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Abstract:

Purpose: The buffer allocation problem (BAP) arises in the design of  production systems;  it  involves
analyzing and defining the optimal distribution of  buffers within a production line. This paper presents a
BAP formulation in a parallel series line from a cup sublimation process with unreliable operating conditions.
The main objective of  this study is to develop a new BAP solution proposal, considering the optimization of
the OEE indicator used in Lean Manufacturing. 

Design/methodology/approach: The  BAP was  analyzed under  an  optimization  approach from two
different criteria: firstly, the maximization of  the OEE indicator (Overall Equipment Effectiveness) utilized in
Lean Manufacturing, as well as the maximization of  the average production rate (Throughput). The case
study involves unreliable operating conditions. Process times, and timeframes between failures and repairs,
consider normal distribution functions. The evaluation method employed in the study includes the use of
simulation meta-models built from experiment designs and production line simulations; on the other hand,
the nonlinear GRG algorithm is used to solve the mathematical models. 

Findings: In the study carried out, it is shown that the OEE indicator can be affected when more buffers are
allocated than necessary, hence it is important to calculate and establish the best configuration for them through
an analysis such as the one proposed in this document. 

Research limitations/implications: The research is limited to a case study of  an unreliable production
line from a cup sublimation process.

Practical implications: The proposed solution established in this study can be used in other production lines
with configurations different from the one analyzed, considering the optimization criterion of  the OEE indicator.

Originality/value: Seeking that the allocation of  buffers within the production line improves the OEE indicator
is something new in the literature, therefore, the results achieved in this research become even more relevant. 
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1. Introduction
The buffer allocation problem (BAP) arises in the design of  production systems; it involves analyzing and defining
the optimal distribution of  buffers within a production line. The main reason for maintaining buffers is to allow
workstations  to  operate  independently  from each  other.  Buffers  have  a  significant  impact  on  improving  the
efficiency of  the production line by eliminating detrimental effects due to failures or variations in processing times
(Hernández-Vázquez, Hernández-González, Hernández-Vázquez, Jiménez-García & Hernández-Ripalda, 2022a;
Hoe, Prakash, Kamaruddin & Seng, 2019; Kose & Kilincci, 2020). On the other hand, they can increase the system
maintenance  cost  and  decrease  its  profitability.  Thus;  finding  the  optimal  buffer  capacities  that  result  in  a
satisfactory process is a major problem in production systems research (Motlagh, Azimi, Amiri & Madraki, 2019).

In recent years, a significant number of  companies have opted for the implementation of  Lean Manufacturing, to
improve their production processes and generate greater profits, by eliminating or reducing everything that does
not add value to the products, but add cost and work (Hernández-Vázquez, Hernández-González, Hernández-
Vázquez, Jiménez-García & Baltazar-Flores, 2021; Socconini, 2019).

This study presents a new BAP solution proposal as its main contribution, considering the optimization of  the
OEE indicator used in Lean Manufacturing. This indicator represents the time that is actually worked, without
downtime, at the established capacity,  and without defects (Socconini,  2019). The search for the allocation of
buffers within the production line to improve OEE is  something new in the literature,  for  which the results
achieved in this research become yet more relevant. In addition, a second analysis of  the problem is carried out
taking  into  consideration the  optimization of  the  throughput,  in  order  to compare  the  allocation  of  buffers
between the two optimization criteria. 

It is important to mention that this work considers the analysis of  a real case study from a company that is
dedicated to the sublimation of  cups;  for this reason,  the results achieved have a practical approach within a
production line, whose operating conditions are considered unreliable, since there are downtimes due to machine
breakdowns, repair time, as well as quality issues. 

Another aspect to highlight is the evaluation method used. Like in other works (Amiri & Mohtashami, 2012;
Hernández-Vázquez  et  al.,  2022a;  Mohtashami,  2014),  meta-models  built  from  experimental  designs  and
simulations of  the production line are used. The simulation software used for this work is PROMODEL; this was
designed to analyze manufacturing processes of  one or more products, assembly and transformation lines, among
others (García-Dunna, García-Reyes & Cárdenas-Barrón, 2013). The use of  such software in the analysis of  the
BAP has been previously reported in another work (Hernández-Vázquez et al., 2022a). On the other hand, the
nonlinear GRG algorithm is used in the search for the solution as an optimization method.

