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Abstract:

Purpose: Lockdown and movement restrictions that imposed by governments have significantly changed
customers’  behavior,  making the planning and decision-making processes more challenging.  Providing
accurate estimation of  demand enables managers to take more successful decisions and allow optimizing
inventory and resources; this is the main purpose of  this study.

Design/methodology/approach: An ensemble model that is based on combining Bayesian-optimized
Long Short-Term Memory (BO-LSTM) and Gated Recurrent Unit (BO-GRU). Experiments were carried
out on actual dataset obtained from a company specialized in food industries during the volatile situation
of  Covid-19. 

Findings: The proposed model significantly outperformed all hand-tuned ones and reduced the mean
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) by 2.80 % and 4.74 % compared to
BO-LSTM and 3.14 % and 3.60 % compared to BO-GRU respectively. Furthermore, using BO algorithm
for hyperparameters tuning improved the accuracy of  forecasting.

Originality/value: The suggested model was statistically compared to its members in addition to other
machine learning models using the t-test. Findings demonstrated the superiority of  the proposed method
over benchmark models.

Keywords: demand  prediction,  machine  learning,  ensemble  model,  bayesian  optimization,  Long  Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU)
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1. Introduction

Demand forecasting is both science and art that decision makers rely on to support the growth of  the company, it
allows efficient resource allocation, more effective management planning process, and help optimize the stock level.
However,  companies  have  struggled  to  provide  accurate  forecasts  of  demand  due  to  increased  volatility  of
consumer behavior, in addition to many factors such as weather changes and unexpected events like the Covid-19
pandemic (Jin, Zheng, Kong, Wang, Bai, Su et al., 2021). 

In December 2019 a new infectious disease called Coronavirus 2019 (Covid-19) emerged in Wuhan, China. The
responsible virus was named by the International Committee on Taxonomy of  Viruses (ICTV) as SARS-CoV-2,
which has a high level of  transmission compared to similar viruses from the same family (coronaviridae) such as
SARS-CoV (Shereen, Khan, Kazmi, Bashir & Siddique, 2020; World Health Organization, 2021). This disease is
responsible for infecting and killing millions of  people around the world. Until the writing of  this paper, the total
number  of  confirmed  cases  has  reached  704,753,890,  while  the  death  toll  reached  7,010,681  (World  Health
Organization, 2021). 

Among the measures that governments have put in place was the lockdown, which has emerged as an effective way
to control the spread of  the virus (Atalan, 2020). Notwithstanding, it  had major economic consequences and
perilously impacted many manufacturing and service industries worldwide such as tourism, aviation, restaurants and
bars, travel,  and transportation (Minondo, 2021; Dey & Loewenstein, 2020; Agrawal, Jamwal & Guptza, 2020;
Raouf, Elsabbagh & Wiebelt, 2020). 

Covid-19 pandemic has imposed significant challenges for supply chains (SC) globally. Members in the SC have
experienced shortage of  labor, where infected workers, restrictions imposed on the number of  workers allowed to
be present in the facility, and the inability to get to work were the primary causes (Aday & Aday, 2020). Further,
restrictions imposed on movement to and within the country impacted all modes of  transportation, leading to the
cessation of  many industries due to the shortage of  raw materials (Chowdhury, Paul, Kaisar & Moktadir, 2021).
Consequently, these factors have negatively affected the flow of  information through the chain and led to the loss
of  relationships that have been built over time. (Chowdhury, Sarkar, Paul & Moktadir, 2020; Pichler & Farmer,
2021).

Covid-19 epidemic changed people’s lives and motivated them to invent new ways of  consumption. Furthermore,
consumers became under conditions to develop alternative ways to get their needs (Sheth, 2020; Roggeveen &
Sethuraman, 2020). During the pandemic period, Customers’ demand for basic products such as groceries has
greatly increased, exceeding the stores’ stock and the supplier’s ability to replenish them (Saarinen, Loikkanen,
Tanskanen, Kaipia, Takkunen & Holsmtröm, 2020). On the other hand, demand for unnecessary products has
decreased because of  the reduction in income. Additionally, the fear feelings of  Covid-19 were the most influential
on  demand,  especially  at  the  beginning  of  the  pandemic,  however,  it  decreased  over  time  (Rogggeveen  &
Sethuraman, 2020, Saarinen et al., 2020; Hoda, Singh, Rao, Ural & Hodson, 2020).

