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Abstract:

Purpose: Efficient scheduling in Operating Rooms (ORs) is essential for optimizing corresponding costs
and enhancing customer satisfaction in healthcare systems.

Design/methodology/approach: Conventional  static  scheduling  methods  rely  on  fixed  historical
surgery  times and often lead to inefficient  resource  utilization and increased costs  due to  inaccurate
predictions of  surgical durations. In this regard, this paper introduces an innovative method that employs
Convolutional  Neural  Networks  (CNNs)  to  predict  the  remaining  intra-surgical  time  through  binary
classification for the Gallbladder Dissection phase and to dynamically manage OR schedules. The study,
although focused on laparoscopic cholecystectomy procedures, demonstrates a method adaptable to other
laparoscopic surgeries. The dataset comprises labeled laparoscopic cholecystectomy videos (time labels for
different phases) used to train and evaluate the CNN.

Findings: Results show that the proposed method reduces patient waiting times by an average of  87.3%
and eliminates OR idle time compared to traditional fixed-time scheduling methods.

Originality/value: This paper introduces a new data-driven approach for predicting remaining intra-
surgical time and enhancing OR efficiency. The study’s novelty lies in its use of  Convolutional Neural
Networks (CNNs) to predict surgery completion times, a method that has not been extensively explored in
this context. By providing accurate forecasts, this approach allows nurses to prepare for the next patient
more efficiently and enables dynamic rescheduling when surgeries deviate from their planned timelines.
This combination contributes to improved OR utilization and enhances patient satisfaction, offering a
practical and innovative solution to a common challenge in surgical workflow management.

Keywords: remaining time predictions, operating room management, scheduling, convolutional neural network,
machine learning 
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1. Introduction
Managing healthcare systems is inherently challenging due to numerous constraints and competing priorities. Key
issues include limited resources, high costs of  medical technology and drugs, increasing demand, rising patient
expectations, and insufficient planning tools. To address these challenges, healthcare organizations must focus on
process optimization to control costs and improve care quality.  Researchers have employed predictive models,
Artificial Intelligence (AI), and Neural Networks (NN) to tackle various healthcare problems globally. For example,
Lu,  Yang, Yang, Li,  Yin, Yin  et al. (2024) used Long Short-Term Memory (LSTM) networks to track surgical
instrument  movements,  while  Gong,  Zhang,  Feng,  Zhu,  Deng,  Ran  et  al. (2023)  demonstrated  the  superior
accuracy of  computed tomographic angiography in diagnosing aortic coarctation. Fu,  Duan, Zhong  and Zeng
(2024) compared keloid treatments through meta-analysis, finding that laser and steroid combinations resulted in
lower recurrence and hyperpigmentation rates compared to surgery and radiotherapy. Nian, Pu, Li, Zhong, Ma and
Li (2024) developed a CSIISM model to simulate intra-abdominal adhesions, providing insights into postoperative
adhesion formation. Recent advancements in Machine Learning (ML) have further enhanced healthcare systems, as
evidenced by studies from Qin, Shi, Tao, Yu, Jin, Xiao et al. (2024), Liao, Tang, Gao and Trik (2024), Li, Xia, Wang,
Wang, Cui and Li (2023), Islam and Imtiaz (2024), Ayadi, Mezni, Alnashwan and Elmannai (2023), Howard (2023),
Chen,  Wu and Chiu (2024), and Rico,  Alaeddini, Faruqui, Fisher-Hoch  and Mccormick (2024), leading to more
efficient and productive healthcare delivery.

Operating Room (OR) management is a critical component of  healthcare systems, with scheduling being a complex
task  that  involves  prioritizing  surgeries,  allocating  resources,  and  determining  the  sequence  of  procedures.
Researchers have explored OR scheduling across various scenarios (Yang,  Gajpal, Roy & Appadoo, 2022; Wang,
Demeulemeester, Vansteenkiste & Rademakers, 2021; Miao & Wang 2023; Maleki, Hosseininesaz & Jasemi, 2023;
Lotfi & Behnamian 2022; Fallahpour, Rafiee, Elomri, Kayvanfar & El-Omri, 2024; Dexter & Epstein, 2024). Two
primary approaches to scheduling are static and dynamic. Static scheduling relies on historical data and remains
unchanged regardless of  real-time conditions, often leading to inefficiencies due to its inability to adapt to delays or
unexpected changes. In contrast, dynamic scheduling continuously updates based on real-time data, offering greater
flexibility and efficiency. This approach better handles unforeseen delays, variations in procedure durations, and
changes in resource availability, ultimately optimizing resource use and minimizing idle and waiting times.

OR scheduling poses significant challenges due to its complexity and direct impact on efficiency and patient care.
Traditional  static  methods  often  result  in  inaccurate  predictions  of  surgical  durations,  leading  to  over-  or
underestimation of  time requirements. This can cause prolonged idle times, underutilized resources, and increased
patient  wait  times.  Delays  in  one  procedure  can cascade,  disrupting  subsequent  schedules  and  compounding
inefficiencies. Variability in surgical durations, patient conditions, and unexpected complications further complicate
scheduling,  straining  OR  resources,  reducing  patient  satisfaction,  and  increasing  costs.  To  overcome  these
challenges, innovative approaches that integrate real-time data and dynamic scheduling are essential for optimizing
OR utilization and improving patient outcomes.

