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Abstract:

Purpose: Preventive lateral transshipment can respond to customers who will choose a

substitute or to give up when the product is out of  stock. Motivated by the common practice, a

decision-making model of  preventive lateral transshipment with multi selling periods is

developed. The purpose of  the paper is to explore the optimal preventive lateral transshipment

policy with multi selling periods.

Design/methodology/approach: With a discrete-time dynamic programming model, we take

a dynamic programming approach and adopt backward induction to analyze two retailers’

preventive lateral transshipment policy.

Findings: The optimal preventive lateral transshipment policy is a threshold policy which

depends on both the remaining selling periods and inventory level. The above properties ensure

that two retailers can control inventory with preventive lateral transshipment.

Practical implications: The retailer can adjust inventory via the threshold type policy. The

simple decision rule which compares on-hand inventory level with the critical inventory level

can be used to control inventory by preventive lateral transshipment.

Originality/value: A discrete-time decision-making model of preventive lateral transshipment

policy is formulated. This model takes consideration of  multi selling periods, which is different

from most existing researches on preventive lateral transshipment.
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1. Introduction

Customers’ request for higher product variety in perishable product categories intensifies the

uncertainty of supply and demand for the market (Mahto & Kumar, 2008; Chen & Zhang,

2010). As a result, perishable products are often out of stock or overstock. To cope with this

problem, some retailers try to adopt the reactive lateral transshipment and achieve the so-

called “risk-pooling” effect. However, there are some limitations when the reactive lateral

transshipment serves as an important tool in response to customer need. For example, a

survey of more than 71,000 customers showed that customers have little patience for

stock-outs, and 85% of them will choose a substitute or to give up when they cannot find the

precise products they are looking for (Gruen & Corsten, 2004). Reactive lateral transshipment

might fail to reply to customers who have little patience for stock-outs. While some leading

fashion enterprises, e.g. ZARA and H&M, try to adopt preventive lateral transshipment to

reduce stock losses (Caro, Gallien, Díaz, & García, 2010; Sen, 2008). In such situations,

preventive lateral transshipment provides t h e retailer with more opportunities to control

inventory after the selling season begins. In this case, a portion of demand was observed in

advance, which might reduce some risk of stock-out or overstock and can achieve a "win-win"

situation.

When the selling season includes two or more periods, the retailer can implement preventive

lateral transshipment in response to the risk of stock-out or overstock. For example,

representative published work by Lee and Whang (2002) considered a system of multi

retailers, and obtained the optimal lateral transshipment policy. Rong, Snyder and Sun (2010)

adopted a two-period model and proved the optimal transshipment policy is composed of the

transship-down-to level and the transship-up-to level. Extending this, Summerfield and Dror

(2012) introduced a general framework of decision-making of two periods and summarized the

policy of preventative lateral transshipment. In addition, research by Seidscher and Miner

(2013) established a cost optimization model and showed the optimal transshipment is

composed of hold back levels. However, the above literatures focused on the two-period model

of preventative lateral transshipment. In practice, the retailer can implement preventive lateral

transshipment more times. Furthermore, Agrawal, Chao and Seshadri (2004) found that, as

the number of opportunities for transshipping increases, the retailer may get more profit.

Therefore, some researchers tried to transfer attention from two periods to more periods. To

address these questions, Zhao, Ryan and Deshpande (2008) developed a cost-minimization

model by adopting discrete event dynamic programming and demonstrated that the optimal

transship-up-to level is decreasing in inventory level. Alternatively, Paterson, Teunter and
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Glazebrook (2012) presented an optimal policy which is a function of cost as a correction for

the expected cost. Glazebrook, Paterson, Rauscher and Archibald (2014) proposed hybrid

transshipments to prevent future shortages and developed an easy-to-compute heuristic for

determining which transshipment should be adopted. In addition, Seidscher and Minner (2013)

formulated an optimal threshold function for a preventive lateral transshipment, and

demonstrated the threshold function is monotonic function of transshipment costs,

warehousing costs and stock losses. Roodbergen (2013) established a cost optimization model

by the stochastic dynamic programming method and got the optimal transshipment quantity.