The rest of  this document is organized as follows: Section 2 explains the formulation of  the BAP as well as the
mathematical models considered. Section 3 then describes the case study. Section 4 illustrates the meta-models
developed. The optimization method used is described later in section 5. Section 6 details the numerical results
obtained. Finally, a section of  conclusions is presented where the scope of  the results generated is addressed.

2. Buffer Allocation Problem

The buffer allocation problem is classified as an NP-Hard combinatorial optimization problem in the design of
production lines (Demir, Tunali & Eliiyi, 2014; Weiss, Schwarz & Stolletz, 2019). This consists of  defining the
allocation of  storage places (buffers) within a production line, with the objective of  maximizing the efficiency of
the process.

-276-

https://doi.org/10.3926/jiem.6572
https://doi.org/10.3926/jiem.6572


Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.6572

Currently,  there  is  a  great  diversity of  studies  reported  in  the  literature  that  address  BAP  under  different
optimization criteria. Mentioned below are some of  the most outstanding works: 

The  most  common optimization  criteria  consider  maximizing  the  average  throughput  rate  (Gao,  2022;  Gao,
Higashi, Kobayashi, Taneda, Rubrico & Ota, 2020; Gao & Liu, 2023; Kassoul, Cheikhrouhou & Zufferey, 2023;
Köse, Demir, Tunal & Eliiyi, 2015; Kose & Kilincci, 2015; Koyuncuoğlu & Demir, 2021; Lin & Chiu, 2018; Nahas,
Nourelfath & Gendreau, 2014; Narasimhamu, Reddy & Rao, 2014; Patchong & Kerbache, 2017; Wang, Song, Shin
& Moon, 2014), minimizing the total buffer size (Li, 2013; Weiss & Stolletz, 2015), minimizing the total cost of
allocation (Magnanini, Terkaj & Tolio, 2022; Nahas, 2017; Nahas & Nourelfath, 2018; Ouzineb, Mhada, Pellerin &
El  Hallaoui,  2018;  Tiacci,  2022),  among  others  (Alfieri,  Matta  &  Pastore,  2020;  Hernández-Vázquez,
Hernández-González,  Jiménez-García,  Hernández-Ripalda  &  Hernández-Vázquez,  2019;  Hernández-Vázquez,
Hernández-González, Hernández-Vázquez, Figueroa-Fernández & Cancino de la Fuente, 2022b; Koyuncuoğlu &
Demir, 2023; Shaaban & Romero-Silva, 2021; Shao, Moroni, Li, & Xu, 2022; Xi, Smith, Chen, Mao, Zhang & Yu,
2021; Zhou, Liu, Yu & Tao, 2018).

2.1. Formulation

In this study, the BAP is analyzed under a single-objective optimization approach, for which two different criteria
were considered. The first aims to maximize the value of  the OEE indicator, and the second aims to maximize the
throughput (products/minute).

Four mathematical models were generated. The first two aim at optimizing the OEE, while the third and fourth
seek to optimize the throughput. Each of  them is described in detail below:

2.2. Mathematical Model 1

The first mathematical model aims to maximize the OEE indicator of  the production line, for a certain number of
buffers.

Find B=(B1,B2,…,Bn) in order to

Max Z1 = OEE(B) (1)

Subject to

Bi ≤ Ui      ∀i = 1 to n (2)

Bi > Li      ∀i = 1 to n (3)

∑Bi = N (4)

Bi ≥ 0 and integers (5)

Where: 

Bi = Decision variable or number of  buffers in the buffer locations i
n = Number of  buffer locations
OEE(B) = OEE of  production line
Li = Lower limit of  Bi

Ui = Upper limit or capacity of  Bi

N = Number of  buffers available

It is important to note that OEE(B) is a regression meta-model that is generated through the design of  experiments
(DOE) and simulation. Section 4, “Meta-modelos”, describes the mode on how each of  these were obtained. 