Effective OR scheduling is vital for enhancing hospital efficiency, patient satisfaction, and the success of  surgical
services. By minimizing idle time, maximizing OR utilization, and reducing patient wait times, effective scheduling
ensures optimal care delivery. It requires careful coordination of  multiple factors, including surgeon and surgical
team availability,  equipment, anesthesiologists, supplies, and emergency cases. Additionally,  it involves managing
patient preparation, procedure types and durations, and contingency plans for unexpected delays or complications.

Over the past six decades, extensive research has been conducted on operating theater management. Magerlein and
Martin (1978) categorized surgical demand scheduling into two main types: advance scheduling, which involves
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assigning a surgery date to a patient, and allocation scheduling, which determines the operating room and start time
for the procedure on the scheduled day. Blake and Carter (1997) expanded on this framework in their review by
introducing external resource scheduling, which involves identifying and reserving resources outside the surgical
suite  required  for  patient  care  before  and  after  surgery.  They  further  divided  each  domain  into  strategic,
administrative, and operational levels, though these distinctions can often overlap and interrelate. Przasnyski (1986)
organized the literature on OR scheduling around key themes, such as cost containment and resource-specific
scheduling. Additional reviews addressing operating room management as part of  broader healthcare services can
be found in Boldy (1976), Pierskalla and Brailer (1994), Smith-Daniels,  Schweikhart  and Smith-Daniels (1988),
Yang, Sullivan, Wang and Naidu (2000). 

Historical data is very helpful in optimizing the OR scheduling process in hospitals. In practice, analyzing such data
helps  healthcare  administrators  to  effectively  forecast  surgical  demand,  identify  peak  periods,  and  estimate
procedure durations  guided by similar  past  cases.  With historical  surgical  patterns,  hospitals  can allocate their
resources  accurately  and  effectively,  minimize  idle  time,  and improve  the  overall  flow of  surgical  operations.
Moreover,  historical  data  can  aid  in  identifying  and  mitigating  bottlenecks,  enhancing  staff  and  equipment
allocation, and optimizing OR turnover times (Dexter, Macario, Qian & Traub, 1999; Leedal & Smith, 2005).

However, relying solely on historical data to schedule ORs in hospitals may not be the most effective approach due
to different reasons, such as the variability in surgical cases, staffing, and resources, among others. For instance, each
surgical case is affected by several factors, such as the patient’s health condition, complexity of  the procedure,
surgeon professionality,  and many other unexpected complications;  in  addition,  staffing level  of  training,  and
available resources may differ from one surgery to another. Outliers and anomalies are very common problems in
historical data as they can skew predictions. For instance, anomalies could arise from unusual cases, data entry
errors, or atypical situations that are not representative of  normal scenarios. Thus, relying on historical data only to
schedule ORs in hospitals may not be the most effective or efficient approach. 

ML algorithms can yield numerous benefits when integrated into OR scheduling, including predictive abilities,
adaptability,  and  efficiency.  Such  algorithms  can  analyze  historical  data  and  reveal  patterns  that  may  not  be
detectable through manual methods. ML is a continuous learning and adapting technique based on real-time data. It
can respond effectively to unexpected delays, emergencies, or changes in surgeon availability, which is not available
in any other traditional scheduling techniques that are based only on historical data.

ML has become an effective tool for optimizing OR scheduling, especially for laparoscopic surgery. Laparoscopic
procedures are characterized by small incisions and the use of  a highly precise camera for visualization; thus, they
require  precise  planning  and  resource  allocation.  ML  algorithms  can  analyze  historical  surgical  data,  patient
characteristics, surgeon availability, and equipment status to predict and optimize durations and scheduling for any
surgical  procedure;  thus,  minimize  delays  and enhance resource utilization.  Researchers  examined various  ML
techniques for effective OR scheduling processes; for instance, VanBerkel and Blake (2007) conducted a pilot study
utilizing computer simulation to integrate anesthesia workload into the management of  OR. The study aimed to
optimize OR scheduling by incorporating anesthesia-related factors, considering their impact on the overall surgical
process. The results showcased the potential benefits of  this approach in enhancing OR efficiency and scheduling
accuracy. Lazic, Hinterwimmer, Langer, Pohlig, Suren, Seidl et al. (2022) explored the application of  ML to predict
surgical duration specifically in total hip arthroplasty. The authors employed ML algorithms to analyze various
factors and predict  the  duration of  surgeries.  The study demonstrated the effectiveness  of  ML in accurately
forecasting surgical timelines, providing valuable insights for optimizing OR scheduling and resource allocation,
particularly for total hip arthroplasty procedures. Schiele,  Koperna  and Brunner (2021) proposed a NN-based
model to provide guidance and support to hospital managers in efficiently scheduling surgeries, focusing on the
intensive  care  unit  while  incorporating  elective/urgent  patients,  inpatients/outpatients,  and  all  possible  paths
through the hospital. Various ML models were examined in Martinez, Martinez, Parra, Rugeles and Suarez (2021)
to accurately estimate the surgery’s duration using a large dataset of  surgery records. Specifically, potential factors
that  can  influence  the  surgery  duration  were  analyzed.  Eshghali,  Kannan,  Salmanzadeh-Meydani  and
Esmaieeli-Sikaroudi (2024)  proposed a comprehensive  model for enhancing the  efficiency  of  OR scheduling,
accommodating both elective and emergency patients, in a hospital. The proposed model incorporates various
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methods, such as Random Forest (RF) integrated with Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), to effectively estimate the emergency patient surgery duration. 

