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Abstract: 

Purpose: [bookmark: OLE_LINK130][bookmark: OLE_LINK129][bookmark: OLE_LINK128][bookmark: OLE_LINK127][bookmark: OLE_LINK126][bookmark: OLE_LINK125]This
paper is concerned with a reverse logistic system where returns
are stochastically dependents on sales. [bookmark: OLE_LINK132][bookmark: OLE_LINK131]The
aim of the paper is to assess the influence on optimal production
capacities
when is assumed that returns are stochastically independent of sales.

Design/methodology/approach: This paper presents a model of the system. An
approximated model
where is assumed that returns are stochastically independent of sales,
is
formulated to obtain the optimal capacities. The optimal costs of the
original
and the approximated models are compared in order to assess the
influence of
the assumption made on returns.

Findings: The
assumption that returns are stochastically independent of sales
is significant in few cases. 

Research
limitations/implications: The impact
of the
assumption on returns is assessed indirectly, by comparing the optimal
costs of
both models: the original and approximated. 

Practical
implications: [bookmark: OLE_LINK134][bookmark: OLE_LINK133]The problem of
calculating the optimal capacities in the original model is hard to
solve,
however in the approximated model the problem is tractable. When the
impact of
the assumption that returns are stochastically independent of sales is
not
significant, the approximated model can be used to calculate the
optimal
capacities of the original model.


Originality/value:
Prior to this paper, few papers have addressed with the problem of
calculating the optimal capacities of reverse logistics systems. The
models
found in these papers assumed that returns are stochastically
independent of
sales.

Keywords: reverse logistics,
remanufacturing, stochastic demand, optimal cost

---------------------




1     
Introduction 

Interest
in reverse logistics has increased in recent years with the growing
concern for
the environment in the industrialized world. Companies have recognized
that
their customers are increasingly seeking products and services that are
environmentally sound, so product recovery can generate not only direct
benefits (reduction in use of raw material and waste disposal costs and
recovery of value of end-of-life products), but also indirect benefits
(demonstration of environmentally responsible behavior and improved
customer
relations).

The
management of products that have completed their useful life is now a
key
factor in business decision-making processes. The use of reverse
logistics can
provide companies the tools they need to act efficiently. 

Much
of the research in the field of reverse logistics has focused on
tactical and
operational rather than strategic aspects, with the bulk of studies
examining
production planning and inventory management (Rubio,
Chamorro & Miranda, 2008).
Inventory management in a reverse logistics system differs from that in
a
traditional logistics system when the recovery system interacts with
the
existing manufacturing system, i.e., in cases where the recovered and
the new
product are identical. In practically all the articles that present
mathematical inventory management models for reverse logistics systems,
it is
assumed that:

·       
New and
recovered products are indistinguishable from each other. This
assumption holds
true for a small number of industrial cases (e.g. single-use cameras
and toner
cartridges in Atasu, Guide & Van Wassenhove, 2008) but it makes for analytic
tractability
and perhaps a reasonable first approach. 

·       
The
system has unlimited resource capacities (production, recovery, and
storage). 

·    In the
models that deal with stochastic demand and returns, demand and returns
are
stochastically independent (e.g. Van der Laan & Salomon, 1997, Fleischmann, Kuik
& Dekker, 2002; van der Laan,
2003; Fleischmann & Kuick, 2003; Inderfurth, 2004). 

Obviously,
assuming that demand and returns are independent can lead to the use of
less-than-optimal inventory policies (Kiesmüller
& van der Laan,
2001).
As a result, one of the important issues to consider when designing a
stochastic model with reverse logistics is whether or not assuming the
independence of demand and returns. 

Decisions
regarding manufacturing capacity are generally taken in the context of
strategic planning, whereas production and inventory management
decisions are
considered to be of a more tactical nature, meaning that they might be
less
than optimal if not integrated into the decision-making process as a
whole (Hax & Candea,
1984).