Similarly, Yousuk and Luong (2013) stated the properties for the optimal transship-up-to level

and transship-down-to level in a replenishment cycle by adopting the optimization objective

function. Tai and Ching (2014) presented a two-echelon inventory system consists of a supply

plant with infinite capacity and proposed an aggregated inventory model for the central

warehouse and the local warehouses. Meanwhile, Liu and Liang (2013) studied the medical

resources allocation problem in a discrete time-space network model, and got the optimal

allocation of medical resources by a proactive mechanism. Although they converted attention

from two periods to more selling periods, they still focused on the transshipment which has

only been implemented one time at each replenishment cycle. However, in practice, some

products cannot be replenished two times (or more), especially for perishable products. Taking

this path, Çömez, Stecke and Çakanyıldırım (2012) developed an optimal holdback policy for

two retailers in a multi-period model and proved that the policy is characterized by the

transship-down-to level. However, the prerequisite is that one retailer is stocked out, while

another has excess inventory, which cannot fully reflect the characteristic of preventive lateral

transshipment to reduce the risk of future stock-out. So, in order to avoid the risk of stock-out

or overstock, the retailer has to transship in product before his inventory level drops to zero.

With respect to the literatures in this article, instead, we focus on a discrete-time model of two

retailers when customers have little patience for stock-outs. A key feature of our model is that

the transship-up-to level and the transship-down-to level change with the remaining selling

periods and the two retailers’ inventory status. So, the existence of the two thresholds is

proved. Based on the existence, we will also prove that the optimal transshipment control

policy is a threshold type and the structural properties of two thresholds are obtained. Finally,

With regards to the complex nature of the optimal policy, we propose the corresponding

solutional algorithm by the structural properties of the thresholds.

The remainder of this paper is organized as follows. In view of above questions, this article is

divided into 5 sections. The description and notations are presented and the discrete-time

dynamic programming mode framework is developed in Section 2. Next, we will show the

existence of the transship-up-to level and the transship-down-to level and get the properties of

the threshold function in Section 3. Based on the properties of the thresholds, the

corresponding solution algorithm is proposed in the Section 4. We will present a numerical

study in Section 5. In Section 6, we conclude our findings.
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2. Problem description and model

2.1. Problem description and assumptions

In this section, we consider a system consisting of two retailers who sell a same kind of

perishable products during the selling season. Each of them faces an independent market.

Before the selling season, retailer i gets a inventory level of size Qi with unit cost w, where

I = 1, 2. There is no replenishment during the whole selling season after the season begins

because the procurement lead time is long. The selling horizon is finite, and be divided into

N periods of equal length. In this time discretization, the periods are short enough so that

there can be at most one unit demand within each period, either at retailer 1 or 2, or neither.

I n each period, a demand arrives at retailers 1 and 2 as a homogeneous Poisson process

with arrival rate λ1 and λ2, respectively, where 0 ≤ λ1 + λ2 ≤ 1. Following the general

assumptions in the published works, each arriving customer is assumed to purchase at most

one unit of the product. When a demand arrives at retailer i and there is no positive on-hand

inventory, the customer is unwilling to delay purchase. The number of periods remaining

until the end of the selling season is denoted by k, k = N, N –1,...,1, and the products

ordered by retailers arrive at period k = N. The sequence of events at the selling period k is

illustrated as follows.

Step 1. At the beginning of period k, one unit of product transshipped in at the previous period

arrives.

Step 2. At period k, upon a demand at retailer i, if there is positive on-hand inventory, it earns

a per-unit selling price pi, which remains unchanged during the entire selling season.

Otherwise, a per-unit shortage cost mi is incurred.

Step 3. After Step 2, the transshipment decision whether to transship in one unit of product

from retailer j, j = 3 – i, must be made. One unit of product arrives at retailer i with the

transshipment cost ct before the next selling period begins if the transshipment is necessary.

Transshipment cost includes the transportation cost, as well as any other administrative costs

associated with transshipment.

Step 4. If there is excess inventory at the end of selling season, i.e., k = 1, then excess

inventory is salvaged with a unit salvage value of si.