Among ML models,  the Convolutional  Neural  Networks (CNNs) have gained prominence in optimizing OR
scheduling through their ability to analyze visual data. In fact, CNNs, in the context of  OR scheduling, entails
processing images or video data related to surgical procedures,  surgical  tools,  or patient conditions to extract
valuable insights for effective decision making. For instance, CNNs can analyze surgical videos to predict surgical
duration, which is crucial for efficient OR scheduling. CNNs can also be exploited to assess surgical complexity
based on visual cues, aiding in resource allocation and scheduling appropriate time slots. For example, Yuniartha,
Masruroh  and Herliansyah (2021) and Jiao,  Xue,  Lu, Avidan  and Kannampallil (2022) utilized ML to predict
surgery duration and complexity,  demonstrating the potential  of  ANN in improving OR scheduling accuracy.
Similarly, Al-Refaie,  Judeh and Li (2018), Twinanda,  Shehata, Mutter, Marescaux, De Mathelin and Padoy (2017),
and Anteby, Horesh, Soffer, Zager, Barash, Amiel et al. (2021) argued that incorporating fuzzy scheduling and Deep
Learning (DL) into OR scheduling process enhances the automation of  data analysis, leading to more efficient
scheduling processes and ultimately improving overall hospital efficiency and patient care.

As stated previously, optimal ORs scheduling is challenging due to many factors, such as the variability in surgical
cases and staffing and resources. For example, general surgeons underestimated procedure time by 31 minutes on
average, while anesthesiologists underestimated it by 35 minutes (Aksamentov,  Twinanda, Mutter, Marescaux &
Padoy, 2017). Guedon, Paalvast, Meeuwsen, Tax, van Dijke, Wauben et al. (2015) reported a high variability up to
37% in waiting and preparation time for patients in cholecystectomy procedures. This high variability indicates that
effective scheduling is a very tedious job. 

Riahi,  Hassanzadeh,  Khanna,  Boyle,  Syed,  Biki  et  al. (2023)  discussed  various  approaches  proposed  to
preoperatively predict surgery duration, such as utilizing historical procedure-surgeon data, patient information (e.g.,
age),  operational  factors,  and  temporal  factors.  Ammori,  Larvin  and McMahon (2001)  discussed  traditional
methods for dynamic adaptation of  the schedule as a potential solution. Traditional methods involving verbal
communication can disrupt surgical workflow and may compromise safety. Alternative approaches use signals, such
as surgical tool usage, surgeon’s hand movements, and low-level task representations for real-time prediction are
limited by manual annotation and practicality, as discussed in (Twinanda,  Yengera, Mutter, Marescaux & Padoy,
2019; Maktabi & Neumuth, 2017; Padoy, Blum, Feussner, Berger & Navab, 2008). 

Over the past decade,  the medical  scientific community has been actively engaged in advancing the realm of
intelligent ORs to enhance their efficiency and patients. This paradigm encompasses diverse domains, such as
image-guided and robotic surgical systems, augmented reality,  visualization, sensing devices, and Context-Aware
systems within Computer-Assisted Interventions (CA-CAI). For instance, the works of  Cardoen, Demeulemeester
and Beliën (2010)  and Meskens,  Duvivier  and Hanset (2013)  are  good examples  of  CA-CAI as  the  authors
emphasized  the  importance  of  dynamic  scheduling  in  optimizing  OR  utilization  and  improving  customer
satisfaction,  highlighting  its  potential  to  contribute  to  efficient  healthcare  operations  and  enhanced  patient
experiences. The current study aligns with this trajectory, specifically focusing on CA-CAI. 

The goal of  this study is to develop a novel predictive model that leverages CNNs to estimate the remaining time
of  surgical procedures using real-time visual data from laparoscopic videos. While the model is implemented and
validated  in  the  context  of  cholecystectomy  procedures,  its  primary  focus  is  on  advancing  a  generalizable
framework for intra-surgical time prediction. Specifically, the model employs binary classification to identify the
completion of  the Gallbladder Dissection phase, a critical step in predicting surgery progression. By providing
accurate and real-time predictions, the proposed model aims to support dynamic scheduling adjustments, enabling
more efficient OR utilization and improved workflow management. This model-development effort is designed to
address broader challenges in surgical time prediction, with cholecystectomy serving as a case study to demonstrate
its applicability and effectiveness.

The remaining of  this paper is structured as follows: Section 2 discusses the dataset being used in this work and
data wrangling and augmentation strategy employed in this work for developing the proposed CNN model; Section
3 presents the structure of  the proposed CNN and the dynamic scheduling aspects; Section 4 shows the application
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results and highlights the effectiveness of  the proposed model. Finally, Section 5 concludes the work and highlights
some future directions.

2. Data, Data Wrangling, and Data Augmentation
This Section illustrates the dataset being used in this work for the development of  the proposed CNN for the
prediction of  the remaining surgery duration. The section also entails the data wrangling and augmentation steps
employed to optimize the CNN model’s performance and effectiveness.

