairness: to minimize the 

variability of the distance (measured, for example, in number of slot times) 

between any two consecutive units of the same product (event, job or client); i.e., 

to have the distances between any two given consecutive units of the same 

product as constant as possible. 

The RTVP is formulated as follows. Let  be the number of products,  the 

number of units of product   and  the total number of units 
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. Let  be a solution of an instance in the RTVP that consists of a 

circular sequence of units , where  is the unit sequenced in 

position  of sequence . For all products  in which , let  be the distance 

between the positions at which the units  and  of product  are found (i.e. 

the number of positions between the units, where the distance between two 

consecutive positions is considered equal to 1). As the sequence is circular, position 

1 comes immediately after position ; therefore,  is the distance between the 

first unit of product  in a cycle and the last unit of the same product in the 

preceding cycle. Let  be the average distance between two consecutive units of 

product  . For all products  in which ,  is equal to . The 

objective is to minimize the . 

For example, let , ,  and ; thus, , ,  and 

 Any sequence is a feasible solution. For example, the sequence (C, A, C, B, 

C, B, A, C) is a solution, where  

. 

Corominas et al. (2007) presented the RTVP and proposed a mixed integer linear 

programming (MILP) model and five heuristic algorithms for solving it. García et al. 

(2006) presented six metaheuristic algorithms: a multi-start, a greedy randomized 

adaptive search procedure (GRASP) and four variants of a discrete particle swarm 

optimization (PSO) algorithm. Other ten discrete PSO algorithms were proposed in 

García-Villoria and Pastor (2009). A cross-entropy method approach was used in 

García-Villoria et al. (2007). The Electromagnetism-like Mechanism was proposed 

to solve the RTVP in García-Villoria and Pastor (2008a). Finally, the best heuristic 

results recorded to date have been obtained with a Psychoclonal algorithm (García-

Villoria and Pastor, 2008b). Corominas et al. (2006) presented an improved MILP 

model; in our paper a slight simplification of this improved MILP model is 
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considered. The model to be tested, which is presented in the Annex, consists of an 

objective function to be minimised, labelled (1), and 10 sets of constraints, labelled 

(2) to (11). 

3 Computational experiment 

Using the RTVP as the test problem, a computational experiment was performed in 

order to show that the order of the constraints in the model can have a 

considerable effect on the calculation time of the mathematical programming 

solver. The basic data used for the experiment are as follows: 

• The 20 instances in Computational Experiment 1 in Corominas et al. (2006) 

were used. In short,  was between 21 and 40 units,  was between 3 

and 12 products, and  was between 1 and 15 units. 

• Sets (2) to (11), the 10 sets of constraints of the model shown in the 

Annex, were grouped into seven groups of constraints (G1 to G7). All 

possible permutations of these seven groups of constraints were carried 

out; therefore, 7! MILP models were generated and solved optimally (5,040 

models). Table 1 shows the 10 original sets of constraints  and 

the seven groups of constraints that were used to test the order . 

The grouping of the original sets of constraints was carried out in 

accordance with the similarity between the characteristics of the RTVP that 

were modeled by the restrictions. As explained later in this paper, grouping 

the constraints into seven groups shows that the order of the constraints in 

the model has a decisive influence on the efficiency; therefore, it was not 

necessary to generate and solve optimally the 10! MILP models (it would 

indeed be highly time-consuming: solving the 7! MILP models took 

4,550,156 seconds). 

• The MILP models were solved to optimality using the ILOG CPLEX 9.0 

optimizer and a Pentium IV PC at 3.4 GHz with 1 GB of RAM. These models 

were run with the same computer environment in order to the performance 

(calculation time) of the next run was not affected. 
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Original Groups 
(2) G1 
(3) 
(4) 

G2 

(5) G3 
(6) 
(7) 

G4 

(8) G5 
(9) G6 
(10) 
(11) 

G7 

Table 1. “Grouping of the original sets of constraints”. 

The 5,040 MILP models were generated and solved optimally for each of the 20 

test instances (a total of 100,800 models). Obviously, the number of variables and 

constraints of the 5,040 models were the same for each instance, because the only 

difference between these MILP models was the order of the seven groups of 

constraints. For each of the 5,040 models the sum of the calculation time of the 20 

instances was obtained. Table 2 shows the permutations required by the minimum 

and maximum calculation times (in seconds). 