-277-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.6572

The first mathematical model contemplates constraints (2, 3, and 4) that are related to the number of  buffers in
each buffer location. Due to production space limitations, buffer locations cannot register an allocation greater than
their capacity.

2.3. Mathematical Model 2

The second mathematical model is distinguished from the first by the constraint (9) where the allocation of  all
available buffers is not mandatory (soft constraint).

Max Z1 = OEE(B) (6)

Subject to

Bi ≤ Ui      ∀i = 1 to n (7)

Bi ≥ Li       ∀i = 1 to n (8)

∑Bi ≤ N (9)

Bi ≥ 0 and integers (10)

2.4. Mathematical Model 3

The third mathematical model aims to maximize the throughput of  the line (products manufactured per unit of
time), for a given number of  buffers.

Find B = (B1,B2,…,Bn) in order to

Max Z2 = TH(B) (11)

Subject to

Bi ≤ Ui      ∀i = 1 to n (12)

Bi ≥ Li       ∀i = 1 to n (13)

∑Bi = N (14)

Bi ≥ 0 and integers (15)

Where: 

TH(B) = Throughput of  the line, based on the spaces allocated in front of  line B 

2.5. Mathematical Model 4

The fourth mathematical  model  is  similar  to the  third.  It  differs from this  one in  constraint  (19)  where the
allocation of  all available buffers is not mandatory (soft constraint).

Max Z2 = TH(B) (16)

Subject to:

Bi ≤ Ui       ∀i = 1 to n (17)
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Bi ≥ Li       ∀i = 1 to n (18)

∑Bi ≤ N (19)

Bi ≥ 0 and integers (20)

3. Case Study
As a case study, a real rate sublimation process was considered, which has an unreliable production line behavior
(with stoppages and repairs), whose process consists of  10 different workstations (from A to J) where the different
operations  are  performed,  in  addition  there  are  6  buffer  locations  within  the  process.  Table  1  describes  the
operations carried out at each station, as well as the number of  operators or machines.

Station Operation Number of  workers or machines

A Clean cup 1

B Print design 1

C Cut out 1

D Place paper in cup 1

E Press sublimation paper into cup 2

F Sublimate cooling 1

G Remove paper from cup 1

H Assemble packaging 1

I Individually package cup 1

J Assemble production batches 1

Table 1. Operations performed at each station

Figure 1 shows the structure of  the production line. The circles indicate the stations, the triangles represent the
buffer locations of  the in-process inventory, and the square points to the quality inspector. The raw material enters
the production line at different stations and follows a flow marked in the process. Station D assembles the outputs
of  stations A and C (assembly 1); station I assembles the outputs of  stations H and G (assembly 2). Finally, station
J performs the last operation of  the process to generate a finished product.

The production line includes a quality inspector, who can classify the inventory in process into one of  the following
categories:

• Rejection:  The product has serious inconsistencies that cannot be reprocessed and therefore must be
rejected.

• Compliant: The product does not present inconsistencies and must follow the sequence of  the original
process.

Figure 1. Production line
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Table 2 presents the process times, times between failures and repair times that exist in the case study, considering a
Normal distribution (N). Table 3 indicates the inspection times and the probabilities of  classifying the inventory in
process in any of  the categories mentioned above.

The upper limit of  the buffer locations (decision variables) was set with a value of  50 places for the parts. With
regard to the lower limit, this study contemplates the value of  a space or place, ensuring that a minimum capacity is
maintained in any location analyzed.

Station
Processing time

(Seconds)
Time between failures

(minutes)
Time to repair

(minutes)

A N (5.75,1) – –

B N(85.5,5) N(150,10) N (10,0.2)

C N(60,5) – –

D N(65.55,5) – –

E N(163.88,5) N(120,10) N (10,0.2)

F N(120,5) – –

G N(10.93,1) – –

H N(50,3) – –

I N(10,2) – –

J N(30,4) – –

Table 2. Process, failure-to-failure and repair times for each station

Inspector
Processing time

(Seconds)

Probability

Rejection Conform

1 N (10,2) 5% 95%

Table 3. Inspection times and classification probabilities

4. Meta-Models

A simulation model is a representation of  a real-world system, while meta-models (referenced in this paper) are a
mathematical approximation of  a simulation model (Kleijnen & Sargent, 2000). Meta-models are developed to
obtain a better understanding of  the relationship between the input variables and the output variables of  the system
under study (Noguera & Watson, 2006). 