The dataset for Laparoscopic Videos used in this work comprises 20 video recordings obtained during laparoscopic
surgical procedures in Al-Salt hospital in Jordan and the Cholec80 dataset (Twinanda et al., 2017) with a total of
100 videos. These videos capture the intricate movements and details of  surgical activities performed by medical
professionals. Temporal information indicating the duration of  the surgery at different time points was extracted
from the videos.

In CNNs, data wrangling and data augmentation play pivotal roles in optimizing model performance. For instance,
the former involves the preprocessing and cleaning of  raw data to ensure it is well-structured and suitable for
training. This includes handling missing values, addressing outliers, and standardizing data formats. On the other
hand, data augmentation is a technique employed to artificially increase the diversity of  the training dataset by
applying various transformations such as rotation, scaling, and flipping to the existing images. This augmentation
helps enhance the model’s robustness and generalization capabilities, enabling it to learn more robust features and
patterns from the data. Together, data wrangling and data augmentation contribute significantly to the overall
efficiency and effectiveness of  CNNs by improving their ability to recognize and classify objects in diverse and real-
world scenarios.

The dataset serves as a training and evaluation resource for a CNN tasked with predicting the remaining duration
of  a surgical  procedure based on the visual  information extracted from laparoscopic videos. The annotations
associated with the videos provide ground truth labels for the model to learn the temporal dynamics and patterns
within the surgical context. Establishing the temporal parameter corresponding to the conclusion of  Gallbladder
dissection Phase (Phase 4) in the laparoscopic cholecystectomy video is of  paramount importance. The initial frame
featuring  the  appearance  of  the  white  retrieval  bag  employed  for  gallbladder  collection  is  indicative  of  the
termination of  Gallbladder dissection Phase.

The total number of  Laparoscopic videos available is 100 videos. Out of  these, 10 random videos were reserved
for later use in the testing phase. A total of  240 frames were extracted from the remaining 90 videos for utilization
in the training and validation steps. However, the available data proved to be insufficient for the proper execution
and training of  the model, resulting in low accuracy. Consequently, data augmentation was implemented to generate
additional frames, leading to a total of  960 frames. This augmented dataset enhances the efficacy of  the model
training process, thereby contributing to an improved accuracy in predicting outcomes. 

The training set consists of  80% of  the training and validation data available (the 960 augmented frames), whereas
the validation set consists of  20% of  the training and validation data available (original 240 frames), and the test set
consists of  10 full videos to generate the confusion matrix and Receiver Operator Characteristic (ROC) curve used
as evaluation metrics for the model. The 960 frames were created by augmenting the original 240 frames, with each
original frame producing four augmented frames. These original frames were randomly selected from a 3-minute
time window surrounding the Gallbladder packaging phase. They primarily include the Gallbladder Dissection
phase, the Gallbladder packaging phase, and the Cleaning Coagulation phase.

For clarification purposes, Figure 1 visualizes the segmenting of  the dataset in the study, whereas Figure 2 visualizes
the flowchart of  the overall data segmentation process for an effective development of  the CNN model as this
segmentation helps the model increase result accuracies and predict more effectively and efficiently.
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Figure 1. Dataset segmentation in the proposed CNN model
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Figure 2. The dataset segmentation and CNN modelling framework

In the preprocessing stage, it is crucial to emphasize the discretization of  the live video into individual frames using
Python OpenCV library. Subsequently, the central regions of  these frames are cropped. Additionally, binary labels
are utilized to generate supervised learning labels for the CNN model. Within this framework, the label “0” is
indicative of  the termination of  Gallbladder dissection Phase, whereas “1” denotes any time-point occurring before
or after the conclusion of  Gallbladder dissection Phase.

Figure  3 illustrates  the  temporal  distribution  of  laparoscopic  surgical  procedures  in  a  dataset  comprising  90
surgeries. Analysis of  the duration distribution shows a pronounced rightward skewness, accompanied by a notable
high standard deviation of  17.1 minutes. The reliance on data characterized by high standard deviation presents
challenges to scheduling due to the introduction of  substantial uncertainty. This uncertainty can negatively affect
the schedule as it can increase the likelihood of  delays for patients and idle intervals in the OR. Such circumstances
may cause complications in resource management and contribute to a reduction in patient satisfaction levels.

Figure 3. Temporal distribution of  the 90 cholecystectomy surgeries
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Examination of  cholecystectomy procedures  videos has  identified seven primary phases  that  characterize  the
process, namely: Preparation phase (Phase 1), Calot Triangle Dissection phase (Phase 2), Clipping Cutting phase
(Phase3), Gallbladder Dissection phase (Phase 4), Gallbladder Packaging phase (Phase 5), Cleaning Coagulation
phase (Phase 6), and Gallbladder Retraction phase (Phase 7). The mean and standard deviation values related to
phase durations across various phases in laparoscopic surgeries are presented in Figure 4. The Figure illustrates that
the durations of  these phases exhibit high standard deviations, indicating substantial variability.  This significant
variability in phase durations results in heightened uncertainty and makes scheduling challenging. Consequently, this
difficulty in scheduling can lead to increased patient waiting times, prolonged OR idle time,  decreased overall
utilization of  the OR, and introduces challenges in scheduling anesthesia.