Implications of  Covid-19 pandemic on SC activities,  made the planning and decision-making processes more
challenging (Chowdhury et al., 2021; Hoda et al., 2020). Management needs more responsive strategies that assist
the SC to handle the resulting imbalance between supply and demand. Companies should be able to change quickly
based on requirements and adapt to the current situation to survive (Dolgui, Ivanov & Sokolov, 2018). Further, they
must understand the new drivers of  demand and model them to get accurate forecasts (Chowdhury et al., 2021).
Demand forecasting plays a key role in effective SC management, since providing accurate forecasts can guide
business  toward  more  successful  decisions.  Moreover,  better  estimation  of  consumer  demand  can  assist  in
optimizing the inventory avoiding out-of-stock and over-stock situations,  hence effectively meeting customers’
needs. 

These developments led to increase the demand volatility,  making it  very difficult for enterprises to accurately
predict  future  demand  using  traditional  forecasting  methods  such  as  Linear  Regression  and  Autoregressive
integrated moving average (ARIMA). These methods rely on building linear mapping between inputs and outputs,
which makes them unable to capture complex nonlinear patterns within a dataset. Additionally, the accuracy of
these methods decreases by increasing the forecasting horizon (Aslam, Lee, Khang & Hong, 2021). 
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Recently,  machine  learning  algorithms  have  been  successfully  applied  in  various  applications  of  time  series
forecasting. Feedforward Neural Network (FFNN) which is a type of  Artificial Neural Networks (ANN) does not
assume the distribution of  data and it can model complex relationships within the dataset. Nonetheless, it is not
able to handle temporal dependencies within the time series.  On the other hand, Recurrent Neural Networks
(RNN) is a special class of  ANN that takes time dependencies into account, and it found to be more suitable for
sequence data modeling than the FFNN (Abbasimehr, Shabani & Yousefi, 2020). Simple RNNs suffer from the
vanishing  and  exploding  gradient  problems making  it  unable  to  handle  long-range  time  dependencies.  Long
Short-Term Memory (LSTM) which is an extension to the RNN, in addition to the Gated Recurrent Unit (GRU)
which is a simpler version of  the LSTM were proposed to overcome the drawbacks of  the vanilla RNN (Parmezan,
Souza & Batista, 2019).

In addition to the learnable parameters, ANN contains hyperparameters which should be fixed before starting the
training process. Hyperparameters selection is usually performed by an expert, where many trials are conducted,
and the best performing configuration is selected. This process is time-consuming since the model must be trained
and evaluated for each set of  hyperparameters. Moreover, experts are expensive to hire and may not be available.
What makes this process more difficult is the dependency of  some hyperparameters on each other such as the
learning rate and the batch size (Kandel & Castelli, 2020; Jastrezebski, Kenton, Arpit, Ballas, Fischer, Bengio et al.,
2018), where increasing the value of  one of  them may require increasing or decreasing the value of  the other to
reach the best possible results. This problem could be bypassed by automating the process using more efficient
ways.  Many  optimization  algorithms  have  been  developed  and  proven  to  provide  a  performance  similar  to
outperform hand-tuned models (Bergstra, Bardenet, Bengio & Kégl, 2011). For instance, Bayesian Optimization
(BO) has been widely used for hyperparameters tuning. What distinguishes this method is its ability to efficiently
optimize expensive black-box functions by approximating them using a surrogate model that is cheaper to evaluate. 

Weak predictors usually  perform a  local  search,  where they cannot  cover  a  large  area of  the  solution space.
Furthermore,  a single model may not be enough to represent all  the relationships within the sequential  data.
Grouping several models to compose an ensemble can improve the performance of  unstable learners (Qiu, Zhang,
Ren, Suganthan & Amaratunga, 2014). One of  the simplest ways to aggregate the results of  the contributed models
is by finding the average. However, this approach is sensitive to outliers (extreme values) (Choi & Lee, 2018).
Alternatively, predictions could be combined by assigning a weight for each one of  them based on a learning
algorithm.

In this work, Bayesian-optimized ensemble model was proposed to forecast drinking water bottle packs demand
during the volatile  situation of  Covid-19 pandemic. The major contribution of  this  paper is  discussed in the
following: 

1. Weighted combination of  Bayesian optimized LSTM and GRU models  is  applied to multistep-ahead
demand forecasting. The ensemble consists of  deep LSTM and GRU models, both were optimized using
Bayesian Optimization (BO) method. Further, contributors were aggregated by training a blender model
that weighed sum their predictions.

2. A comparisons study of  the proposed ensemble model with RF, GBRT, FFNN, RNN, LSTM, GRU, in
addition to its contributors, has been carried out to show the effectiveness of  the proposed method. Most
machine learning algorithms are stochastic in nature because of  making use of  randomness during the
learning process. To achieve reproducibility and to provide fare comparison results, this paper uses the
t-test to statistically compare the proposed method to its members as individuals, in addition to other
benchmark  models.  Moreover,  the  optimized  LSTM  and  GRU  models  were  compared  to  the
manual-tuned ones to investigate the effectiveness of  BO algorithm for hyperparameters tuning.