In  this  research,  two polynomial  regression  meta-models  were  developed;  this  category  of  meta-models  has
provided outstanding results in simulation work (Amiri & Mohtashami, 2012; Dengiz & Akbay, 2000; Durieux &
Pierreval,  2004; Hernández-Vázquez et al.,  2022a).  The methodology used for its elaboration is established by
Amiri and Mohtashami (2012). It employs design of  experiments (DOE) and the simulation to fit a meta-model to
the average rate of  production as a response (y), considering buffer locations as factors (xi). It should be noted that
unlike what was done by Amiri and Mohtashami (2012), the OEE indicator is considered as a response ( y) in the
first meta-model generated in this study. The calculation of  the OEE indicator results from the multiplication of
three factors; availability, performance and quality, which is described in detail by Socconini (2019).

A complete factorial  design 26  was carried out, with which 64 combinations were generated. Each of  the 64
combinations of  the experiment was simulated in the PROMODEL software in order to analyze the results of  the
response (OEE and throughput). The study considered 10 replications for each combination (that is to say, 640
simulations). The simulation time was 8 hours for each replica with a warm-up time of  2 hours. The PC where
these simulations were performed includes an AMD Ryzen 3 4300U processor with Radeon Graphics 2.70 GHz
and 8GB of  RAM.
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Regression meta-models involving the main effects and their interactions between two factors were generated. The
Anova analysis of  each of  them is presented in Table 4. The Fisher test demonstrates a high degree of  significance
and each meta-model is able to satisfactorily explain the variability in the variable response. The comparison of  the
results obtained with the meta-models and the simulation is another way to evaluate the validity of  these; the
approach suggested by Durieux and Pierreval  (2004)  and Amiri  and Mohtashami (2012) was used.  From the
experimental design, fifteen combinations of  values in the decision variables were randomly selected; the average
absolute error turned out to be less than the 6% established by Durieux and Pierreval (2004). Therefore, these are
considered to be sufficiently accurate (see Table 5).

Table 6 presents the meta-models developed for the case study, which estimates the value of  the OEE indicator
and the throughput (products/min) when evaluating the buffers allocated in the different buffer locations (from B1

to B6).

OEE

Source df SS MS F Value P Value

Model 21 5.74E-03 2.73E-04 8.0259 < 0.0001 Significant

   Main effects 6 2.83E-03 2.83E-03 83.0811

   Interaction 2 factors 15 2.91E-03 2.91E-03 85.4625

Residual 42 1.43E-03 3.41E-05

Cor total 63

R-Squared 80%

Throughput

Source df SS MS F Value P Value

Model 21 4.64E-03 2.21E-04 10.9500 < 0.0001 Significant

   Main effects 6 2.51E-03 2.51E-03 124.6263

   Interaction 2 factors 15 2.12E-03 2.12E-03 105.3595

Residual 42 8.47E-04 2.02E-05

Cor total 63

R-Squared 85%

Table 4. Anova analysis

Combination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Average
absolute
error (%)

B1 50 50 1 50 1 1 50 50 1 1 26 17 48 4 21

B2 1 50 50 1 1 1 1 50 50 1 20 35 32 24 44

B3 1 50 50 50 50 1 1 50 50 50 30 21 22 17 33

B4 1 1 50 1 50 1 50 50 1 50 40 33 34 38 15

B5 1 1 1 50 50 1 1 1 50 50 12 47 44 46 38

B6 1 1 1 1 1 50 50 50 50 50 11 23 18 13 6

O
E

E

Simulation 70.798% 74.293% 74.060% 74.293% 74.060% 71.095% 74.347% 74.347% 74.225% 74.704% 73.407% 74.512% 73.694% 74.521% 73.390%