Figure 5 and Figure 6 illustrate the time distribution from the start of  surgery to the end of  Phase 4 and from the
beginning of  Phase 5 to the end of  Phase 7, respectively, across 100 surgeries. For the 100 surgeries, the average
time from the start of  surgery to the end of  Phase 4 is 19.55 minutes with a standard deviation of  10.30 minutes,
while the average time from the start of  Phase 5 to the end of  Phase 7 is 5.91 minutes with a standard deviation of
2.89 minutes.  This  indicates that  the majority  of  variability  in  surgical  times arises from phases 1 through 4.
Consequently,  updating  the  schedule  after  the  completion  of  Phase  4  can  significantly  reduce  most  of  the
scheduling uncertainty, thereby decreasing both OR idle time and patient waiting time.

Figure 4. The mean and standard deviation for each phase time

Figure 5. Total time up to end of  Phase 4
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Figure 6. Total time from beginning of  Phase 5 to the end of  Phase 7

Further analysis has revealed key insights: Phase 2 (i.e., Calot Triangle Dissection) and Phase 4 (i.e., Gallbladder
Dissection) are particularly critical, jointly consuming approximately 70% of  the overall operation duration and
contributing  significantly  to  the  variability  in  duration.  Notably,  the  preparation  time,  averaging  25  minutes,
underscores the temporal significance of  the transition from Gallbladder dissection phase (Phase 4) to Gallbladder
packaging  phase  (Phase  5).  This  stage  is  pivotal  in  determining  whether  an  adjustment  to  the  schedule  for
subsequent patients is necessary. The rationale lies in the fact that the average interval between the conclusion of
Phase 4 and the termination of  the surgery is approximately 6 minutes,  necessitating an additional  50-minute
interval between surgeries for preparation. Consequently, this cumulative duration of  56 minutes aligns with the
anesthesia administration time (50-60 minutes), highlighting the crucial role of  Phase 4’s conclusion in determining
the temporal alignment of  the operation relative to the schedule.

Observations made during the analysis of  frames in the latter part of  Phase 4 and the initial segment of  Phase 5
reveal a consistent positioning of  the White Retrieval Bag (A bag used to extract the gallbladder or its fragments) at
the center of  the frame. Through the selective cropping of  the central region of  the frame, the importance of  the
white retrieval bag is highlighted. Consequently, this enhances the likelihood of  accurate classification by the CNN,
particularly  in  identifying frames corresponding to the  conclusion of  Phase 4.  Refer  to  Figure 7 for a visual
representation  illustrating  a  randomly  selected  frame containing  the  white  retrieval  bag  before  and  after  the
cropping process.

(a) (b) 

Figure 7. Frame (a) before and (b) after cropping

3. Methodology
In this study, CNNs are employed due to their superior ability to process and extract meaningful spatial features
from visual data, such as laparoscopic videos, which are inherently rich in texture, shape, and temporal patterns.
Unlike  traditional  ML methods  that  require  manual  feature  extraction,  CNNs automatically  learn hierarchical
representations of  the data, making them particularly well-suited for tasks involving complex image analysis. 
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Specifically,  CNN is used to predict the end of  Gallbladder dissection phase and hence gives enough time to
reschedule the OR and the anesthesia. The architecture of  CNN used in this work is depicted in  Figure 8. The
Figure represents the most important design parameters used in composing the model.

The model consists of  various layers: a data augmentation layer, one convolutional layer, one maxpooling layer,
one flatten layer, four dense layers, a dropout layer, and output layer. The hyperparameters were optimized for
the  data  using  the  Optuna library  in  Python,  a  framework designed  for  automating  hyperparameter  tuning
processes to efficiently discover optimal settings for machine learning models. A directional study was conducted
with the objective set to ‘Maximize’, aiming to enhance model accuracy. Through 50 trials, Optuna identified the
optimal hyperparameters: a learning rate of  0.0005, a batch size of  64, [16, 32, 64, 128, 256, 512] filters each of
size 3 by 3, and Dropout of  0.2. The remaining hyperparameters were fixed as follows: 200 epochs,  Adam
optimizer, padding=’same’, ReLU activation for convolution layers, and Softmax for dense layers. Maxpooling
with a size of  2 by 2.

The data augmentation layer (not shown in Figure 8) contains a set of  operations that are applied to the input data
during the training phase to artificially increase the diversity of  the training dataset. This helps the model generalize
better to variations in the input data and improves its robustness. The specific operations incorporated in the data
augmentation layer include rotation (randomly rotating the image by a specified angle),  horizontal and vertical
flipping (mirroring the image horizontally or vertically), zooming (randomly zooming into or out of  the image),
translation (shifting the image horizontally or vertically), and contrast adjustment (randomly adjusting the contrast
of  the image). Rotation involves randomly rotating the image by a certain angle to help the model learn object
recognition irrespective of  orientation. Flipping mirrors the image horizontally or vertically, aiding the model in
recognizing objects regardless of  their alignment. Zooming simulates changes in camera distance by randomly
zooming in or out, enhancing the model’s ability to detect objects at various scales. Translation shifts the image
horizontally or vertically, making the model robust to variations in object positioning. Contrast adjustment alters the
image’s light and dark areas to help the model adapt to different lighting conditions. Together, these techniques
expand the dataset’s diversity, improving the model’s generalization and robustness. Figure 9 illustrates the outcome
of  applying the data augmentation operations to a frame from Phase4.