The rest of  the paper is organized as follows: section 2 discusses related works done in the field of  time series
forecasting. Then machine learning models are discussed in section 3. Section 4 presents the formulation of  the
proposed model, the data, as well as the methods used for comparison and forecasting. Section 5 explains the
experimental results. Finally, section 6 concludes the paper and outlines future work.
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2. Literature Review

Demand forecasting is one of  the most important tasks of  process planning, which can provide managers with the
necessary guidelines for making appropriate decisions. One commonly used forecasting technique is Autoregressive
Integrated Moving Average (ARIMA) which has been applied for various areas of  application such as stock price
(Ariyo, Adewumi & Ayo, 2014), gold price (Guha & Bandyopadhyay, 2016), and property crime (Chen, Yuan &
Shu, 2008), food products (Fattah, Ezzine, Aman, Moussami & Lachhab, 2018), and perishable dairy products (Da
Veiga, Da Veiga, Catapan, Tortato & Da Silva, 2014). However, due to the complexity of  the real-life time series
data, it is hard to fully understand the dataset (Khashei & Bijari, 2011) and determine whether it was related to
linear or nonlinear process (Zhang, 2003). Further, ARIMA models are not able to detect large variations and to
capture sudden changes in the data (Abbasimehr et al., 2020; Guha & Bandyopadhyay, 2016), hence, it is not able to
provide satisfactory performance on complex time series (Khashei & Bijari, 2011; Zhang, 2003; Pai & Lin, 2005;
Kofinas, Mellios, Papageorgiou & Laspidou, 2014).

Computational intelligence methods do not require prior knowledge about data distributions, also they showed
good performance, outperforming statistical models when applied to complex and highly nonlinear time series,
especially ANN which was able to beat both conventional time series and linear regression methods (Aday & Aday,
2020;  Spiliotis,  Makridakis,  Semenoglou  &  Assimakopoulos,  2020;  Smolak,  Kasieczka,  Fialkiewicz,  Rohm,
Siła-Nowicka,  Kopańczyk,  2020;  Jain,  Kumar-Varshney,  Chandra-Joshi,  2001).  Special  type  of  ANN  called
Recurrent Neural Networks which are more suitable for time series forecasting, due to its ability to model temporal
dependencies  within  the  sequential  data  (Abbasimehr  et  al.,  2020;  Parmezan  et  al.,  2019).  RNN showed  its
superiority over the FFNN (Carbonneau, Laframboise & Vahidov, 2008). Nevertheless, vanilla RNN suffer from
the vanishing and exploding gradient problems which limit their ability to take advantage of  longer sequences.
Different gated architectures were designed to solve these problems such as Long Sort-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) (Parmezan et al., 2019). 

In the study (Abbasimehr et al., 2020), a multilayer LSTM model was proposed to predict the future sales of  a
furniture company. The suggested model was configured using the Grid Search method and compared with several
statistical and computational intelligence methods including: ARIMA, exponential smoothing, SVM, KNN, ANN,
RNN, and single layer LSTM. Results demonstrated the ability of  computational intelligence methods in handling
complex real-world time series. Additionally, the proposed method showed the best performance. In Sahoo, Jha,
Singh & Kumar, 2019), an LTSM model was developed to predict hydrological time series. The suggested model
was compared to simple RNN and Naïve Method, performance of  each model was evaluated using four different
metrics namely RMSE, Nash-Sutcliffe efficiency, correlation coefficient, and MAE. Results showed the superiority
of  the gated structure, specifically LSTM over the simple RNN and the Naïve method. The study (Micheal, Hasan,
Al-Durra & Mishra, 2022) proposed a novel deep learning model optimized Bi-directional long short-term memory
to forecast univariate and multivariate time series data by integrating stacked LSTM layers. The model is optimized
by Bayesian optimization through tuning of  hyperparameters. Standard global horizontal irradiance and observed
plane of  array irradiance with metrological real solar data used in forecasting. The performance of  the proposed
algorithm was evaluated through uncertain weather conditions. The proposed model offered the best R2 value of
0.99 for univariate and multivariate model. 

A study (Habtemariam, Kekeba, Martinez-Ballesteros & Martinez-Alvarez, 2023) presented a model that is robust
and optimizes long-short term memory network for forecasting wind power generation in Ethiopia. The model
finds the best hyperparameter combination in a reasonable computational time using Bayesian optimization. The
model was evaluated using MAE, RMSE, and MAPE metrics. While in (Usmani, Memon, Danyaro & Qureshi,
2024) the researchers developed a novel Optimized Multi-level Multi-type Ensemble model for forecasting power
consumption. The model utilized different algorithms for time series forecast including exponential smoothing,
LSTM, GRU and MLP. Bayesian and Tabu search optimization were used to tune parameters. The proposed model
was able to predict power usage with an error of  22 %.