2.2. Mathematical model

A dynamic programming model is developed to explore the optimal policy of preventive lateral

transshipment to solve the problem described above. When the initial inventory Q1 and Q2 are

exogenous, a three-dimensional vector is defined to characterize the inventory levels and the
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remaining selling periods. The transshipment decision must be made after a demand is realized

regardless of whether there is a demand within each period except f o r period 1. The

formulation for this process can be expressed as follows:

vk(x1, x2) = λ1H1vk–1(x1, x2) + λ2H2vk–1(x1, x2) + (1 – λ1 – λ2)H3vk–1(x1, x2) (1)

vk(x1, x2) represents the expected system profit over k selling periods, given current inventory

level (x1, x2), with x1, x2 indicating the inventory level for retailer 1,2, and 0 ≤ x1 ≤ Q1,

0 ≤ x2 ≤ Q2. Considering all of the possible events that might happen during the entire selling

season, we have three events. One unit of demand arrives either at retailer 1 or 2, or neither.

H1vk–1(x1, x2), H2vk–1(x1, x2), and H3vk–1(x1, x2) are the expected profit operators of three events

respectively, and defined by (2)~(4).

(2)

(3)

(4)

The formula (2) represents the expected profit when a demand arrives at retailer 1 with arrival

rate λ1 at selling period k, where h1, h2, is the unit holding cost per unit of selling period. The

transshipment decision is whether to transship in one unit of product from retailer 2 after one

unit o f demand is fulfilled. For x1 ≥ 1, x2 ≥ 1, and when the inequality vk–1(x1 – 1, x2) ≤

vk- 1(x1, x2 – 1) – ct – h1 + h2 holds, transshipping in one unit of product is optimal from retailer

2. For x1 = 0, x2 ≥ 1, and the inequality - ct – h1 + h2 + vk–1(x1 + 1, x2 – 1) ≥ vk–1(x1, x2),

transshipping in one unit of product is necessary from retailer 2. For x2 = 0, retailer 1 neither

transships in nor out one unit of product. Formula (3) and (4) are illustrated analogously.
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For k = 1, the excess inventory is salvaged besides the sale, and the expected profit of retailer

1 is as follows:

(5)

3. Analysis of model of preventive lateral transshipment

3.1. Performance of preventive lateral transshipment

Two retailers do not influence each other when there is no preventive lateral transshipment.

So, the expected profit at period k is as follow:

(6)

where

(7)

(8)

The formula (7) represents the expected profit at period k when a customer arrives at retailer

1. The formula (8) represents the profit when customer arrives at retailer 2. The question is

whether two retailers can get more profits with preventive lateral transshipment than without

it. So, we have the following theorem 1.

Theorem 1. More profit can be collected with preventive lateral transshipment than without it

under the condition of equal initial inventory.

Proof. For k = 1, there is no transshipment. So, vk
N(x1, x2) = vk(x1, x2) holds from formula (5).

For k = 2, we need to prove v2(x1, x2) – v2
N(x1, x2) ≥ 0 by the induction. For x1 ≥ 1, the

inequality max{v1(x1 – 1, x2), – ct + v1(x1, x2 – 1) – h1 + h2} ≥ v1
N(x1 – 1, x2) always holds. For

x1 = 0, the inequality max{v1(x1, x2), – ct + v1(x1 + 1, x2 – 1) – h1 + h2} ≥ v1
N(x1, x2) holds.

Overall, for k = 2, we can prove v2(x1, x2) – v2
N(x1, x2) ≥ 0. For k ≥ 3, we need to prove that

the inequality vk(x1, x2) – vk
N(x1, x2) ≥ 0 holds. When x1 ≥ 1, we can prove the inequality
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max{vk–1(x1 – 1, x2) – h2, – ct + vk–1(x1, x2 – 1) – h1} ≥ (x1 – 1, x2) – h2 always holds by the

induction. Similarly, we can prove the second term and the third term. When x1 = 0, the

inequality vk(x1, x2) – vk
N(x1, x2) ≥ 0 holds.

Theorem 1 indicates that two retailers can collect more profit when the preventive lateral

transshipment policy is adopted. Two retailers can control inventory by transshipping in or

transshipping out products even if no demand arrives.

3.2. Analysis of policy of preventive lateral transshipment

At each period, transshipment decision must be made after a demand is realized except for

period 1. For x1 = Q1, retailer 1 cannot transship in product. Similarly, for x1 = 0, transshipping

out one unit of product from retailer 1 cannot be implemented. A control policy of the system

specifies the transship-up-to level and the transship-down-to level of the system at any period

and any inventory state. Therefore, a simple decision rule composed of the critical inventory

levels of the transship-up-to level and the transship-down-to level is developed, and the critical

inventory level is calculated and stored in advance. So, the retailers can control preventive

lateral transshipment by comparing on-hand inventory level with the critical inventory level

stored in advance. So, we have the following theorem 2. Without loss of generality, we focus

our analysis on retailer 1.

