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Abstract:

Purpose: The aim of  this paper is to deal with the supply chain management (SCM) with

quantity discount policy under the complex fuzzy environment, which is characterized as the bi-

fuzzy variables. By taking into account the strategy and the process of  decision making, a bi-

fuzzy nonlinear multiple objective decision making (MODM) model is presented to solve the

proposed problem.

Design/methodology/approach: The bi-fuzzy variables in the MODM model are

transformed into the trapezoidal fuzzy variables by the DMs's degree of  optimism α1 and α2,

which are de-fuzzified by the expected value index subsequently. For solving the complex

nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO)

is designed as the solution method.

Findings: The proposed model and algorithm are applied to a typical example of  SCM

problem to illustrate the effectiveness. Based on the sensitivity analysis of  the results, the bi-

fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level α1.

Practical implications: The study focuses on the SCM under complex fuzzy environment in

SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-

APSO can be further applied in SCM problem with quantity discount policy.
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Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of  SCM

to characterize the hybrid uncertain environment, and this work is original. In addition, the

hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the

DMs's degree of  optimism and the expected value index. Since the MODM model consider the

bi-fuzzy environment and quantity discount policy, so this paper has a great practical

significance.

Keywords: bi-fuzzy variable, nonlinear, multi-objective programming, sensitivity analysis, particle

swarm optimization

1. Introduction

A supply chain (SC) is a system of facilities and activities that functions to procure, produce,

and distribute goods to the customers. Basically, supply chain management (SCM) is a set of

approaches utilized to efficiently integrate suppliers, manufacturers, warehouses, and stores,

so that merchandise is produced and distributed at the right quantities, to the right locations,

and at the right time, in order to minimize system-wide costs (or maximize profits) while

satisfying service level requirements (Simchi-Levi , Kaminsky & Simchi-Levi, 2000). In this

situation, SCM has become the foundation for the operations management nowadays

(Al-e-hashem, Malekly & Aryanezhad, 2011). In traditional SCM, the focus of the integration

of supply chain network is usually on single objective, i.e., minimum cost or maximum profit.

However, in practice, there are no design tasks that are single objective problems. In SC,

different members have different conflicting objectives, such as cost and quality, on time

delivery and quality, and so on. Chen and Lee (2004) presented a multi-product, multi-stage,

and multi-period scheduling model to deal with multiple incommensurable goals for a

multi-echelon supply chain network with uncertain market demands and product prices.

Altiparmak, Gen, Lin and Paksoy (2006) designed a new solution procedure based on genetic

algorithms to find the set of Pareto-optimal solutions for multi-objective supply chain network

problem. In addition, to deal with the multiple objectives and enable the decision maker for

evaluating a greater number of alternative solutions, two different weight approaches are

implemented in the proposed solution procedure. Torabi and Hassini (2008) proposed a multi-

objective possibilistic mixed integer linear programming model (MOPMILP) for integrating

procurement, production and distribution planning considering various conflicting objectives

simultaneously as well as the imprecise nature of some critical parameters such as market

demands, cost/time coefficients and capacity levels. Arikan (2013) considered three objective

functions, which were minimization of costs, maximization of quality and maximization of on-

time delivery, in the suppliers selection problems of SCM. The application of MODM in SCM will

become increasingly extensive and in-depth because SCM has made managers and analysts to

shift their focuses from only manufacturing plant to the entities process.
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Another key issue which also worth our attention in SCM is the inevitable uncertainty. Actually,

the variables in SCM, such as the market demands, availabilities of raw materials, buyer's cost,

are usually uncertain. Traditionally, the subjective uncertainty, i.e. the perception and

dissension of decision makers (DMs), in SCM is assumed to be fuzzy. The fuzzy set theory,

which was initialized by Zadeh in 1965, can be used to handle the uncertain issues such as

demands, external raw material supply del ivery, inventory cost, and so on.