Conventional machine learning approaches depend on the features extracted by manual feature engineering of  the
dataset. Conversely, deep learning models can automatically extract relevant and better representations of  the data
(Ansari, Bartos & Lee, 2020). LSTM and GRU models also showed their ability to overcome traditional machine
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learning methods. For instance, (Wen, Zhou & Yang, 2020) proposes a deep learning model to forecast the load
demand of  residential buildings. Hourly measured load data were used in the study. Various models including:
ARIMA, MLR, SVM, ANN, RNN, LSTM, and GRU were compared using different evaluation metrics, namely:
RMSE, MAE, MAPE, and Pearson correlation. Results revealed that the GRU model is superior to the rest by
providing forecasts with higher accuracy. Another case in (Kantasa-Ard, Bekrar & Sallez, 2019) where the author
compared KNN, SVR, ARIMA and different structures of  ANN to predict  sugar consumption in  Thailand,
monthly sugar consumption rate from January 2015 to September 2018 were used in the study. Findings showed
that the LSTM model was the best performing model. 

The study (Liang, Lin, Deng, Mo, Lu, Yang et al., 2024) proposed a product market prediction framework. Artificial
intelligence  machine  learning  was  incorporated  in  the  framework  that  was  built  based  on  extreme  gradient
enhancement. To train and predict the ordering data for sales of  time-series data, Bayesian optimized limit gradient
boosting intelligent prediction model was used. The framework showed higher accuracy and faster speed prediction
capabilities compared to traditional prediction methods.

Combining machine learning models could improve the forecasting results by increasing the chance of  capturing
different patterns. Qiu et al., 2014 propose an ensemble of  deep learning belief  network (DBN). The suggested
model was structured as follows: first, 20 DBN models were trained, each of  which with a different number of
epochs. Then an SVM was used to map the predictions of  the 20 DBN to the actual target value. The performance
of  the proposed model was compared to SVR, FFNN, DBN, and an ensemble of  20 FFNN based on two
performance metrics namely RMSE and MAE. Findings revealed the superiority of  the proposed model when
tested on 7  different  datasets.  Additionally,  showing  the  power  of  assembling  multiple  learners.  Kamal,  Bae,
Sunghyun and Yun (2020) proposed a Deep Ensemble Recurrent Network (DERN) to predict Baltic Dry Index
(BDI). Models in the ensemble (RNN, GRU, LSTM) were trained independently and the outcome is the weighted
sum for their prediction. Further, these weights were learned using a neural network. Daily BDI data were sampled
on a weekly basis using average values and used in the study. DERN was compared to ARIMA, MLP, Deep RNN,
GRU and LSTM using  MAE,  MAPE,  and RMSE metrics.  Results  demonstrated  that  the  proposed  method
outperformed single structured models on both short-term and long-term prediction. Many other ensembles were
proposed in the literature which consisted of  diverse types of  forecasting models that aggregated differently. These
ensembles  showed  promises  improvements  and  achieved  better  results  in  comparison  to  single  structured
predictors (Jin, Ye, Ye, Wang, Cheng & Yan, 2020; Huang, Zhang, & Song, 2021; Akyuz, Uysal, Bulbul, & Uysal,
2017; Ishaq & Kwon, 2021; Xenochristou & Kapelan, 2020; Tan, Yuan, Li, Su, Li & He, 2019; Qiu, Ren, Suganthan
& Amaratunga, 2017). The study (Ozaki,  Ooka & Ikeda, 2021) discussed the relationship between a machine
learning  model’s  prediction  accuracy  and  its  hyperparameters.  Grid  search,  random  search,  and  Bayesian
optimization tuning methods were used. All tuning methods reduced the RSME to less than 50 % compared to
non-optimized tuning.

In summary, the previous review of  the literature confirmed the superiority of  deep learning methods, especially
LSTM and GRU which outperformed statistical methods, traditional machine learning models, FFNN, and Simple
RNN. Furthermore, studies showed that aggregating multiple models can improve the forecasting quality.  Still,
most studies of  demand forecasting in the literature were carried out during the normal situation,  where the
demand was more stable and easier to anticipate. Furthermore, many of  the proposed models were tuned by using
trial and error methodology, which does not guarantee access to the best possible model’s configuration. Moreover,
these models were benchmarked by performing a single run comparison, which is an unfair method, since the
model’s convergence point depends on the initial random values, resulting in a different model at each run. 