Several
reviews have summarized studies dealing with capacity management (Luss, 1982; Van Mieghem,
2003;
Wu, Erkoc & Karabuk,
2005). Van Mieghem (2003), for example,
described the
different types of problems related to
capacities—increases/decreases, choice
of technology, acquisition, and location—and discussed how these
problems were
addressed in the literature. The problem of jointly managing capacities
and
inventory levels has been dealt with by numerous studies (Van Mieghem, 2003). This type of management approach
consists
of optimizing a function that contemplates manufacturing capacity
acquisition
and maintenance costs and production and inventory management costs. A
key
factor when addressing this problem is whether demand is stochastic or
deterministic. Deterministic demand is not very realistic but may be of
use for
drawing conclusions regarding the behavior of systems, simply because
it is
easier to analyze.

On reviewing
the
literature, we can conclude that few studies have analyzed the problem
of
jointly determining capacity and inventory in reverse logistics systems
(Georgiadis, Vlachos & Tagaras,
2006; Serrato, Ryan & Gaytán,
2007; Kannan, Noorul
Haq & Devika,
2009). 

In this
paper, we study a
stochastic system such that new and recovered products are
indistinguishable,
manufacturing and storage capacities are bounded and the quantity of
products
collected in a period depends on the quantities of products sold in
precedent
periods. The last assumption leads to the dependency of returns and
demand. 

With these
assumptions,
the optimal manufacturing and remanufacturing policies are hard to
calculate,
mainly because of the dependence of returns and demand. One way to
improve the
tractability of the system is doing the calculations assuming that
demand and
returns are independent, and then analyzing how this hypothesis is
influencing
the outcome. Precisely, the aim of this paper is studying the impact on
the
optimal capacities of assuming that demand and returns are independent.
We
proceed as follows: first we calculate the optimal capacities assuming
that
demand and returns are stochastically independent, and secondly
verifying the
results obtained by comparing the costs with the costs calculated by
simulation. Clearly, in the first step, the assumption is obviously not
true
but, thanks to the simulation, we can know the impact of this
assumption on the
results.

In section 2
we describe
the system we are going to study and in section 3 we describe the
method used
to calculate the optimal manufacturing and remanufacturing policy under
the
assumption
that manufacturing and storage capacities are known and the returns are
independents of demand. We also explain how to calculate optimal
capacities. In
section 4 we give a numerical example to analyze how capacities change
with
variations in return probability and to study the influence of the
assumption
of independency of returns on de optimal costs. Finally, in section 5
we
present the main conclusions of the study.


2     
Description of the system

[bookmark: OLE_LINK11]The system
consists of a company that produces, sells, and recovers a product for
which it
has manufacturing, remanufacturing, and finished product storage
systems. The
remanufacturing system has sufficient capacity to remanufacture all the
products returned. 

Assumptions
of model:

·       
Time is discrete and the time horizon is
infinite.

·       
Demand is a sequence of integer-valued random
variables independent and identically distributed with a known
probability
distribution; D is the maximum value
of demand.

·       
The remanufactured product is indistinguishable
from the newly manufactured product.

·       
The useful life of the product ends between
periods T1and T2 after the
product
has been sold; it is a random variable and the probability distribution
is
independent of the sales period. pt  is
the probability that the useful life of a
product has a duration of t periods (t = T1,...,T2).


·       
Every unit of
product has the same probability of being returned to the manufacturer
when
their useful life has finished. We name r the
probability of an end-of-life product being returned. Therefore, r·pt is the probability that a unit
sold
in period t will be returned in period t+t.

·       
Demand that cannot be satisfied with manufactured
or remanufactured products is met through an external supply channel
with
capacity greater than (T2 – T1
+ 1 )·D. 

·       
Products that are manufactured and
remanufactured in a given period are available for sale in the same
period.

The costs for
the company are as
follows:

·       
The manufacturing system has a cost per period Cp(P) (dependent on
manufacturing
capacity P) and a [bookmark: OLE_LINK15][bookmark: OLE_LINK14]cost cpper unit produced. 