Meta-model 71.539% 74.685% 73.813% 74.026% 74.727% 71.743% 74.100% 73.909% 74.606% 74.939% 73.975% 74.105% 73.943% 73.982% 74.218%

Absolute error 1.0473% 0.5274% 0.3333% 0.3603% 0.9010% 0.9112% 0.3320% 0.5888% 0.5127% 0.3144% 0.7735% 0.5469% 0.3369% 0.7233% 1.1283% 0.6225%

T
hr

ou
gh

pu
t Simulation 0.6123 0.6404 0.6406 0.6404 0.6406 0.6098 0.6413 0.6413 0.6402 0.6446 0.6406 0.6433 0.6394 0.6425 0.6354

Meta-model 0.6186 0.6445 0.6382 0.6378 0.6450 0.6174 0.6388 0.6390 0.6441 0.6470 0.6405 0.6402 0.6397 0.6395 0.6408

Absolute error 1.0335% 0.6344% 0.3780% 0.4087% 0.6768% 1.2427% 0.3777% 0.3574% 0.6102% 0.3676% 0.0246% 0.4878% 0.0475% 0.4692% 0.8499% 0.5311%

Table 5. Meta-model validation
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Meta-model OEE Meta-model Throughput

OEE(B) = TH(B) =

+0.714989037 +0.616993907

-1.91734E-05*B1 +9.22E-06*B1

+0.000429582*B2 +0.000416759*B2

+0.000537695*B3 +0.000412529*B3

+0.000419784*B4 +0.000414817*B4

-2.36387E-06*B5 +2.82E-06*B5

+2.04199E-05*B6 -1.78E-05*B6

-1.55702E-08*B1*B2 -8.68E-08*B1*B2

-3.6353E-07*B1*B3 -1.52E-07*B1*B3

-1.11956E-06*B1*B4 +1.30E-07*B1*B4

+5.25055E-07*B1*B5 -5.42E-08*B1*B5

+5.01946E-07*B1*B6 -8.24E-07*B1*B6

-5.7358E-06*B2*B3 -5.47E-06*B2*B3

-6.64169E-06*B2*B4 -5.57E-06*B2*B4

+5.25055E-07*B2*B5 -5.42E-08*B2*B5

+4.63257E-07*B2*B6 +1.95E-07*B2*B6

-6.11587E-06*B3*B4 -5.38E-06*B3*B4

-4.52945E-07*B3*B5 -5.42E-08*B3*B5

-1.60226E-06*B3*B6 +4.34E-08*B3*B6

+4.52945E-07*B4*B5 +5.42E-08*B4*B5

+2.49311E-06*B4*B6 +1.19E-06*B4*B6

-4.52945E-07*B5*B6 -5.42E-08*B5*B6

Table 6. Meta-models developed for the case study

5. Optimization Method

To solve  the mathematical  models,  the  GRG algorithm was used.  This is  a  nonlinear optimization algorithm
developed by  Leon Lasdon,  from the  University  of  Texas  (in  Austin),  and  by  Allan  Waren  from Cleveland
University. The GRG solver uses two techniques for determining the search direction. The default option is the
Quasi-Newton  method,  a  gradient-based  technique;  The  second  option  is  the  conjugated  gradient  method.
Depending on the available storage, the GRG solver can automatically switch between the Quasi-Newton method
or the conjugated gradient method (Muzzammil, Alam & Zakwan, 2015; Smith & Lasdon, 1992).

6. Numerical Results
This section describes the results generated by solving the mathematical models in section 2, which are aimed at
optimizing the value of  the OEE indicator and the throughput.