Permutation of the groups Time (in seconds) 

G5_G2_G3_G6_G1_G7_G4 335 

G6_G5_G4_G2_G7_G3_G1 5.851 

Table 2. “Best and worst permutations of the groups of constraints”. 

Table 2 shows the ILOG CPLEX 9.0 optimizer takes only 335 seconds for 

permutation G5_G2_G3_G6_G1_G7_G4, whereas for permutation 

G6_G5_G4_G2_G7_G3_G1 it takes 5,851 seconds. That is, in order to solve 20 

instances of this test problem, the order of the constraints in the model returns a 

ratio of 17.47 between the maximum and the minimum calculation times of the 

ILOG CPLEX solver. 

4 Conclusions 

This paper presents a new, unexpected feature that should be taken into account 

whenever a mixed integer linear mathematical formulation must be solved 

optimally with a mathematical programming solver: the order of the constraints in 

the model can considerably change the calculation time of the solver. 
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In order to reveal this difference in performance, a computational experiment was 

conducted in which the Response Time Variability Problem (RTVP) was solved using 

the ILOG CPLEX 9.0 optimizer. It returned a ratio of 17.47 between the maximum 

and the minimum calculation times necessary to solve optimally 20 instances of the 

RTVP, according to the order of the constraints in the model. With one permutation 

of the sets of constraints the solver needs only 335 seconds, whereas with another 

one it needs 5,851 seconds. It has thus been shown that the efficiency of the 

mixed integer linear mathematical programming depends not only on the model 

used, but also on how the information is introduced into the solver. 

Because the ILOG CPLEX 9.0 optimizer is commercial software, it is very difficult 

for the authors to explain its performance. One hypothesis, which is not confirmed, 

is that the order in which the variables are handled in the search process depends 

on the order of the constraints in the model. Obviously, if we formalize the RTVP 

with another model (or we solve another problem) the difference in performance 

according to the order of the constraints in the model could be lower, but it could 

also be even higher. 

Future research work will involve checking if this new, unexpected feature is also 

showed when another mathematical programming solver is used. The possibility to 

establish a formalised procedure to achieve, a priori, the best order of the 

constraints in the model is another area of future research. 

Annex 

The RTVP model to be tested is specifically as follows. 

Data: 

 Number of products  

 Total number of units 

 Number of units of product   to be scheduled ; 

it is assumed that  
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 Average distance between two consecutive units of product : 

  

 Set of products with :  

 Lower and upper bound on the distance between two consecutive units 

of product   

 First and last position that can be occupied by unit  of product  

 

 Set of positions that can be occupied by unit  of product : 

  

Variables: 

 Position of unit  of product   

 1 if and only if unit  of product  is placed in position  (  

 ) 

 1 if and only if the distance between units  and  of product  is 

greater than or equal to   

Model: 

      (1) 

            (2) 

     (3) 
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         (4) 

           (5) 

               (6) 

           (7) 

 

  (8) 

 

  (9) 

          (10) 

         (11) 

Objective function (1) minimises the response time variability. (2) provides the 

position of unit  of product  . (3) and (4) ensure that the distance between 

units  and  of product  is equal to an integer value between  and . (4) 

refers to the distance between the first unit of product  in a cycle and the last unit 

of the same product in the preceding cycle. (5) imposes the consistency of values 

for . (6) ensures that one and only one unit is placed in each position  of the 

sequence and constraint set (7) ensures that each unit  of each type of product  

is assigned to one and only one position of the sequence. The first unit of one 
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product with the largest  is fixed in the first position of the sequence (we can 

assume, without loss of generality, that this product is product 1); then (8) 

calculates two values for the sequence, considering it first in clockwise order and 

then in anticlockwise order and it is imposed that the value for the former is less 

than or equal to the value for the latter. With (9) a value is calculated for the 

sequence by shifting the units of product  with the largest  (we can assume, 

without loss of generality, that this product is product 1); then, it is imposed that 

the value of the first sequence is less than or equal to the “value” of the other 

sequences. Finally, for each product , it is imposed, over variables , that 

the sum of the distances between its units is equal to  ((10) and (11)). 
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