These operations introduce variability into the training data, facilitating improved generalization by mitigating the
risk of  overfitting to specific examples within the training set. It is noteworthy that data augmentation is exclusively
applied during the training phase, and the original, unaltered images are utilized for validation and testing purposes.
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Figure 8. CNN model design parameters

Figure 9. Impact of  augmentation on a frame from Phase 4

The algorithm takes a live laparoscopic surgical procedure video as input. It initiates a timer and captures a frame at
regular intervals of  10 seconds from the ongoing video. The CNN component of  the algorithm is responsible for
determining the status of  each captured frame, specifically  whether it  corresponds to the end of  Gallbladder
dissection phase (Phase 4) or not.

Upon classifying a frame as “end of  Phase 4” the algorithm records the elapsed time from the timer, terminates the
prediction loop, and proceeds to update the OR schedule accordingly. Conversely, if  the CNN identifies the frame
as NOT representing the “end of  Phase 4” the algorithm continues the loop,  capturing another frame. This
iterative process persists  until  the CNN component eventually recognizes a frame as “end of  Phase 4”. The
flowchart in Figure 10 visually depicts this procedural sequence.
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Figure 10. The flowchart of  the proposed CNN approach

4. Results and Discussion

Loss and accuracy metrics serve as quantitative indicators of  how well the model fits the data, with lower loss and
higher accuracy signifying superior model performance. The term “epochs” denotes the number of  complete
iterations the model undergoes over the entire training dataset during the training process. While increasing the
number of  epochs has the potential to enhance model training accuracy, it concurrently introduces the risk of
overfitting.

In the context of  Figure 8, which portrays the progression of  loss and accuracy across 200 epochs for both the
training and validation (unseen data) sets, noteworthy observations emerge. The validation accuracy achieves an
approximate value of  0.94, surpassing the training accuracy, which reaches 0.91. Simultaneously, the validation loss
attains a level of  around 0.28, slightly less than the training loss of  0.31. Figure 11 reveals a convergence of  both
training and validation accuracy, as well as training and validation loss, beyond the 150th epoch. This convergence
suggests the absence of  obvious overfitting in the model.
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Figure 11. Loss and accuracy for training and validation sets across 200 epochs

Figure 12 and  Figure 13 depict the confusion matrix and the ROC curve,  respectively.  The confusion matrix
enumerates the instances of  accurate and erroneous classifications conducted by the CNN relative to the true
classes within the dataset. Evaluation of  CNN’s performance relies on this matrix, serving as a quantitative measure
for assessment.

Figure 12. Confusion matrix for the proposed CNN

Figure 13. ROC curve for the proposed CNN
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Specifically, five performance metrics are considered in this work:

• Accuracy (Equation 1). It quantifies the ratio of  accurately classified frames, pertaining to both end of
Phase 4 and non-Phase 4 categories, relative to the total number of  frames classified by the model.

(1)

• Specificity (Equation 2). It denotes the ratio of  frames accurately classified as non-Phase 4 by the CNN in
relation to the total frames identified as non-Phase 4 by the CNN. 

(2)

• Sensitivity (Equation 3). It represents the proportion of  frames accurately classified as end of  Phase 4 by
the CNN among those frames identified as end of  Phase 4 by the CNN. 

(3)

• Precision (Equation 4). It signifies the ratio of  frames accurately classified as end of  Phase 4 among those
frames identified as end of  Phase 4. 

(4)

• Negative Predictive Value (Equation 5). It expresses the ratio of  frames accurately classified as non-Phase
4 among those frames identified as non-Phase 4. 

(5)

The ROC curve serves as an evaluative metric for comparing the performance of  the CNN against a random
algorithm. Sensitivity and 1-specificity are respectively represented along the y-axis and x-axis. The area under the
ROC curve is quantified as 0.95, signifying a markedly superior performance of  the CNN compared to random
classification. Specifically, an area under the ROC of  0.95 denotes that the likelihood of  accurately categorizing a
True end of  Phase 4 frame as end of  Phase 4 frame is 95% greater than the probability of  misclassifying a
non-Phase 4 frame as end of  Phase 4.

The excellent outcomes observed in both the confusion matrix and the ROC curve indicate that the CNN model
has  undergone  effective  training  with  minimal  overfitting.  Consequently,  we  have  confidence  in  utilizing  this
well-trained CNN model.

The CNN model, which has undergone training, will be employed on the test set comprising 10 new videos of
laparoscopic cholecystectomy procedures. A detailed analysis of  the results for the first video will be presented,
followed by a subsequent enumeration of  the outcomes for the remaining nine videos.  Figure 14 presents the
temporal details for the first video.

The total duration of  the entire surgery is approximately 29 minutes, with Phase 4 lasting about 8.4 minutes.
Notably, the CNN model successfully identified the conclusion of  Phase 4 at the 24-minute mark by recognizing
the appearance of  the white retrieval bag employed to collect the patient’s gallbladder. Figure 15 depicts the specific
frame detected by the CNN model, signifying the conclusion of  Phase 4.