6.1. Optimization of  the OEE Indicator

30 scenarios of  the first mathematical model were solved, which aims to maximize the OEE indicator, as well as
the mandatory allocation of  all available buffers; It starts with 10 places and 10-unit increases were made in the
total number of  buffers available on the line until 300 places were reached. In each scenario, the optimal allocation
of  available places or spaces was found using the LINGO V13 package; Although it is a nonlinear integer mixed
model, the execution time is reasonable so at the moment, the use of  a metaheuristic technique is not justified.
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Table 7 shows the different configurations  of  buffers allocated and the OEE value achieved in each test:  in
scenarios 1 to 20 it is observed that the optimal allocation is destining the buffers to buffer locations 3, 4, 6, and 5,
filling them gradually and with a pattern of  arrangement similar to a bell;  Subsequently,  from scenario 21 the
accommodation gives preference to the buffer locations at the ends. In this sense, the result agrees with what was
previously observed where the non-uniform allocation of  places gives good results.

Figure 2 shows the behavior of  the OEE indicator as the buffers were allocated in each of  the tests. 

Test N

Buffer locations

OEEB1 B2 B3 B4 B5 B6

1 10 1 1 5 1 1 1 71.8451%

2 20 1 1 15 1 1 1 72.3685%

3 30 1 1 25 1 1 1 72.8920%

4 40 1 1 35 1 1 1 73.4154%

5 50 1 1 45 1 1 1 73.9388%

6 60 1 1 50 6 1 1 74.2551%

7 70 1 1 50 16 1 1 74.3643%

8 80 1 1 50 26 1 1 74.4735%

9 90 1 1 50 36 1 1 74.5826%

10 100 1 1 50 46 1 1 74.6918%

11 110 1 1 50 50 1 7 74.7748%

12 120 1 1 50 50 1 17 74.8402%

13 130 1 1 50 50 1 27 74.9057%

14 140 1 1 50 50 1 37 74.9712%

15 150 1 1 50 50 1 47 75.0367%

16 160 1 1 50 50 8 50 75.0395%

17 170 1 1 50 50 18 50 75.0156%

18 180 1 1 50 50 28 50 74.9916%

19 190 1 1 50 50 38 50 74.9677%

20 200 1 1 50 50 48 50 74.9437%

21 210 9 50 1 50 50 50 75.0077%

22 220 19 50 1 50 50 50 74.9828%

23 230 29 50 1 50 50 50 74.9578%

24 240 39 50 1 50 50 50 74.9329%

25 250 49 50 1 50 50 50 74.9080%

26 260 50 50 10 50 50 50 74.7472%

27 270 50 50 20 50 50 50 74.5714%

28 280 50 50 30 50 50 50 74.3956%

29 290 50 50 40 50 50 50 74.2197%

30 300 50 50 50 50 50 50 74.0439%

Total 4650 415 520 1030 1135 655 895

% allocation 8.92% 11.18% 22.15% 24.41% 14.09% 19.25%

Table 7. Solutions generated with the first mathematical model
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Figure 2. OEE Vs Buffers 

Buffer locations
Total allocated

buffers OEEB1 B2 B3 B4 B5 B6

1 1 50 50 1 50 153 75.0563%

Table 8. Solution to the second mathematical model

It is interesting to mention that a maximum OEE value is reached when there are 160 places available, later as more
buffers are allocated the value of  the OEE indicator decreases, having as a relevant finding in this study: in this
process the OEE indicator is affected as more buffers are added than necessary in the production line, in other
words, allocating more than 160 places will not improve the OEE indicator, even if  these places are optimally
distributed.

Table 8 illustrates the buffer  allocation solution generated to the second mathematical  model,  which aims to
optimize the OEE indicator, but the allocation of  all available buffers is not mandatory. A number of  300 available
buffers was contemplated, equaling the maximum number considered for the first model. The result that maximizes
the OEE indicator considers the allocation of  153 buffers.

6.2. Optimization of  the Throughput

30 scenarios of  the third mathematical model were solved, which aims to optimize the throughput, as well as
the mandatory allocation of  all available buffers; It starts with 10 places and 10-unit increases were made in
the total number of  buffers available on the line until 300 places were reached. In each scenario, the optimal
allocation of  available places or spaces was found using the LINGO V13 package; Although it is a nonlinear
integer mixed model, the execution time is reasonable so at the moment, the use of  a metaheuristic technique
is not justified. 

Table 9 shows the different buffer configurations allocated and the value of  the throughput (products/minute)
achieved in each test.