Giannoccaro, Pontrandolfo and Scozzi (2003) applied the fuzzy sets theory to characteristic the

uncertainties associated with both market demand and inventory cost. Wei, Liang and Wang

(2007) adopted the fuzzy set theory to resolve the ambiguities involved in assessing SCM

alternatives and aggregating the linguistic evaluations. Wang and Shu (2008) developed a

fuzzy decision methodology that provided an alternative framework to handle supply chain

uncertainties and to determine supply chain inventory strategies, while there was lack of

certainty in data or even lack of available historical data. Tabrizi and Razmi (2013) proposed a

mixed-integer non-linear mathematical model in which the uncertainties were represented by

the fuzzy set theory, and applied an interactive resolution method to provide the decision

maker with alternative decision plans in regard to the different satisfaction degrees. In

practice, however, we may face a complex fuzzy environment in the practical SCM. For

example, in order to collect the data of inventory cost, some investigations and surveys are

made to the different experienced managers (i.e., m = 1, 2, …, M, where m is the index of

managers). Instead of the exact parameters, the managers can describe the parameters as an

interval [lm, rm] with the most possible value pm (i.e., a fuzzy variable (lm, pm, rm)), such as “the

maximal inventory cost is between 6.35 and 8.13 hundred dollars per week, and the most

possible cost is 7.62 hundred dollars”. Since different managers have different opinions for the

parameters, so the minimum value of all lm (denoted as a) and the maximal value of all rm

(denoted as b) are selected as the left border and the right border, respectively. Meanwhile, by

comparing the most possible values, we can also select the minimal value as its left border (ap)

and the maximal value as the right border (bp) for pm. In addition, after considering the

professional advice of all managers, the director declared the most likely value of pm is mp. It

means that pm is also a fuzzy variable which can be characterized as pm = (ap, mp, bp). Hence,

the inventory cost is a fuzzy variable taking a fuzzy parameter, i.e., a bi-fuzzy variable (a, pm, b),

where pm = (ap, mp, bp). Hence, the bi-fuzzy variable, which was initialized by Liu in 2002, can

be a useful tool which is able to deal with this complex uncertainty. In fact, the bi-fuzzy

variable has been successfully applied in many areas, such as vendor selection problem (Xu &

Yan, 2011), inventory problems (Liu & Xu, 2006), portfolio selection problems (Yan, 2009), and

so on. The research mentioned above proved that the bi-fuzzy variable could effectively cope

with the complex fuzzy environment. So far, no attempt has been made on considering

decision making process in the bi-fuzzy environment for SCM. Hence, there is a strong

motivation for this study.
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The remainder of this paper is organized as follows. In section 2, some preliminaries about the

bi-fuzzy theory are presented. Then a bi-fuzzy nonlinear MODM SCM model with quantity

discount policy is proposed in section 3. The details of an approach used in transforming bi-

fuzzy variables into the fuzzy variables are also presented, and then the expected value

operator is employed to deal with the fuzzy variables. In section 4, a multi-objective adaptive

particle swarm optimization algorithm (MOBL-APSO) is utilized to resolve the nonlinear MODM

model. The effectiveness of the proposed model and algorithm is proven by the practical

application in section 5. Finally, in section 6, concluding remarks and further research are

outlined.

2. Preliminaries 

Some basic knowledge of fuzzy set theory, bi-fuzzy variable and bi-fuzzy MODM model will be

introduced in this section.

Definition 2.1. (Zadeh, 1965) Given a domain X. If Ã is a fuzzy subset of X, for any x ϵ X

μÃ: X → [0,1], x → μÃ(x)

μÃ is named a membership function of x with respect to Ã. μÃ(x) denotes the grade to each

point in X with a real number in the interval [0,1] that represents the grade of membership of

x in A. Ã is a fuzzy set and described as Ã = {(x, μÃ(x))|x ϵ X}. If F is a fuzzy number (set)

with degree of membership μF(u) of an element u in F, then μF(u) represents the degree of

possibility that a parameter x has a value u. Thus, the nearer the value of μÃ(x) is unity, the

higher the grade of membership of x in Ã. 

Definition 2.2. (Zadeh, 1978) Let Ã be a fuzzy set which defined on X. If α is possibility level

and 0 ≤ α ≤ 1, Ãα consist of all elements whose degrees of membership in Ã are greater than

or equal to α, 

Ãα = {x ϵ X|μÃ(x) ≥ a}

then Ãα is called the α-level set of fuzzy set Ã.