Accurate time series forecasting is crucial for decision making processes and reducing the future uncertainty. Hence,
this work proposes a deep ensemble model which consists of  LSTM and GRU models. The BO algorithm was
used to configure both models that contribute to the ensemble. The proposed model was statistically compared to
its members, in addition to other machine learning models using the t-test. This research elucidates the effectiveness
of  ensemble models, and the importance of  taking it into consideration in complex and volatile situations. Further,
this work will convey valuable information for future research that will explore various aggregation techniques.
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3. Theoretical Background

In this section, a theoretical background about machine and deep learning models will be presented. Some of  these
models will be used in this research, and others will be used as benchmarks to compare with this work.

3.1. Ensemble Machine Learning Models 

Decision Tree  (DT) is  a  supervised machine  learning  algorithm that  can  be  used for  both classification and
Regression problems (Tugay & Oguducu, 2020; Pedregosa, Varoguaux, Gramfort, Michel, Thirion, Grisel et al.,
2011;  Géron,  2019).  DT needs  a  minimal  amount  of  data  preprocessing  and  can  produce  accurate  results.
However, DT is unstable and sensitive to small variations in the training dataset. Moreover, in many cases, a single
tree may be not enough to describe the relationships within the dataset.  These problems could be solved by
aggregating multiple DT into an ensemble such as the Random Forest (RF) (Lahour & Slama, 2015), and Gradient
boosting Regression Tree (GBRT) (Géron, 2019). 

3.2. Deep Learning Models
3.2.1. feedforward neural network 

Feedforward Neural  Network is  a  class of  ANN that imitates  biological  neural  networks.  FFNN consists  of
neurons (also called nodes) that are interconnected and organized in layers. Each node in a layer is connected to all
neurons in the next layer, and these connections are associated with weights. FFNN Includes an input layer, one or
more hidden layer, and an output layer. The input layer receives the input from the external environment, the
output layer communicates the output to the environment, and hidden layers encode the relationships between the
input and the output. Neural networks are learned by exposure to training examples and target values, where
learning  is  achieved  by  adjusting  the  weights  value  in  a  direction  that  minimizes  the  error  between  model
predictions and the true targets (Burkov, 2019; Chollet, 2021). 

3.2.2. Simple RNN 

Information flows through the FFNN in one direction, from the input layer, through the hidden layers, to the
output layer without any feedback loops (Carbonneau et al., 2008). Furthermore, the inability of  FFNN to handle
historical data dependencies, makes it unsuitable for sequence data modeling (Bedi & Toshniwal, 2019). On the
other  hand,  RNN,  which  is  a  special  type  of  ANN accounts  for  temporal  dependences  within  the  dataset
(Abbasimehr et al., 2020). RNN unit takes information from previous steps and utilizes it to predict the next step.
However, simple RNN suffers from the vanishing gradients problem, where gradients have a hard time propagating
and adjusting earlier weights, consequently, making the RNN stores previous information for a short period of  time
and is unable to make use of  long-range dependencies (Bedi & Toshniwal, 2019; Siami-Namini, Tavakoli & Namin,
2018).

3.2.3. Long Short-Term Memory 

Long Short-Term Memory is an extension of  the traditional RNN proposed by Hochreiter and Schmidhuber in
1997 to overcome the weaknesses of  simple RNN (Abbasimehr et al., 2020). LSTM hidden layer consists of  LSTM
units as shown in Figure 1, every unit works at a distinct time step and passes its output to the next unit until the
last one which produces the output. The LSTM unit contains three controlling gates namely input gate, forget gate,
and the output gate, which control the flow of  information through the LSTM layer. Additionally, the unit contains
a memory cell that can maintain information for a long period of  time. Figure 2 shows the structure of  an LSTM
block.

For a time series x, the LSTM unit updates the input cell state ct and output a hidden state ht at each time step t,
according to the following equations [55].

(1)

(2)
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(3)

(4)

(5)

(6)

Figure 1. The structure of  LSTM layer

Figure 2. The structure of  LSTM unit

In equations (1) to (6), it, ft, ot represent the input gate, forget gate, and the output gate respectively, σ denotes the
logistic sigmoid function, wih,  wix,  wfh,  wfx,  woh,  wox,  wch, and wcx stands for the weight matrices, tanh is the hyperbolic
tangent activation function, bi, bf, bo and bc are the bias parameters, and c̃t  is a candidate value to be added to the cell
state  ct.  LSTM has been commonly  used for sequential  data modeling due to its  ability  to  handle  long-term
dependencies. The gating mechanism of  the LSTM cell allows to maintain its state value over a long time by
regulating the flow of  information into and out of  the cell and to be kept or discarded. The input gate will specify
the relevant information to keep, the forget gate will determine the information that should be deleted from the
previous time step, and the output gate will determine the information that will be used to generate the cell output.