Figure 3 shows the graphical behavior of  the throughput as the buffers were allocated in each of  the tests. It is
important to note that this reaches its peak in test 16 as happened with the OEE indicator in the first mathematical
model. 

Table 10 illustrates the buffer allocation solution generated to the fourth mathematical  model,  which aims to
optimize the throughput, but the allocation of  all available buffers is not mandatory. A number of  300 available
buffers  was  contemplated,  equaling  the  maximum  number  considered  for  the  third  model.  The  result  that
maximizes the throughput considers the allocation of  153 buffers.
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Test N

Buffer locations

ThroughputB1 B2 B3 B4 B5 B6

1 10 1 5 1 1 1 1 0.619839

2 20 1 15 1 1 1 1 0.623897

3 30 1 25 1 1 1 1 0.627955

4 40 1 35 1 1 1 1 0.632012

5 50 1 45 1 1 1 1 0.636070

6 60 1 50 6 1 1 1 0.638767

7 70 1 50 16 1 1 1 0.640104

8 80 1 50 26 1 1 1 0.641441

9 90 1 50 36 1 1 1 0.642777

10 100 1 50 46 1 1 1 0.644114

11 110 1 50 1 50 1 7 0.644875

12 120 1 50 1 50 1 17 0.645382

13 130 1 1 50 50 1 27 0.645957

14 140 1 1 50 50 1 37 0.646390

15 150 1 1 50 50 1 47 0.646823

16 160 1 1 50 50 8 50 0.646953

17 170 1 1 50 50 18 50 0.646953

18 180 1 1 50 50 28 50 0.646953

19 190 1 1 50 50 38 50 0.646953

20 200 1 1 50 50 48 50 0.646953

21 210 9 1 50 50 50 50 0.646666

22 220 19 1 50 50 50 50 0.646307

23 230 29 1 50 50 50 50 0.645949

24 240 39 1 50 50 50 50 0.645590

25 250 49 1 50 50 50 50 0.645231

26 260 50 10 50 50 50 50 0.644002

27 270 50 20 50 50 50 50 0.642676

28 280 50 30 50 50 50 50 0.641350

29 290 50 40 50 50 50 50 0.640024

30 300 50 50 50 50 50 50 0.638698

Total 4650 415 638 1037 1010 655 895

% allocation 8.92% 13.72% 22.30% 21.72% 14.09% 19.25%

Table 9. Solutions generated with the third mathematical model

Buffer locations
Total allocated

buffers ThroughputB1 B2 B3 B4 B5 B6

1 50 1 50 1 50 153 0.647057

Table 10. Solution to the fourth mathematical model
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Figure 3. Throughput Vs Buffers 

6.3. OEE vs Throughput Comparison

Figure  4  shows  a  comparative  graph  of  the  total  percentage  of  buffers  allocated  in  the  30  tests,  between
mathematical models one and three. For the case study presented, the percentage buffers allocated to maximize the
OEE indicator was very similar to those obtained in the maximization of  the throughput, distinguishing only buffer
locations 2, 3 and 4.

Figure 4. OEE Vs Throughput 

Table 8 and 10 establish the assigned buffers that maximize the OEE and throughput of  the case study, generated
by mathematical models two and four respectively. In both cases the number of  buffers generated by the best
solution was 153, however, there is a difference between buffer locations 2 and 3, since for the OEE, 1 and 50
buffers must  be allocated respectively,  while  for the throughput,  these values are reversed.  Table 11 shows a
comparison between these two assignments, in addition, the OEE and throughput values that are generated in each
meta-model are also shown.

Mathematical
model

Buffer locations
Total allocated

buffers
Meta-model

OEE
Meta-model
ThroughputB1 B2 B3 B4 B5 B6

2 1 1 50 50 1 50 153 75.0563% 0.646953

4 1 50 1 50 1 50 153 74.9102% 0.647057

Table 11. Comparison of  buffers allocated between mathematical models two and three
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Table 12 summarizes the behavior of  the OEE indicator and the throughput in each of  the tests, as well as the best
solution  (153  buffers)  obtained  through  the  mathematical  models.  The  clarity  in  the  upward  and downward
behavior  in  the  OEE values  due  to  the  allocation  of  buffers  is  a  benefit  achieved  through the  use  of  the
mathematical models proposed in this study. 