Theorem 2. For k ≥ 2, for the inventory of retailer 2, x2 ϵ {1, 2, …, Q2}, there exist some

transship-up-to levels ITk(x2) ϵ {0, 1, …, Q1 –1} for retailer 1. Similarly, for the inventory of

retailer 2 x2 ϵ {0,1, …, Q2 –1}, there exist some transship-down-to levels OTk(x2) ϵ {1, 2,

…, Q1 –1, Q1} for retailer 1. ITk(x2) and OTk(x2) can be obtained from formula (9) and (10).

ITk(x2) = max{x1: vk(x1 + 1, x2) – vk(x1, x2 + 1) ≥ ct + h1 – h2} (9)

OTk(x2) = min{x1: vk(x1, x2 + 1) – vk(x1 + 1, x2) ≥ ct + h2 – h1} (10)

Proof. Let gk(x1, x2) = vk(x1 + 1, x2) – vk(x1, x2 + 1), and we need to prove the gk(x1, x2) is

non-increasing in x1 by the induction. When k = 2, we can prove the inequality v2(x1 + 2, x2) –

v2(x1 + 1, x2 + 1) – v2(x1 + 1, x2) + v2(x1 + 1, x2) ≤ 0 holds by formula (5). When k ≥ 3, and

x1 = 0, x2 = 0 holds, Δg1,k(0, 0) = vk(1, 1) – vk(0, 2) – vk(1, 0) + vk(0, 1). We follow Zhuang and

Li (2010) to prove the inequality Δg1,k(0, 0) ≤ 0 holds. When x1 = 0, x2 ≥ 1, x1 = 1, x2 ≥ 0 and

x1 ≥ 1, x2 ≥ 1, we also can prove that the inequality Δg1,k(x1, x2) ≤ 0 holds by the induction.

Therefore, there exist the transship-up-to level ITk(x2) and the transship-down-to level OTk(x2).
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Theorem 2 indicates that the transship-down-to level and the transship-up-to level are used to

determine whether inventory should be transshipped between the retailers or not. For the

inventory level of retailer 2 within each period, there exist some critical inventory thresholds,

which at most divide the set {0, 1, …, Q1} into three subsets. In the first subset, where the

inventory is below the transship-up-to level, retailer 1 can increase the inventory to the

threshold by transshipping in products. In the second subset, where the inventory lies between

the band defined by the transship-up-to level and the transship-down-to level, retailer 1 does

nothing. In the third subset, where the inventory is above the transship-down-to level, retailer

1 can reduce the inventory to the threshold by transshipping out products. Therefore, two

retailers can control inventory by transshipping in or out products, and we have the following

theorem 3.

Theorem 3. For k ≥ 2, in each selling period, it is optimal for retailer 1 to transship in one unit

of product from retailer 2 if the inventory of retailer 2 satisfies the condition OTk(x1) ≤ x2 ≤ Q2.

When the inequality 0 ≤ x2 ≤ ITk(x1) holds, retailer 1 transships out one unit of product to

retailer 2. Otherwise, both retailers do nothing.

Proof. When the inequality OTk(x1) ≤ x2 ≤ Q2 holds, we can obtain the inequality vk(x1, x2 + 1)

– h2 ≤ ct + vk(x1 + 1, x2) – h1. Following formula (9) and the inequality Δg2,k(x1, x2) ≤ 0, we

can prove the inequality max{x1: vk(x1 + 1, x2) – vk(x1, x2 + 1) ≥ - ct + h2 – h1} ≤ ITk(x2)

holds. Therefore, it is optimal for retailer 1 to transship in one unit of product from retailer 2.

Similarly, when the inequality 0 ≤ x2 ≤ OTk(x1) holds, it is optimal for retailer 1 to transship out

one unit of product from retailer 2.

Theorem 3 demonstrates that, the simple decision rule by comparing on-hand inventory level

with the critical inventory level can be used to control preventive lateral transshipment

between the retailers. Moreover, the critical inventory level makes up the threshold type policy

which is composed of the transship-up-to level and the transship-down-to level from theorem

2. Toward the characterization of the optimal transshipment policy, it is necessary to further

obtain the structural properties of the thresholds in the following proposition.