3.2.4. Gated Recurrent Unit 

Gated recurrent unit is a less complicated variant of  the LSTM introduced by Cho, Van Merriënboer, Gulcehre,
Bahdanau, Bougares, Schwenl et al. (2014). GRU aims to solve the vanishing gradient problem of  the vanilla RNN.
Unlike the LSTM, the GRU unit consists of  only two gates to control the flow of  the signal namely update gate
and reset gate, making it more computationally efficient and cheaper to train. Moreover, the GRU unit does not
contain a separate memory cell. The structure of  GRU block shown in Figure 3.
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Figure 3. The structure of  GRU unit

Mathematically (Zeroual, Harrou, Dairi & Sun, 2020), the forward learning of  an GRU is as follows:

(7)

(8)

(9)

(10)

Where  zt and  rt are the output results for the update gate and reset gate respectively.  σ is the logistic sigmoid
function, wuc, wux, wrc, wrx, wcc, and wcx represent the weight matrices, bu, br, and bc donate the bias parameters, ct-1 is the
previous cell state, and c̃t is a candidate for replacing ct-1. The next section explains which model is utilized in this
study.

4. Methodology
In this study, five main phases will be used to achieve the purpose, as follows.

4.1. Data 

In this work, actual daily sales of  1.5-liter drinking water bottle packs were used for modeling. The dataset obtained
from a  company  specialized  in  food  industries,  headquartered  in  Amman,  Jordan.  It  is  one  of  the  leading
companies in the field of  bottling and distributing mineral drinking water in Jordan, and it covers all parts of  the
country. The dataset consists of  a univariate time series which was collected during Covid-19 pandemic period,
covering 533 days from March 1st, 2019 to August 14th, 2020.

4.2. Data Preparation

Real  world  datasets  may  contain  noise,  duplicate,  and  missing  values,  resulting  in  a  poor-quality  model  and
unsatisfactory performance. Hence, data preparation is an important step, by which raw data is refined before being
fed to the algorithm. Data preparation process includes several sub-steps that differ according to the type of  data
and the problem to be dealt with.

Four-step process was employed to make the data suitable for modeling. First, missing values were found and
replaced using forward filling technique. Next, data were split into a training set which was utilized to develop the
models, and a testing set that was used to assess the quality of  models’ predictions. As shown in Figure 4, the
historical training set consists of  the demand from March 1st, 2019, to July 31st, 2020, and the testing set extends
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from August 1st, 2020 to August 14th, 2020. Then, the training set was standardized according to a distribution of
mean 0 and standard deviation of  1 to improve the learning process and ability of  the model to smoothly digest the
data.

Figure 4. Training and testing splits of  drinking water bottle packs demand dataset

Finally,  sliding window technique was applied to transform the time series into an appropriate form, where a
window of  size 10 slide over the time series to extract features and labels. The window size was selected based on
trial-and-error method where different sizes from 1 to 30 were tested. The feature is a window of  consecutive
values (order preserved) from the series, while the label is the next value. This process restructures the time series,
making it  suitable for supervised learning problems.  Figures  5 demonstrate  a  graphical  representation of  the
windowing process for both sets.

Figure 5. Sliding window applied to the drinking water bottle packs sales with a window size of  10

4.3. Proposed Method

In this section, the proposed model will be explained, and how the hyperparameters are optimized is discussed.

4.3.1. The Proposed Model

LSTM and GRU models were proposed to combat the problem of  vanishing gradient found in simple RNN using
the gating mechanism which allows them to learn long term dependencies. However, it is not possible to generalize
which one is the best and most appropriate for a particular problem or a field of  application, each one has its own
way of  information flow management using different internal operations and gating mechanism. The proposed
model considers a combination of  Bayesian-optimized LSTM (BO-LSTM) and GRU (BO-GRU) into an ensemble
with the purpose of  reducing the forecasting error.

In regression problems, one of  the simplest ways to build an ensemble is to combine the predictions of  different
regressors using a summary statistic, such as the mean. While in this work, instead of  using a trivial function, a
blender model was trained to perform the aggregation. As shown in Figure 6, the suggested Blended-LSTM-GRU
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model  consists  of  Bayesian-optimized  LSTM  (BO-LSTM)  and  GRU  (BO-GRU)  models,  which  were
independently trained using the same pre-processed data. Next, trained models were used to generate predictions
on the training data, which were utilized to train the blender parameters w1 and w2. The blender is the simplest form
of  neural network architecture, which consists of  only one neuron. In the testing phase, predictions of  BO-LSTM
and BO-GRU represented by P1 and P2 were aggregated into one final prediction P by applying a weighted sum as
shown in equation (11).