-157-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.8543

Table 1 presents the OR timetable generated using the traditional static scheduling method, which serves as a
baseline for comparison with the proposed algorithm. In this traditional approach, the schedule is constructed
based on an average surgical duration of  40 minutes and an average interval of  45 minutes allocated for OR
preparation and sanitation. This method relies solely on historical surgery times and does not account for real-time
variability in surgical procedures. By contrasting this static scheduling approach with the dynamic updates enabled
by  the  proposed  algorithm,  the  study  highlights  the  limitations  of  traditional  methods  and  underscores  the
advantages of  incorporating real-time predictions for optimizing OR efficiency.

Figure 14. Temporal details for the first surgery

Figure 15. The specific frame detected by the CNN model 
to signify the conclusion of  Phase 4
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Operation
number TST AST AOT (Min) AET CPOR ORIT WT (Min)

1 7:00 AM 7:00 AM 29 7:29 AM 8:14 AM 0 0

2 8:25 AM 8:14 AM 40 8:54 AM 9:39 AM 11 0

3 9:50 AM 9:39 AM 54 10:33 AM 11:18 AM 11 0

4 11:15 AM 11:18 AM 44 12:02 PM 12:47 PM 0 3

5 12:40 PM 12:47 PM 27 1:14 PM 1:59 PM 0 7

6 2:05 PM 1:59 PM 57 2:56 PM 3:41 PM 6 0

7 3:30 PM 3:41 PM 49 4:30 PM 5:15 PM 0 11

8 4:55 PM 5:15 PM 43 5:58 PM 6:43 PM 0 20

9 6:20 PM 6:43 PM 56 7:39 PM 8:24 PM 0 23

10 7:45 PM 8:24 PM 39 9:03 PM 9:48 PM 0 39

TST: Theoretical Starting Time; AST: Actual Starting Time; AOT: Actual total Operation Time; AET: Actual Ending Time;
CPOR: Cleaning and Preparation of  OR; ORIT: Operating Room Idle Time; WT: Patient Waiting Time

Table 1. OR schedule without the utilization of  the proposed algorithm

The Theoretical Starting Time (TST) for a surgical procedure is defined as the sum of  the previous TST and 85
minutes. This duration comprises 40 minutes for the average surgical procedure and an additional 45 minutes for
Cleaning and Preparation of  the OR (CPOR). The Actual Starting Time (AST) is determined by adding 45 minutes
to the Actual Ending Time (AET) of  the preceding surgery, accounting for cleaning and preparation activities. The
AET, in turn, is calculated by summing the AST and the duration of  the surgical procedure. Thus, the OR Idle
Time (ORIT) and the patient Waiting Time (WT) are calculated using Equation 6 and 7, respectively, as follows:

(6)

(7)

Where i is the index of  the operation. Table 2 shows what the CNN model predicts for when each operation starts
and ends, creating a schedule in real-time. In this way of  planning, nurses get notifications about 51 minutes before
the next surgery begins. These 51 minutes can be divided into 6 minutes until the current surgery ends and 45
minutes for CPOR. This gives enough time for updating schedules, getting ready for the next patient, and preparing
anesthesia. As you can see in Table 2, the CNN model effectively reduced patient waiting time and eliminated OR
idle time by making a real-time scheduling.
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Operation
number TST AST AOT (Min) CET AET CPOR ORIT WT (Min)

1 7:00 AM 7:00 AM 29 7:28 AM 7:29 AM 8:14 AM 0 0

2 8:13 AM 8:14 AM 40 8:56 AM 8:54 AM 9:39 AM 0 1

3 9:41 AM 9:39 AM 54 10:30 AM 10:33 AM 11:18 AM 0 0

4 11:15 AM 11:18 AM 44 12:02 PM 12:02 PM 12:47 PM 0 3

5 12:47 PM 12:47 PM 27 1:13 PM 1:14 PM 1:59 PM 0 0

6 1:58 PM 1:59 PM 57 3:01 PM 2:56 PM 3:41 PM 0 1

7 3:46 PM 3:41 PM 49 4:26 PM 4:30 PM 5:15 PM 0 0

8 5:11 PM 5:15 PM 43 5:54 PM 5:58 PM 6:43 PM 0 4

9 6:39 PM 6:43 PM 56 7:42 PM 7:39 PM 8:24 PM 0 4

10 8:27 PM 8:24 PM 39 9:05 PM 9:03 PM 9:48 PM 0 0

CST: CNN predicted Starting Time; AST: Actual Starting Time; AOT: Actual total Operation Time; AET: Actual Ending
Time; CET: CNN predicted Ending Time; CPOR: Cleaning and Preparation of  OR; ORIT: Operating Room Idle Time; WT:
Patient Waiting Time

Table 2. The OR schedule with the utilization of  the proposed algorithm

The implementation of  the CNN significantly reduced patients’ WT, achieving a remarkable 87.3% decrease from
103 minutes to just 13 minutes. This efficiency is achieved through the real-time schedule, wherein nurses receive
timely notifications, enabling simultaneous preparation of  the OR and patient readiness for anesthesia. The CNN’s
application not only minimizes costs but also enhances patient satisfaction by eliminating unnecessary waiting and
repetition of  the anesthetization procedure. Figure 16 provides a comparison of  patient waiting times under two
schedules: one without the application of  the CNN model and the other with the utilization of  the CNN model.