Definition 2.3. (Dubois & Prade, 1988) Let Θ be a nonempty set, P(Θ) be the power set of Θ,

and Pos be a possibility measure. Then the triplet (Θ, P(Θ), Pos) is a possibility space.
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Definition 2.4. (Nahmias, 1978) A fuzzy variable is a function from a possibility space (Θ,

P(Θ), Pos) to the real line R. 

Definition 2.5. (Liu, 2002) A bi-fuzzy variable is a function from a possibility space (Θ, P(Θ),

Pos) to a collection of fuzzy variables.

Roughly speaking, a bi-fuzzy variable is a fuzzy variable defined on the universal set of fuzzy

variables. For example, let , where  is a fuzzy variable with membership function

. Then  is a bi-fuzzy variable obviously (Liu, 2002).

Based on the definitions above, the bi-fuzzy MODM model can be stated as:

(1)

Where  are bi-fuzzy vectors,

and b = (b1, b2, ···, bm)T.

Definition 2.6. (Luhandjula, 1987) Let  be the possibility level vector,

, x ϵ Rn, and if

then x is α1-possible feasible solution to (1). All α1-possible feasible solutions are α1-possible

feasible set  of the model (1).

Consider the form of model (1) as:

(2)

Then, let α2 be a possibility level, α2 ϵ [0,1], D ϵ Rn, and x ' ϵ D. If do not exist x ϵ D and

k ϵ 1,2, ···, K, x satisfy

 x' is α2-possible

efficient solution of the model (2) (Luhandjula, 1987).
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Definition 2.7. (Luhandjula, 1987) Let x' ϵ X, if x' is the problem 

(3)

α1-possible efficient solution, and then x' is (α1, α2)-satisfied solution of the model (1).

Actually, in order to solve model (1) and find the (α1, α2)-satisfied solution, the following MODM

model should be considered: 

(4)

Where  is α1-level set of bifuzzy variables .

Theorem 1. (Xu & Liu, 2008) x' is the (α1, α2)-satisfied solution of the model (1) if and only if

x' is the efficient solution of the model (4).

3. Bi-fuzzy non-linear MODM model for SCM

Traditionally, there are three stages in the supply chain, including procurement, production and

distribution. The general structure of a typical supply chain is outlined in Figure 1. For

simplifying the presentation, only the manufacturers, distribution centers, and retailers are

considered in this paper.

Figure 1. The schema of supply chain
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3.1. Modelling

Since treating the nonlinear functions is difficult, some SCM models assume that the prices of

materials, production, inventory, and transportation are constant. However, this assumption is

far beyond the practical situation. The vendors usually offer quantity discounts to encourage

the buyers to order more, and the producer intends to discount the unit production cost if the

amount of production is large. In this case, the quantity discount policy should be considered.

Note that the cost (price) variables can be expressed as a function of quantity Q, and the

multiple breakpoint discount function is a general form usable in practice (see Figure 2). The

function can be represented as:

(5)

where si is the slope when the quantity ordered is between Qi and Qi+1, and n means that there

are n-1 line segments in .

Figure 2. Multiple breakpoint discount function

In this subsection, a non-linear MODM model for SCM under complex fuzzy environment is

developed. The following notation is used.
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3.1.1. Notion

: Ordered quantity of the pth product from the mth manufacturer in the tth period

: Quantity of the pth product transported from the mth manufacturer to the dth

distribution center in the tth period

: Quantity of the pth product in the dth distribution center in the tth period

: Quantity of the pth product transported from the dth distribution center to the rth

retailer in the tth period

: Unit procurement cost of the pth product from the mth manufacturer in the tth

period

: Unit transportation cost of the pth product from the mth manufacturer to the dth

distribution center in the tth period

: Unit transportation cost of the pth product from the dth distribution center to the rth

retailer in the tth period

: Unit stock carrying cost of the pth product in the dth distribution center in the tth

period

: Short safe inventory level in the mth manufacturer, dth distribution center, rth

retailer in the tth period

: Safe inventory quantity in the mth manufacturer, dth distribution center, rth retailer

in the tth period

: Inventory level of the pth product in the mth manufacturer, dth distribution center,

rth retailer in the tth period

: Maximum inventory capacity of the mth manufacturer, dth distribution center, rth

retailer

: Lead time from the mth manufacturer to the dth distribution center and LTmd ≤ T 

: Lead time from the dth distribution center to the rth retailer and LTdr ≤ T

: Maximum supplied level of the pth product from the mth manufacturer in the tth

period

: Maximum inventory level of the pth product in the dth distribution center in the tth

period
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3.1.2. Model Formulation

Based on the requirement of the DM's objectives, we will develop a bi-fuzzy non-linear MODM

model for SCM as follows.