P=w1 P1+ w2 P2 (11)

Where w1 is the weight of  the BO-LSTM prediction and w2 is the weight of  the BO-GRU prediction. Traditional
machine learning models (RF and GBDT) were implemented in python using Scikit-learn library (Pedregosa et al.,
2011),  while  all  deep  learning  models  were  developed  using  TensorFlow  platform (Abadi,  Agarwal,  Bahram,
Brevdo, Chen, Citro et al., 2016). Experiments have been conducted in an environment with AMD Ryzen 7 5800H
with Radeon Graphics CPU, Nvidia RTX 3060 laptop GPU, 1 TB of  SSD storage, and 16 GB of  RAM.

Figure 6. Blended-LSTM-GRU model structure

Where w1 is the weight of  the BO-LSTM prediction and w2 is the weight of  the BO-GRU prediction. Traditional
machine learning models (RF and GBDT) were implemented in python using Scikit-learn library (Pedregosa et al.,
2011), while all deep learning models were developed using TensorFlow platform (Abadi et al., 2016). Experiments
have been conducted in an environment with AMD Ryzen 7 5800H with Radeon Graphics CPU, Nvidia RTX 3060
laptop GPU, 1 TB of  SSD storage, and 16 GB of  RAM.
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4.3.2. Hyperparameters Optimization

Bayesian  Optimization  (Chowdhury  et  al.,  2021)  is  a  sequential  design  strategy  used  to  optimize  black-box
expensive functions. In contrast to the manual tuning process where a new model must be built, trained, and
evaluated each time a new set of  hyperparameters is proposed, BO approximates the objective function using a
surrogate model which is cheaper to evaluate. Various forms of  the BO algorithm which differ in the way that they
model the actual function (surrogate model building approach) and in the criterion that is optimized to get the next
values for evaluation (the acquisition function).

The surrogate model is a probabilistic representation of  the actual objective function. Since the actual distribution
of  the objective function scores is not known, a sample of  (hyperparameters values, actual function score) pairs is
generated and used to build and train the surrogate model. To select the next point to evaluate, acquisition function
(also called selection function) is used. The next query point x* is the one that maximizes that acquisition function.
Next, x* is evaluated on the actual function and the score is obtained. Since the surrogate model was trained in a
history of  (hyperparameters values, actual function score) pairs, by adding a new pair, the surrogate model could be
updated. These steps are repeated until the provided number of  iterations is reached. Figure 7 shows the general
flowchart of  the BO algorithm.

Figure 7: Procedure of  Bayesian Optimization algorithm

One of  the common criteria is Expected Improvement (IE) which is defined as:

(12)

Where: x is the proposed set of  hyperparameters values, y represents the value of  the actual function on x, and
p(y|x)  is the surrogate probabilistic function. Two common approaches to build the surrogate model: Gaussian
Process (GP) and Tree-structured Parzen Estimate (TPE). GP will model  p(y|x)  directly by using a history of
(hyperparameters values, actual function score) pairs to build multivariate Gaussian distribution, while TPE which
will be used in this research, model p(x|y) and p(y). TPE define the p(x|y) as:

(13)

TPE chooses y* to be some quantile γ of  the observed y values which separate the current observations into two
clusters. Two density distributions are built: l(x) when y is less than the threshold y*, and g(x) when y is greater or
equal to the threshold y*. In other words, TPE uses the observations that gives a loss lower than the threshold y* to
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build l(x), and the rest are used to build g(x). No specific model for p(y). After some modifications and Using Bayes
rule, EI becomes as follows: 

(14)

As mentioned earlier, EI is used to select the next values to evaluate, these values are the ones that maximize it. In
order to maximize EI, points x with high probability under l(x) and low probability under g(x) are selected. In other
words, it is preferable to choose points that are more likely to be under l(x). Even though the BO algorithm spends
time to give the next proposed values that maximize the EI, it’s more efficient due to the fact that this method uses
an informed manner to propose the next values to the actual expensive function.

GRU and LSTM networks were optimized using the BO method. These models contain many hyperparameters
including but not limited to the learning rate, batch size, loss function, number of  hidden layers, number of  nodes
in each hidden layer, the optimizer, and the number of  epochs. Based on the test results on the manually tuned
models, the optimizer was fixed on Adam, and the remaining hyperparameters were selected using the BO method.
First,  the  ranges  of  hyperparameters values  should be defined which represent  the  search space  for  the BO
algorithms to explore. Table 1 provides the ranges of  hyperparameters values that are used in the experiments. 