·       
The storage system has a cost per period Cs(S),
which is dependent on storage capacity S. 

·       
e: unit
cost of disposing of a returned product

·       
f: manufacturing order cost

[bookmark: OLE_LINK19][bookmark: OLE_LINK18]·       
cr: remanufacturing unit cost

[bookmark: OLE_LINK17][bookmark: OLE_LINK16]·       
h: holding cost


·       
cec: external channel unit cost

It is assumed
that functions Cp(P)
and Cs(S)
are continuous non-decreasing functions and are unbounded when P and S go to infinity.

The following
variables are
defined:

·       
st: stock available at the end of
period t

·       
ut: units manufactured in period t

·       
vt: units remanufactured in period t

·       
dt: product demand in period t;
this is a random integer variable with pd=
p(dt = d), (d =
0,...,D)

·       
rt: units returned in period t;
this is a random integer variable with qr= p(rt = r),
(r = 0,…,(T2-T1+1)·D.

The
chronological order of events
in period t is as follows:

·       
Stock levels available at the end of the
preceding period (st-1) are analyzed.

·       
A decision is taken on how many products to
manufacture (ut), between
0 and min(P,S-st-1).

·       
Demand is satisfied with existing stock, newly
manufactured products, and external channel supplies. 

·       
Returned products are remanufactured in this
period as follows. If there are sufficient returns, these products are
remanufactured until the warehouse is full and all other returns are
disposed
of. Otherwise, all returned
products are remanufactured.

The quantity
of products purchased
from the external channel is max (0, dt
- st-1 - ut).

The quantity
of products to
remanufacture is vt
= min (S – s’t, rt)
where s’t = max (0,
st-1
+ ut - dt)
is the stock level after demand has been met.

The stock at
the end of the period
will be st = s’t
+ vt.
Therefore, st is a
random variable
that depends on previous stock levels st-1, random
variables dtand
rt, and the decision ut. Note that the stvariables have values between 0 and S.

The cost
incurred in period t
is:

ct = Cp(P)
+ Cs(S) + cp·ut + cr·vt+ e·max(0,
rt - vt,)
+ h·st +

+
cec·max(0, dt
- st-1 - ut) + f·max(0, min(1, ut))                           
(1)

Therefore, ctis
a random variable that depends on random variables st-1, st,
dtand
rt ,on
decision ut, and on
remanufacturing capacity P
and storage capacity S.


2.1    
Problem definition

We want to
calculate manufacturing
capacities P and storage capacities S that minimize the
expected
cost in a period:

[image: ]



The problem
is resolved by calculating
the P and S values that minimize the expected cost E(ct)
when the optimal policy uP,S
is used. To calculate the optimal
manufacturing policy for fixed P and S values, the
following
problem must be resolved:

[image: ] 



Calculating
the expected cost will
be more or less complicated depending on the behavior of returns. If
returns
form a succession of independent random variables that are also
independent of
demand, the problem becomes considerably simpler. As we have mentioned
in the introduction,
it is not surprising thus that the assumption that returns are
independent of
demand is common in literature. 

In order to
make the problem
computationally tractable, we proceed as follows: 

·       
We calculate the optimal capacities and the
optimal cost assuming that: a) returns form a succession of independent
random
variables with a known probability distribution, and b) the probability
distribution of returns is calculated according to the useful life of
the
products. A system that satisfies these assumptions is an approximation
of the
system described in section 2. In section 3 we describe how the optimal
capacities are calculated. 

·       
We calculate the expected cost of the system
described below using the capacities and the manufacturing policy
obtained in
the first step. The expected cost
is calculated by simulation. 

·       
We compare the costs obtained in the steps 1
and 2. With this comparison we assess the influence of the succession
independence assumption (rt)
on the result.