Proposition 1. Fo r k ≥ 3, the transship-down-to level OTk(x2) is non-decreasing in the

remaining periods and the transship-up-to level ITk(x2) is non-increasing in the remaining

periods during the rest of the selling period.

Proof. For k = 3, we have OT2(x2) ≤ OT3(x2). When k ≥ 4 holds, we assume the induction

hypothesis holds. When x1 = 0, OTk–1(x2) = OTk(x2) = 0 holds, and OTk–1(x2) ≤ OTk(x2) holds via

the hypothesis. When x1 ≥ 1, x2 = 0, the equality OTk–1(0) = min{OTk(0): vk–1(OTk(0), x2 + 1) –
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vk–1(OTk(0) + 1, x2) ≥ ct + h2 – h1} holds from (10). Therefore, we have OTk–1(0) ≤ OTk(0).

Overall, when x1 ≥ 1, x2 = 0, the inequality OTk(0) ≥ OTk–1(0) holds. Similarly, when x1 ≥ 1,

x2 ≥ 1, the inequality OTk–1(x2) ≤ OTk(x2) holds. Overall, the inequality OTk–1(x2) ≤ OTk(x2)

holds. Similarly, the inequality ITk–1(x2) ≥ ITk(x2) holds. 

Proposition 1 indicates that, two retailers do not tend to implement transshipment as a result

of the higher transship-down-to level and lower transship-up-to level earlier during the selling

season. On the contrary, two retailers tend to implement transshipment when there are less

remaining periods. Two retailers do not worry that they cannot implement transshipment as

long as they satisfy the condition of transshipment. It is different from two independent

retailers because two retailers always cooperate to balance the inventory, while two

independent retailers always maximizes her/his own profit.

Proposition 2. For k ≥ 2, both the transship-up-to level ITk(x2) and the transship-down-to

level OTk(x2) are non-decreasing in the inventory of retailer 2.

Proof. Recall that inequality Δg1,k(x1, x2) ≤ 0 holds. Following Zhuang and Li (2010), we can

prove the inequality Δg2,k(x1, x2) ≥ 0 holds by the induction. So, we can obtain ITk(x2 + 1) ≥

ITk(x2) and the inequality OTk(x2 + 1) ≥ OTk(x2) from formula (9) and (10).

Proposition 2 demonstrates when the gap of the inventory of two retailers is wider, both

retailers tend to balance the inventory. Specifically, when the inventory of retailer 2 is

relatively low, in order to balance the inventory, the relatively low transship-down-to level of

retailer 1 encourages more transshipment from retailer 1 to retailer 2. Meanwhile, the

relatively low transship-up-to level of retailer 1 avoids more transshipment from retailer 2 to

retailer 1. This is different from the case when two retailers are independent, because they

may fight against each other if the gap of the inventory of two retailers is wider. Similarly, we

can get corresponding managerial insights when the inventory level of retailer 2 is relatively

high.

4. Algorithm

In the previous sections, we proved that t w o retailers can control preventive lateral

transshipment by the transship-up-to level and the transship-down-to level. However, the

thresholds depend on both retailers’ inventory states and the remaining periods. The value

iteration algorithm is applied intensively as initial inventory level and the selling periods

increase. Therefore, in this section we will develop a convenient algorithm based on the

structural properties of the thresholds from Proposition 1 and Proposition 2. Given initial
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inventory Q1 and Q2, ITk(x2) and OTk(x2) can be obtained via formula (1), (9) and (10). Without

loss of generality, the algorithm for retailer 1 is as follows.

Step 1. Initialize x1 = Q1 and x2 = Q2.

Step 2. Calculate the profit vk(x1, x2) under all states by formula (1)~(5), and go to Step 3.

Step 3. Set x2 = 1 and x1 = Q1 – 1. If vk(x1 + 1, x2 – 1) – vk(x1, x2) ≥ ct + h1 – h2 holds, then

set ITk(1) = Q1 – 1, and go to Step 4. Otherwise, go to Step 5.

Step 4. Set x1 = x1 and x2 = x2 + 1. If the inequality vk(x1 + 1, x2) – vk(x1, x2 + 1) ≥ ct + h1 – h2

holds, then set ITk(x2 + 1) = x1. Repeat Step 4 until x2 = Q2 holds. Otherwise, go to Step 6.