3.1.2.1. Objective functions

The first objective is to minimize the total cost, which includes procurement cost,

transportation cost, and inventory cost. Basically, there are four kinds of costs involved in this

model: product procurement cost from manufacturers, transportation cost from manufacturers

to distribution centers, inventory cost in distribution centers, and transportation cost from

distribution centers to retailers. So the total cost can be described as:

(6)

Where , , ,  are bi-fuzzy variables.

Furthermore, the second objective is to maximize the average safe inventory levels. The safe

inventory level of the mth manufacturer in the tth period is defined as the expected average

percentage of 1 less the ratio of short safe inventory level of product p of manufacturer m at

period t (Dt
mp), over the safe inventory quantity of product p of manufacturer m (SImp). Similar

definitions are also applied to distribution centers and retailers. So we develop all the

participants' safe inventory levels as:

(7)

3.1.2.2. Constraints

Since the amount of the pth product transported from the mth manufacturer to all distribution

centers must be equal to the total amount ordered from the mth manufacturer in the tth

period for each manufacturer, so

(8)

The stock quantity of the pth product at the beginning of the tth period, plus the total amount

flowing in from all manufacturers and the stock quantity of the pth product in the (t + 1)th

period, and this value should be equal to the total amount flowing out to all distribution

centers, here,
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(9)

The total amount of the pth product shipped from distribution centers to retailers must be

equal to the total final demands in the tth period, hence:

(10)

The maximum supplied quantity of manufacturers and inventory level of distribution centers

are given:

(11)

By making the short safe inventory level of a product to be zero if inventory level is greater

than safe inventory quantity, or to be the difference of safe inventory quantity and inventory

level if inventory level is smaller than safe inventory quantity, here:

(12)

Based on the discussion above, by integrating the Equations (6) ~ (12), a bi-fuzzy nonlinear

MODM model for SCM is developed as:

(13)

3.2. Dealing with the bi-fuzzy variable

Since some bi-fuzzy variables are involved in the proposed MODM model (13), and the costs

and the quantity discount functions are variable, so it is very hard to be solved. In this case,

considering the optimistic-pessimistic attitude of DMs, a hybrid crisp approach is employed to

transfer the bi-fuzzy model to an equivalent one. This method transforms the bi-fuzzy variable

into a (α1, α2)-level trapezoidal fuzzy variable at first, and then de-fuzzified the trapezoidal

fuzzy variable by an expected value operator. 
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Denoted the bi-fuzzy variable as , where is  a triangular fuzzy variable

with membership function  (See Figure 3).

Figure 3. The membership function of 

Following the definition 2.2, α1-level sets of  are:

where  and . The parameter α1 ϵ [0,1] here reflects

decision-maker's degree of optimism. In addition,  can be estimated by collected

data and professional experience using statistical methods.

Thus, the bi-fuzzy variable  is transferred as a class of triangular fuzzy numbers,

see Figure 4. Subsequently, for the given possibility level α2, we can get the α2-level set of

these triangular fuzzy numbers as Figure 5.

Figure 4. Step 1. Transfer the bi-fuzzy variable 

to a class of triangular fuzzy numbers

Figure 5. Step 2. Transfer the bi-fuzzy variable 

to a trapezoidal fuzzy number
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From Figure 5, we can see that the bi-fuzzy variable is transferred as a trapezoidal fuzzy

variables , where

Finally, a new measure with an optimistic-pessimistic adjustment index Me, which is proposed

by Xu and Zhou (2011) for dealing with the trapezoidal fuzzy variable, is employed. The

measure Me can evaluate a confidence degree that a fuzzy variable takes values in an interval,

and the expected value of the trapezoidal fuzzy variable can be obtained by Me as (Xu & Zhou,

2011):

where λ is the optimistic-pessimistic index of DMs, and λ = 1 indicates that the best case has

the maximal chance to happen, while λ = 0 is opposite.

Based on the above hybrid method, the bi-fuzzy MODM model (13) can be transformed into an

equivalent crisp one.