3     
Calculating optimal manufacturing and storage
capacities

Let us assume
that returns (rt) form a
sequence of integer-valued
random variables independent and identically distributed with
probability
distribution qr = p(rt= r), r
=
0,…,(T2 –T1 + 1)·D.
By fixing P
and S, we can see that the problem of calculating the optimal
policy is
a Markov decision problem with an infinite horizon and average reward
criterion, and an optimization criterion consisting of minimizing the
expected
remuneration value. 

The state in
period t is
determined by st-1, the state space is
{0,1,…,S}, the actions
in each period are defined by the manufacturing quantity ut,
the set of actions is {0,1,…,min(P,S)}, and the
remuneration is related
to the cost incurred in a given period, and is equal to – (ct
- Cp(P)
- Cs(S)). The negative sign converts the cost
function
into a remuneration function; we subtract capacity costs from the cost
per
period to obtain a simpler expression of the remuneration function.

To define the
Markov decision
problem, we need to determine pij(u), the probability of transition between
states i and j when
decision u is taken. In
other words pij(u) = p(st
= j | st-1 = i, ut
= u) with .
This is done in the next subsection.


3.1    
The transition probability

In the
section 2, we saw that the
variable state st was
dependent on st-1and the random variables dtand rt. This dependence can be expressed
as:

st = max(0,
st-1 + ut - dt) + min(S –
max(0,
st-1 + ut - dt), rt)

Therefore,
the probability of
transition between states is expressed by:

[image: ]

Where the
domains Wi+u,j contain
the values (d,r) such that
starting
from state i and taking decision u,
we
progress to state j. In other words, if we make k = i+u, we define the domains as follows:

[image: ]

For  and . To calculate
the domains Wi+u,j , we
distinguish between 3
cases:

Case 1: j < S and [image: ]

[image: ]

Case 2: j < S and [image: ]

[image: ]

Case 3: j = S

 [image: ]

Where M
= (T2-T1+1)·D.
Hence

[image: ]

Note that pij(u)
is equal to [image: ],
the probability that [image: ]


3.2    
State
transition cost

State
transition costs will be the
expected value of the costs of each of the possible paths towards the
transitions. Given manufacturing capacities P and storage
capacities S,
we want to calculate cij(u): the expected cost of the transition
from state i to j when
decision u is taken, i.e. cij(u)
= E(c | i,j,u) where c
= ct - Cp(P)
- Cs(S). 

Defining

c(i,j,u,d,r)
= cp·u + cr·min(S –
max(0, i + u - d), r) + e·max(0,
r - vt,) + h·j +              
+
cec·max(0, d - i
- u)
+ f·max(0, min(1, u))

[image: ]

Hence,

[image: ]

Let us
distinguish between 3 cases:

Case 1a:
j < S and [image: ]:

      [image: ]    

Case 1b:
j < S and j
> i + u:

[image: ]

Case 2:
j = S

[image: ]


3.3    
Calculating the optimal manufacturing policy

For each
manufacturing capacity P
and storage capacity S, the optimal policy is calculated by
resolving
the following linear program (Puterman,
1994, p. 391
ss.):

[image: ]

       

where
Pi = min(P,S-i),
yi,u are the variables, and ci(u) is:

[image: ]

If y*i,u is
a basic
optimal solution for the previous linear program, the optimal policy in
state i will be to produce u
if y*i,u >
0 and 

[image: ]

is
the expected cost of applying the above optimal policy. Therefore, the
expected
cost incurred in a period when the optimal policy is applied is

[image: ]


3.4    
Calculating optimal capacities

In the
previous section, we
described how to calculate the optimal policy and obtain the expected
cost when
this policy is applied with fixed manufacturing and storage capacities P
and S. We also defined the function CO(P,S)
which at each (P,S) point takes the expected cost value on
applying the
optimal policy when manufacturing capacity is P and storage
capacity is S.
The optimal capacities in this case will be those that minimize the
function CO(P,S).