Step 5. Set x2 = x2 and x1 = x1 – 1. If the inequality vk(x1, x2 – 1) – vk(x1 – 1, x2) ≥ ct + h1 – h2

holds, then set ITk(1) = x1 – 1. Repeat Step 5 until x1 – 0 holds. Otherwise, go to Step 6.

Step 6. Set x1 = x1 – 1 and x2 = x2 + 1. If the inequality vk(x1, x2) – vk(x1 – 1, x2 + 1) ≥ ct + h1 – h2

holds, then set ITk(x2 + 1) = x1 – 1, and go to step 4. Otherwise, return to Step5.

The calculation of OTk(x2) may refer to Step 3~Step 6.

5. Computational experiment

In this section, a computational experiment to supplement the analytical results is further

provided. The experiment will explore the existence of transshipment area of two retailers and

analyze the impact of the transshipment cost, shortage cost, and salvage value on

transshipment and profit. The base parameters used in the computational experiment are as

follows. p1 = p2 = 40, ct = 2, w = 20, s1 = s2 = 5, m1 = m2 = 10, h1 = 0.5, h2 = 0.2, λ1 = 0.2

and λ2 = 0.1.

5.1. Region of preventive lateral transshipment 

The optimal policy is computed by the algorithm from Section 4, and presented in Figure 1. As

shown in Figure 1, both the transship-up-to level and transship-down-to level are non-

decreasing in the inventory of retailer 2. Only in Area Ⅰ and Area Ⅱ, the preventive

transshipment occurs, and no transshipment occurs in Area Ⅲ. As transshipment cost

increases, both the area of transshipping in and transshipping out decrease because marginal

profit by transshipment gets lower.
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(a) ct = 2 (b) ct = 5 (c) ct = 8

Figure 1. Region of preventive lateral transshipment 

In Area I, retailer 2 transships in products from retailer 1. In Area II, retailer 1 transships in

products from retailer 2. In Area III, there exists no transshipment. No matter which retailer a

demand arrives at, the inventory of retailer 1 decreases when the inventory state of two

retailers falls in Area I. When a demand arrives at retailer 1, she immediately satisfies the

customer’s demand if she has available on-hand inventory. So, the inventory of retailer 1

decreases. When a demand arrives at retailer 2, he transships in one unit from retailer 1,

which also makes her inventory decrease. Similarly, no matter which retailer a demand arrives

at, the inventory of retailer 2 decreases when the inventory state of two retailers falls in Area

II.

5.2. Impact of transshipment cost on transshipment and profit

Under the selling period k = 40 and the inventory level of retailer 2 x2 = 6, the impact of

transshipment cost on transshipment and profit is as Figure 2 and Figure 3 show.

As transshipment cost increases, the threshold of transship-up-to level keeps unchanged, and

the transship-down-to level increases.

As transshipment cost increases, the threshold of transship-up-to level keeps unchanged

because the inventory level of retailer 2 is relatively high compared with the initial ordering

quantity. Moreover, both retailers face more remaining sale periods. Therefore, the two factors

which lead to the lower threshold of transship-up-to level prevent the occurrence of

transshipment.
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The transship-down- t o l e ve l increases because the expected profit collected from

transshipment decreases as transshipment cost increases. When transshipment cost is small,

the expected marginal profit with transshipment is high, which makes the transship-down-to

level be lower. However, as transshipment cost increases further, the expected profit collected

by the preventive lateral transshipment decreases, and the transship-up-to level increases

accordingly.

Figure 2. Relation between transshipment and transshipment cost

As transshipment cost increases, t h e profit with transshipment decreases, and the gap

between the profit with transshipment and that without transshipment narrows.

When transshipment cost increases from 0 to 15, profit with transshipment decreases from

116.1 to 78.3, while profit without transshipment keeps unchanged. Moreover, profit with

transshipment is always greater than without it. With a lower transshipment cost, a higher

expected profit level can be collected by implementing transshipment. Therefore, both retailers

choose to transship in order to get more profit. As transshipment cost increases further, the

transshipment gets more and more difficult, which makes the expected profit collected by

transshipping get less.
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Figure 3. Relation between profit and transshipment cost

5.3. Impact of shortage cost on transshipment and profit

Under the selling period k = 40 and the inventory level of retailer 2 x2 = 6, the impact of

shortage cost on transshipment and profit is as Table 1 shows.