4. Multiple Objective Adaptive PSO (MO-APSO)

Since model (13) are nonlinear, so a multi-objective adaptive particle swarm optimization

algorithm (MO-APSO) is designed as the solution method. Particle swarm optimization (PSO)

algorithm, which was first proposed by Kennedy and Eberhart in 1995, is an effective tool in

solving optimization problems because of the superior search performance and fast

convergence. PSO simulates the social behaviors such as birds flocking to a promising position

for certain objectives in a multi-dimensional space (Kennedy & Eberhart, 2001). In PSO, an

n-dimensional position of a particle represents a solution, and the particles fly through the

problem space following the current optimum particles. The updating mechanism of particle is:

where νld(τ + 1) is the velocity of l particle at the d dimension in the τ iteration, w is an inertia

weight, pld(τ) is the position of l particle at the d dimension, r1 and r2 are random numbers in

the range [0,1], cp and cg are personal and global best position acceleration constant

respectively, meanwhile,  and  are personal and global best position of l particle at the d

dimension. 

As PSO can be implemented easily and effectively, the researchers also consider PSO as a very

strong competitor to other algorithms in solving multi-objective decision making problems
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(Coello & Lechuga, 2002). Some papers reported in the literature have extend PSO to

multi-objective problems, such as Garg and Sharma (2013), Tavakkoli-Moghaddam, Azarkish

and Sadeghnejad-Barkousaraie (2011), Zhang , Shao, Li and Gao (2009), and so on. The

improved PSO utilizes Pareto dominance to determine the flight direction and maintains

previously found non-dominated vectors in a global repository (Coello & Lechuga, 2002). All

the particles are compared with each other and the non-dominated particles are stored in the

repository. The position of particle is updated by:

here, REPh(τ) is the positions of the particles that represent non-dominated vectors in the

repository, i.e., several equally good non-dominated solutions stored in the external repository

instead of global best position. 

The solution approach proposed in this paper combines multi-objective PSO with Pareto

archived evolution strategy (PAES), which is one of Pareto-based approaches to update the

best position (Knowles & Corne, 2000). This approach employs a truncated archive, which is

used to separate the objective space into a number of hypercubes, to store the elite

individuals. Based on the density, every hypercube has its own score. After selecting the best

for particles based on roulette wheel selection, the particle is selected uniformly. More details

of PAES are as:

PAES Procedure

generate initial random solution Pl(τ) and add it to the archive

update Pl(τ) to generate Pl(τ + 1) 

if Pl(τ) dominates Pl(τ + 1) 

   discard Pl(τ + 1) 

else if Pl(τ + 1) dominates Pl(τ) 

          replace Pl(τ)  with Pl(τ + 1)  and add Pl(τ + 1) to the archive

else if Pl(τ + 1) is dominated by any member in the archive

          discard Pl(τ + 1) 

else if Pl(τ + 1) dominates any member in the archive

          replace it with Pl(τ + 1) 

else if

          the archive is not full

          add Pl(τ + 1) to the archive

          if Pl(τ + 1) is in a less crowded region than Pl(τ) in the archive

             accept Pl(τ + 1) as the new current solution

          else

             maintain Pl(τ) as the current solution

      else

          if Pl(τ + 1) is in a less crowded region than any other member
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            add Pl(τ + 1) to the archive, and remove a member of the archive from the

            most crowded region

            if Pl(τ + 1) is in a less crowed region than Pl
best(τ) 

               accept Pl(τ) as the new current solution

            else

               maintain Pl(τ) as the current solution

      else

          do not add Pl(τ + 1) to the archive

until the termination criterion is reached, otherwise return to line 2

In addition, based on PAES, in the updating mechanism,  (Shi &

Eberhart, 1998). The overall procedure of MO-APSO is presented in Figure 6.

Figure 6. The procedure of MO-APSO
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5. Application

A practical supply chain application problem with quantity discount policy is considered in this

section. Considering a small-scale but typical supply chain, which consists of two

manufacturers (m1, m2, i.e., m = 2), two distribution centers (d1, d2, i.e., d = 2), two retailers

(r1, r2, i.e., r = 2), and two products (p1, p2, i.e., p = 2), the time period is 3 (i.e., t = 3). In

this supply chain system, the first distribution center (d1), which is small scale but fast delivery

service, can rapidly respond to the customer demand, but it also needs a high operational cost.