Given
that [image: ] and that Cp(P)
is an increasing function,
the optimal value is achieved for a value of [image: ].
Let S* be the optimal storage capacity, then S*
is bounded. Indeed, we know from (1), that

[image: ]

In
particular, for optimal
manufacturing and storage capacities (P* and S*,
respectively), 

[image: ]

We calculate CO(P0,S0)
for some (P0,S0) and calculate SMAX
such that Cs(SMAX) = CO(P0,S0).
SMAX exists as Cs(S)
will reach the value of CO(P0,S0).
If not, Cs(S) would
be a bounded function. This gives

[image: ]

And
therefore [image: ] as Cs(S)
is a non-decreasing function.


4     
Numerical example

In the
following example, we study the
optimal storage and manufacturing capacities and the optimal cost when
there
are variations in [bookmark: OLE_LINK21][bookmark: OLE_LINK20]cp(cost per unit
produced) and h (holding
cost). The following
parameters are used:

D = 8; p =
(0, 0, 0.05, 0.1, 0.2, 0.3, 0.35)

T1 = 1, T2 = 3;  p  = (0.15,
0.25, 0.60), r = 0.7

cr
= 5, e =
10, f = 25 , cr = 5, cec = 30

[image: ]  

We
took 10 values [bookmark: OLE_LINK26][bookmark: OLE_LINK25]for cp(5, 6, …, 15) and 10 values for h (0,
1, …, 10). For each pair [bookmark: OLE_LINK29](cp,h), we follow the
procedure described in
section 2.1: we calculate the optimal cost and the optimal capacities
in the
approximated system, we calculate the expected cost of the system
described in
section 2, and we compare the costs obtained in the previous steps.


4.1    
Calculating the optimal cost in the
approximated system

Table
1 shows the optimal capacities and the optimal cost calculated for each
pair (cp,h) in
the approximated system.

In the system
described in section 2, the random
variables rt (t =
1,2,…) form a succession of random
variables that are
dependent on demand and on each other.

We obtain the
approximated model by a) relaxing this
fact and assuming that returns form a succession of independent random
variables, and b) calculating the probability distribution of rt
following the appendix. Figure 1 shows the probability distribution of
returns,
qr,
for the example. 
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      7

      
      	
      5

      
      	
      112,8

      
      	
      	
      	
      	
    
	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
      	
    
	
      h

      
      	
      cp = 10

      
      	
       

      
      	
      cp = 11

      
      	
       

      
      	
      cp = 12

      
      	
      	
      cp = 13

      
      	
       

      
      	
      cp = 14

      
      	
       

      
      	
      cp = 15

      
    
	
      S*

      
      	
      P*

      
      	
      Cost

      
      	
       

      
      	
      S*

      
      	
      P*

      
      	
      Cost

      
      	
       

      
      	
      S*

      
      	
      P*

      
      	
      Cost

      
      	
      	
      S*

      
      	
      P*

      
      	
      Cost

      
      	
       

      
      	
      S*

      
      	
      P*

      
      	
      Cost

      
      	
       

      
      	
      S*

      
      	
      P*

      
      	
      Cost

      
    
	
      0

      
      	
      16

      
      	
      10

      
      	
      58,0

      
      	
       

      
      	
      17

      
      	
      10

      
      	
      59,8

      
      	
       

      
      	
      17

      
      	
      10

      
      	
      61,6

      
      	
      	
      17

      
      	
      10

      
      	
      63,3

      
      	
       

      
      	
      17

      
      	
      10

      
      	
      65,1

      
      	
       

      
      	
      16

      
      	
      10

      
      	
      66,9

      
    
	
      1

      
      	
      13

      
      	
      7

      
      	
      66,4

      
      	
       

      
      	
      13

      
      	
      7

      
      	
      68,1

      
      	
       

      
      	
      13

      
      	
      7

      
      	
      69,8

      
      	
      	
      13

      
      	
      7

      
      	
      71,5

      
      	
       

      
      	
      13

      
      	
      7

      
      	
      73,3

      
      	
       

      
      	
      13

      
      	
      7

      
      	
      75,0

      
    
	
      2

      
      	
      11

      
      	
      6

      
      	