As shortage cost increases, the transship-up-to level a n d transship-down-to level keep

unchanged. As shortage cost increases, the value of preventive transshipment gets larger and

larger. Therefore, the transship-down-to level needs to be set lower. Because transshipment

time is zero, it is optimal to keep at most one unit product. Two factors make the transship-up-

to level and transship-down-to level to be insensitive to the shortage cost.

Shortage
cost

Transship-up-to
level

Transship-down-to
level

Profit with
transshipment

Profit without
transshipment Profit increment

0 1 4 109.9332 78.719 31.2142

1 1 4 109.0927 77.1579 31.9348

2 1 4 108.2811 75.5967 32.6844

3 1 4 107.4853 74.0356 33.4497

4 1 4 106.7188 72.4745 34.2443

5 1 4 105.9664 70.9133 35.0531

6 1 4 105.2308 69.3522 35.8786

7 1 4 104.5138 67.7911 36.7227

8 1 4 103.8116 66.2299 37.5817

9 1 4 103.1241 64.6688 38.4553

10 1 4 102.4506 63.1077 39.3429

Table 1. Relation between profit, transshipment and shortage cost
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As shortage cost increases, profit with transshipment decreases, but the gap between profit

with transshipment and tha t without transshipment becomes wider. This indicates that

adopting preventive lateral transshipment can get more profit by avoiding the stock-out

compared with the case without transshipment. As shortage cost increases, the value of

preventive transshipment gets larger and larger.

5.4. Impact of salvage value on transshipment and profit

Under the selling period k = 40 and the inventory level of retailer 2 x2 = 8, th e impact of

salvage value on transshipment and profit is as Table 2 shows.

As shortage cost increases, the transship-up-to level a n d transship-down-to level keep

unchanged. The excess inventory is salvaged only at the end of selling period, which makes

salvage value to have less effect on the transship-up-to level and transship-down-to level.

Salvage
value

Transship-up-to
level

Transship-down-to
level

Profit with
transshipment

Profit without
transshipment

Profit increment

0 1 4 100.5369 60.6138 39.9231

1 1 4 100.9019 61.1126 39.7893

2 1 4 101.2824 61.6113 39.6711

3 1 4 101.6664 62.1101 39.5563

4 1 4 102.0579 62.6089 39.449

5 1 4 102.4506 63.1077 39.3429

6 1 4 102.8434 63.6064 39.2370

7 1 4 103.2365 64.1052 39.1313

8 1 4 103.7759 64.604 39.1719

9 1 4 104.5476 65.1027 39.4449

10 1 4 105.3487 65.6015 39.7472

11 1 4 106.1499 66.1003 40.0496

12 1 4 106.9511 66.5991 40.352

13 1 4 107.7967 67.0978 40.6989

14 1 4 108.8209 67.5966 41.2243

15 1 4 109.9259 68.0954 41.8305

Table 2. Relation between profit, transshipment and salvage value

As salvage value increases, profit with transshipment increases, and profit with transshipment

i s always greater than that without transshipment. Moreover, when salvage value increases

from 0 to 7 , the gap between profit with transshipment and profit without transshipment

narrows. In fact, retailer 2 can obtain all salvage revenue by transshipment as a result of a

larger gap between two retailers' salvage value. So, the gap narrows. Similarly, when salvage
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value increases from 8 to 15, the gap between profit with transshipment and profit without

transshipment increases.

6. Conclusions

In this paper, we considered a system of two retailers with preventive lateral transshipment.

First, we showed the existence of the transship-up-to level and the transship-down-to level.

Second, we demonstrated that the optimal lateral transshipment control policy is a threshold

type. Furthermore, based on the structural properties of the thresholds, the corresponding

algorithm has been proposed as well. Besides, by analyzing the optimal control policy, we

obtained some managerial insights as follows.

1. Two retailers can control the preventive lateral transshipment policy by the transship-up-to

level and the transship-down-to level during the selling season. When a retailer’s inventory is

below the threshold, it is optimal to transship in one unit of product. In contrast, when the

inventory of a retailer is above the threshold, it is optimal to transship out one unit of product.

Otherwise, it is optimal to do nothing.

2. At the beginning of the season, two retailers do not tend to implement transshipment as a

result of the higher transship-down-to level and lower transship-up-to level.
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