Test

Total
allocated
buffers

OEE Throughput

Mathematical
model 1

Mathematical
model 2

Mathematical
model 3

Mathematical
model 4

1 10 71.8451% 0.619839

2 20 72.3685% 0.623897

3 30 72.8920% 0.627955

4 40 73.4154% 0.632012

5 50 73.9388% 0.636070

6 60 74.2551% 0.638767

7 70 74.3643% 0.640104

8 80 74.4735% 0.641441

9 90 74.5826% 0.642777

10 100 74.6918% 0.644114

11 110 74.7748% 0.644875

12 120 74.8402% 0.645382

13 130 74.9057% 0.645957

14 140 74.9712% 0.646390

15 150 75.0367% 0.646823

Best solution 153 75.0563% 0.647057

16 160 75.0395% 0.646953

17 170 75.0156% 0.646953

18 180 74.9916% 0.646953

19 190 74.9677% 0.646953

20 200 74.9437% 0.646953

21 210 75.0077% 0.646666

22 220 74.9828% 0.646307

23 230 74.9578% 0.645949

24 240 74.9329% 0.645590

25 250 74.9080% 0.645231

26 260 74.7472% 0.644002

27 270 74.5714% 0.642676

28 280 74.3956% 0.641350

29 290 74.2197% 0.640024

30 300 74.0439% 0.638698

Table 12. Summary of  the results obtained through the mathematical models
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7. Conclusions

This work presented as main contribution a new proposal for a BAP solution, considering as an optimization
criterion the OEE indicator used in Lean Manufacturing. A sublimation process whose structure is that of  a parallel
production line in series, with unreliable operating conditions, was taken as a case study. 

The BAP was analyzed under  a  single-objective  optimization  approach,  for  which  two different  criteria  were
considered: first,  the maximization of  the OEE indicator and as a second criterion, the maximization of  the
throughput. 

The  evaluation  method  used  considered  two  meta-models  built  from  designs  of  experiments  (DOE)  and
simulations of  the production line through the use of  PROMODEL software. The first of  them reflected the
behavior of  the OEE indicator, while the second represented the fluctuations in the throughput. 

In the study carried out, it was shown that the OEE indicator can be affected when more buffers are allocated than
necessary, so it is important to calculate and establish the best configuration of  these through an analysis such as
the one proposed in this document.

Another relevant finding of  this research was that the number of  buffers used to maximize the OEE indicator was
the same as that obtained to maximize the throughput, however, the accommodation configurations of  these were
different.

From the administrative point of  view this is relevant since the OEE indicator is frequently used to plan and
manage the performance of  production lines; at least in this case study it was observed that there are a number of
places on the line where the OEE indicator reaches a maximum value, beyond this critical value, the indicator
begins to deteriorate.

Unlike other studies where simulation is used as an evaluation method, the use of  meta-models facilitated
and streamlined the measurement of  optimization objectives, allowing solutions to  be achieved efficiently
with the GRG algorithm. The implementation of  meta-models helps in the analysis of  complex production
systems, taking advantage of  one of  the main virtues of  simulation, and allows optimization methods to
significantly improve their computational efficiency, since they behave as an analytical evaluation procedure
(Hernández-Vázquez et al., 2022a).

The mathematical models 1 and 2 presented in this document allow finding the best buffer configurations that
optimize the OEE indicator; the meta-models developed for the case study analyzed facilitate the evaluation of  this
indicator. In future cases of  application, it is suggested to use these mathematical models for the analysis of  other
production lines whose optimization objective is the same as the one evaluated in this study.

Finally,  for  future research it  is recommended to use as an optimization criterion the OEE indicator for the
allocation of  buffers and make a comparison with other different criteria, such as minimizing the total size of  the
buffer or minimizing the total cost of  the allocation, to see the differences or similarities between them. In addition,
it would be relevant to analyze production lines with other types of  configurations to evaluate the impact on the
OEE indicator.
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