      73,5

      
      	
       

      
      	
      11

      
      	
      6

      
      	
      75,2

      
      	
       

      
      	
      11

      
      	
      6

      
      	
      76,9

      
      	
      	
      11

      
      	
      6

      
      	
      78,5

      
      	
       

      
      	
      11

      
      	
      6

      
      	
      80,1

      
      	
       

      
      	
      11

      
      	
      6

      
      	
      81,7

      
    
	
      3

      
      	
      10

      
      	
      6

      
      	
      79,8

      
      	
       

      
      	
      10

      
      	
      6

      
      	
      81,4

      
      	
       

      
      	
      10

      
      	
      6

      
      	
      83,0

      
      	
      	
      10

      
      	
      6

      
      	
      84,5

      
      	
       

      
      	
      10

      
      	
      5

      
      	
      86,1

      
      	
       

      
      	
      10

      
      	
      5

      
      	
      87,6

      
    
	
      4

      
      	
      9

      
      	
      6

      
      	
      85,3

      
      	
       

      
      	
      9

      
      	
      6

      
      	
      86,8

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      88,4

      
      	
      	
      9

      
      	
      5

      
      	
      89,9

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      91,4

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      93,0

      
    
	
      5

      
      	
      8

      
      	
      5

      
      	
      90,3

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      91,9

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      93,5

      
      	
      	
      9

      
      	
      5

      
      	
      95,0

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      96,6

      
      	
       

      
      	
      9

      
      	
      5

      
      	
      98,1

      
    
	
      6

      
      	
      8

      
      	
      5

      
      	
      95,3

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      96,9

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      98,5

      
      	
      	
      8

      
      	
      5

      
      	
      100,1

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      101,7

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      103,2

      
    
	
      7

      
      	
      7

      
      	
      5

      
      	
      100,2

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      101,9

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      103,5

      
      	
      	
      8

      
      	
      5

      
      	
      105,1

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      106,6

      
      	
       

      
      	
      8

      
      	
      5

      
      	
      107,9

      
    
	
      8

      
      	
      7

      
      	
      5

      
      	
      104,9

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      106,6

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      108,3

      
      	
      	
      7

      
      	
      5

      
      	
      110,0

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      111,4

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      112,7

      
    
	
      9

      
      	
      7

      
      	
      5

      
      	
      109,7

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      111,4

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      113,1

      
      	
      	
      7

      
      	
      5

      
      	
      114,7

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      116,0

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      117,3

      
    
	
      10

      
      	
      7

      
      	
      5

      
      	
      114,4

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      116,1

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      117,8

      
      	
      	
      7

      
      	
      5

      
      	
      119,3

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      120,6

      
      	
       

      
      	
      7

      
      	
      5

      
      	
      121,8

      
    




Table 1. Optimal storage and manufacturing capacities, and
optimal cost for
each pair (cp, h)
calculated following section 3, using
the parameters of the example

[image: ]

Figure
1. Probability distribution for
returned quantity in the example


4.2    
Calculating the expected cost by simulation

For
each pair [bookmark: OLE_LINK34][bookmark: OLE_LINK33](cp, h), we have
simulated 100 times
the expected cost of the system described in section 2. We have used
the parameters
of the example and the optimal capacities and the optimal policy
calculated in
section 4.1. Each expected cost were obtained by simulating the
functioning of
the system for 30 periods and calculating the average cost for the
following
3,000 periods. In all of the cases, T1 = 1. We have
performed
a Lilliefors test with
level of significance of 5% to test the
null hypothesis that the samples comes from a distribution in the
normal
family’. We concluded that the hypothesis of normality is
rejected in the following cases [bookmark: OLE_LINK35][bookmark: OLE_LINK31][bookmark: OLE_LINK30](cp, h) =
{(8,0), (8,3),
(10,0), (10,3), (11,3), (11,4), (13,0), (13,9), (14,8)}. 