Table  3 presents  the  precision of  our  model  in  forecasting  the  conclusion  of  a  Phase  4  across  ten surgical
procedures. The second column denotes the Actual End of  the phase (AEPhase), while the third column represents
the Predicted End of  the phase made by the proposed algorithm (PEPhase). The accuracy can be calculated by
Equation 8 in seconds. As per the tabulated results, 40% of  surgeries were accurately forecasted with zero instances
of  misclassification. Among the remaining six instances, the most significant deviation was approximately 2.27%.
The average error across all predictions was a mere 0.69%. This minimal average error underscores the overall high
accuracy of  the proposed model.

Figure 16. The waiting time (in minutes) comparison chart with and 
without the utilization of  the proposed CNN algorithm
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(8)

Operation Number AEPhase (Min) PEPhase (Min) Accuracy |Error| (%)

1 24 24 0 0.00%

2 32 32 0 0.00%

3 43 42:30 30 1.16%

4 36 36:20 20 0.93%

5 22 21:30 30 2.27%

6 50 50 0 0.00%

7 41 40:50 10 0.41%

8 36 36 0 0.00%

9 44 44:10 10 0.38%

10 28 28:30 30 1.79%

Averages 0.69%

Table 3. Absolute error percentages of  the proposed CNN model

Figure 17 depicts the errors linked to CNN’s predictions of  the conclusion of  Phase 4. The Figure demonstrates
that the errors are randomly distributed, indicating that the proposed algorithm exhibits no apparent bias and hence
the model does not exhibit systematic errors and provides predictions or estimates that, on average, are correct and
free from any systematic deviation from the true values.

The proposed CNN sometimes misclassified images with rolled retrieval white retrieval bags as the end of  phase 4.
This mistake extended the duration of  phase 4 and delayed the schedule update, increasing the error in detecting
the end of  phase 4. Providing more data could mitigate this issue by improving the model’s training.  Figure 18
shows an example of  such an image.

Figure 17. Errors linked to CNN’s predictions
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Figure 18. An image featuring a rolled white retrieval bag

It is important to note that in this study, 10 test videos (surgeries) were used to create a surgery schedule based on
traditional static scheduling methods. The same 10 videos were then used to generate a schedule using the proposed
method.  The  schedules  produced  by  the  traditional  method  and  the  proposed  method  were  subsequently
compared.  Unfortunately,  achieving  statistical  significance  in  the  results  necessitates  repeating  the  processes
multiple times, which requires a large number of  datasets. The authors, however, do not have enough data to
construct confidence intervals, or conduct hypothesis tests regarding the reduction in idle and waiting times.

5. Conclusions and Future Directions

This study demonstrates the potential of  data-driven approaches, particularly machine learning, to address the
challenges  of  dynamic  Operating  Room  (OR)  scheduling  by  leveraging  real-time  visual  data  from  surgical
procedures. Traditional static scheduling methods based on historical data often fall short due to the inherent
variability in surgical cases, staffing, and resources. To address these challenges, the study proposes a Convolutional
Neural  Network  (CNN)  model  that  predicts  the  conclusion  of  Phase  4  in  laparoscopic  cholecystectomy
procedures, allowing for dynamic updates to the OR schedule.

The results demonstrate the effectiveness of  the CNN model, achieving an accuracy of  approximately 92% and
reliably predicting the conclusion of  Phase 4. This accurate phase detection contributes to more precise scheduling,
minimizing  patient  waiting  times  and  OR idle  time.  The  real-time  schedule  generated  by  CNN significantly
outperforms traditional scheduling methods, reducing patient waiting times by 87.3% and eliminating OR idle time.

However, there are two notable limitations in this study. First, only 10 test videos (surgeries) were used to create a
surgery schedule based on both traditional static scheduling methods and the proposed method. These schedules
were subsequently compared. Unfortunately, achieving statistical significance in the results requires repeating the
processes  multiple  times,  necessitating a large  number of  datasets.  The authors do not  have enough data to
construct  confidence  intervals  or  conduct  hypothesis  tests  regarding  the  reduction  in  idle  and waiting  times.
Second, the proposed CNN sometimes misclassified images with rolled white retrieval bags as the end of  Phase 4.
This mistake extended the duration of  Phase 4 and delayed the schedule update, increasing the error in detecting
the end of  Phase 4. Providing more data could mitigate this issue by improving the model’s training.

While the CNN model demonstrates promising results, ongoing research and refinement are essential to further
enhance its accuracy and applicability across diverse surgical scenarios. Future work may explore expanding the
dataset, refining the CNN architecture, and considering additional factors for a more comprehensive predictive
model. Additionally, the methodology used in this study can be adapted for other laparoscopic surgeries, such as
laparoscopic appendectomy and hernia repair. These applications could provide a more comprehensive evaluation
of  the proposed CNN model’s effectiveness, further validating its applicability and enhancing its robustness in
optimizing OR scheduling. Nevertheless, the findings of  this study underscore the potential of  data-driven models,
particularly machine learning, in revolutionizing intra-surgical time predictions and optimizing OR management for
improved patient care and resource utilization.
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