Meanwhile, the second distribution center (d2), which is large scale but slow delivery service,

but its operational cost is low because it can use the economies of scale to transport goods.

The lead-time from each manufacturer to distribution center is 1, and from distribution center

to each retailer be 0. The example of supply chain is depicted in Figure 7.

Figure 7. The example of typical supply chain

All the detailed data of supply chain system are gained from practical investigation. The

bi-fuzzy variables are obtained based on previous data and experts' experience. In this case,

product cost per unit  and stock carrying cost  are considered as multiple

breakpoint function as shown in Figure 2. The detailed information is shown in Table 1 ~ 5.

Table 1. Product cost per unit  (multiple breakpoint function as shown in Figure 2)
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Table 2. Transportation cost from manufacturer to distribution center 

Table 3. Transportation cost from distribution center to retailer 

Table 4. Stock carrying cost  (multiple breakpoint function as shown in Figure 2)

Table 5. Others parameters
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5.1. The results

The parameters of MO-APSO for the multiple objective SCM problem are: swarm size popsize

L = 50, iteration max T = 100, personal and global best position acceleration constant

cp = cg = 2, inertia weight w(1) = 0.4, w(T) = 0.9. After dealing with the bi-fuzzy variables by

the hybrid crisp approach in section 3, we use Matlab 7.0 and Visual C++ language on an Inter

Core I7 M370, 2.40 GHz, with 2048 MB memory, and take the data into the computer

program, the optimal solution of SCM model is generated by MO-APSO (see Figure 8).

Figure 8. The Pareto optimal solutions

Following Figure 8, DMs could choose the satisfactory scenarios from these pareto-optimal

solutions according to the actual situation. For example, if DMs determine that the objective of

total cost is the more important factor, they may allow a decreased average safe inventory

levels. Thus, they would choose the far left pareto-optimal solutions.

5.2. Sensitivity analysis

In order to evaluate the effect of variations in model parameters, sensitivity analysis is

performed. For illuminating the sensitivity clearly, we changed the value of α2, α1, and λ in

turn, then compared the corresponding results to analyze the effect of each parameter. This

work can provide the necessary information to the DMs for choosing the value of each

parameter when considering the actual situation.

First, let α1 still be 0.8 as before, and α2 = 0.4, 0.3, 0.2, respectively. Then, we get Figure 9.

Subsequently, let α2 still be 0.5, and α1 = 0.7, 0.6, 0.5, respectively. Then we obtain Figure 10.
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Finally, let α1 still be 0.8 and α2 still be 0.5, λ = 0.6, 0.5, 0.4, respectively. Then we gain 11.

Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM model for SCM is

proved to be sensitive to the possibility level α1.

Figure 9. The sensitivity of α2 Figure 10. The sensitivity of α1

Figure 11. The sensitivity of λ

In practice, the DMs can change the parameters α1, α2 and λ to obtain the different solutions

under the different levels of parameters. The solutions reflect different optimistic-pessimistic

attitudes for uncertainty and different predictions of possibility levels.

6. Conclusions and further research

Considering the complex fuzzy environment, a nonlinear MODM model for SCM with quantity

discount policy is presented in this paper. The bi-fuzzy variables are transformed into the

trapezoidal fuzzy variables by the DMs's degree of optimism α1 and α2, which are de-fuzzified

by the expected value index λ subsequently. In order to solve the equivalent crisp model,

MO-APSO algorithm is designed to obtain the optimal solution. For illustrating the
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effectiveness, the proposed model and algorithm are applied to a typical example of SCM

problem. 

The main contributions of this study are as follows: (1) The bi-fuzzy variable is employed in

the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this

work is original. (2) The proposed model is transferred to an equivalent crisp on by the DMs's

degree of optimism and the expected value index. For solving the complex model, MO-APSO is

designed as the solution method. (3) The study focuses on the SCM under complex fuzzy

environment in SCM, which has a great practical significance.

The area for future research has two aspects: firstly, more realistic factors and constraints for

SCM with complex hierarchical organization structure should be considered; secondly, more

efficient heuristic methods should be designed to solve this nonlinear MODM model. Both areas

are important and worth the concern.
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