4.3    
Comparison
between dependent and independent returns

For each (cp,
h) with normally distributed samples, we have
performed a hypothesis test
where the null hypothesis is “optimal
cost calculated in section 4.1 is equal to mean value of the samples
obtained
in section 4.2” and the level of significance is 5%. 

[image: ]

Figure
2. Calculated cost showed in Table 1.
The dots correspond to (cp, h)
pairs where the difference between calculated and expected costs is not
statistically significant

Figure 2 shows the optimal cost
in the
approximated system and the (cp, h) pairs where the difference between
calculated and expected costs (obtained by simulation) is not
statistically
significant. Figure 2 also shows the values (cp, h) where the
difference
between both costs is statistically significant. 

We can view in Figure 3 the
differences
between calculated cost (based on the return independence assumption
and showed
in Table 1) and estimated cost by simulation (mean value of the 100
samples).

[image: ]

Figure
3. Differences between costs,
calculated as explained in section 3 for
the approximated system and the simulated cost calculated in the system
described in section 2


5     
Conclusions

In this paper
we have
developed a model of a system with reverse logistics, stochastic demand
and
returns, and limited manufacturing and storage capacities. Using a
linear
program we have calculated the optimal manufacturing policy when
capacities are
fixed and we have described the way to obtain the optimal capacities.

We have
described the
following procedure to assess the influence of the hypothesis that
returns are
stochastically independent on the optimal production capacities:

·       
Calculate the probability distribution of
returns using the appendix.

·       
Calculate the optimal policy, the optimal
capacities, and the optimal cost for an approximated model following
section 3.


·       
Obtain samples of the expected cost of the
system by simulation.

·       
Perform a hypothesis test for the claim ‘the
cost obtained in step 2 is equal to the cost obtained in step 3’.


·       
When the claim of step 4 is rejected, conclude
that the hypothesis that returns are stochastically independent is
influencing
on the optimal production capacities. 

We have
illustrated how to
use this procedure with a numerical example. We concluded that the
influence of
the assumption that returns are stochastically independent is not
significant
in some cases. Indeed, the calculations are simplified considerably. 

We have
studied when the
independence assumption is affecting the optimal capacities depending
on the
manufacturing and holding costs. 

The findings
of this study
could be used as a starting point for future works. We can use the
procedure
described above for studying production systems, such as:

·       
Study in detail the influence of the
independence assumption depending on the value of remanufacturing cost
and the
return rate r.

·       
Analyze
the influence of the hypothesis that the demand and the returns are
stochastically independent in models with bounded remanufacturing
capacity, backorders
and manufacturing and remanufacturing lead times.


Appendix:
Probability distribution of returns

We
compute the probability distribution of returns in the period t, based on the probability distribution
of the useful life of the product and the return rate r.
To do this, we define the random variables Zt,t :
units returned in period t sold in period t-t (t
= T1,...T2) and define
the following
probability distributions related to these random variables:

Distribution
of probability of Zt,t: htk = p(Zt,t = k) k
= 0,…,D. 

Distributions
of probability of Zt,t  conditioned
by dt
= i (i
= 0,...,D):
given i we define utik
= p(Zt,t =
k | dt = i)
(t
= T1,...T2, k = 0,…,D).

We
first calculated utik, the
conditioned probability distributions. We know that a product’s
useful life has
a random duration of between T1 and T2
and
once this has come to an end, the product has a probability r of being
returned. Therefore, if the sales in a period are i,
the probability distribution of returns they generate is: 



For i = 0,...,D
and t = T1,...T2.We have the values:

 for k = 0,…,D
y t = T1,...T2.

We
are now able to calculate the probability distribution of returns as ,
where the distribution is obtained from the
probabilities of Zt,t,
as .
Hence,

 for r = 0,…,(T2-T1+1)·D

This
expression can be calculated through the
convolution of the Zt probability
distributions,
with the following recurrence relationship: 

  for T >1 and r
= 0,…,T·D:

This allows
us to calculate qr
= f(r, T2-T1+1) from  k = 0,…,D.
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