The performance of  each hyperparameters combination was evaluated using the RMSE and MAE. A python function
that accepts the hyperparameters values and returns the RMSE and MAE scores for that combination was built. This
function represents the objective function that was optimized using the BO algorithm. Experiments were carried out
using an open-sourced python library for BO called Hyperopt (Bergstra, Yamins & Cox, 2013). Hyperopt has a simple
user interface, and the search space could consist of  continuous, ordinal, or categorical variables providing a greater
flexibility for the optimization process. Additionally, BO was ran for 35 iterations on each model. 

Hyperparameter Range

Activation function [Tanh, ReLU]

Loss function [Huber, MSE, MAE]

Batch size [2, 32], step = 2

Learning rate [0.0001, 0.01]

Number of  hidden layers [1, 2, 3]

Number of  neurons [32, 64, 128, 256, 512]

Number of  epochs [100, 550], step = 10

Table 1. Range of  hyperparameters for the BO method

4.4. Prediction Strategy 

Recursive Multi-step Forecast strategy was used to extrapolate the time series multiple steps ahead. This method
uses a single model, which has been trained to make one-step ahead prediction. To illustrate, after training the
model, the last k observations are extracted from the training dataset, the value of  k is equal to the window size
used in the training phase. The extracted array of  points x then used to predict one-step ahead in the future. To
predict the next step, the first element in x was dropped and the predicted previous value was appended to x. Using
the new modified  x, the model will predict the next step. This process continued until the required forecasting
horizon was reached. Simply put, the model makes use of  predictions of  prior time steps as an input to forecast the
following time step. 

4.5. Models Comparison 

Different runs of  the same model (same code) that trained on the same data set may produce different results
(Beam, Manrai & Ghassemi, 2020). This behavior could be attributed to the stochastic nature of  the algorithms,
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where various sources of  variability exist. For instance, at each run, weights are initialized into different random
values leading to different internal decisions in the model during the training process. 

In this study, models’ performance was compared statistically using the t-test. Each model was run 30 times, at each
run, randomly selected seed value was used. The performance at each run was recorded to obtain samples of
performance measures  for  each model,  since  the t-test  assumes that the samples  are approximately  normally
distributed.  Normality  was  checked  numerically  using  the  D’Agostino  and  Pearson’s  normality  test  with  a
significance level of  0.05 (D’agostino & Pearson, 1973). If  the  p-value is less than 0.05, the null hypothesis (the
sample came from a normal distribution) is rejected, while a p-value higher than 0.05 indicating that the sample
came from a normal distribution. Box-Cox Transformation (Box & Cox, 1964), with Lambda equal to 0 was used
to transform the data to make it fit a normal distribution.

The following metrics were used to evaluate the forecasting techniques: Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE).

(15)

(16)

Where yt are the actual values, ŷt are the estimated values, and n is the number of  observations. 

5. Results and Discussion 
Covid-19 pandemic has disrupted the consumption pattern, making demand forecasting more challenging. Recently,
the  trend  towards  using  deep learning  models  for  time  series  forecasting  has  increased,  since  these  models,
especially recurrent neural networks, are assumption free, able to handle nonlinear complex problems, and take time
dependencies into account. Many machine learning algorithms, which differ in the way they perceive and process
the input data. Each algorithm may learn different features by making different assumptions about the prediction
problem, leaving other patterns that couldn’t detect undiscovered. Combining different machine learning models
may improve the overall performance, outperforming the contributing members separately.

Hyperparameters BO-LSTM BO-GRU

Number of  hidden layers 2 2

Number of  neurons (256, 256) (256, 256)

Learning rate 0.00155 0.00122

Batch size 32 32

Activation function Tanh Tanh

Optimizer Adam Adam

Loss function MAE MAE

Number of  epochs 490 250

Table 2. Optimal hyperparameters value for BO-LSTM and BO-GRU

This work proposed the Blended-LSTM-GRU model which consists of  three main parts including the BO-LSTM,
BO-GRU, and the  blender.  The  same pre-processed dataset  was  used to independently  train  BO-LSTM and
BO-GRU  models,  and  both  were  automatically  tuned  using  the  BO  algorithm.  Table  2  shows  the  optimal
hyperparameters value for both BO-LSTM and BO- GRU. The suggested model was statistically compared to 6
benchmark models namely RF, GBRT, FFNN, RNN, GRU, LSTM, in addition to its contributors. 
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Model selection usually involves evaluating many different machines learning algorithms and comparing them based
on their performance on an unseen testing dataset. The model that achieves the best results is then selected as the final
model. This approach can be misleading, and it can lead to choosing a suboptimal model. Summary statistics and
statistical tests such as the t-test could give more accurate comparison than using a single model performance measure.

Standard deviation (std) and range can provide information about the variability of  the dataset: showing how the
data are spread around the mean, for instance, high std indicates more spread-out data, while low std means that the
data is clustered around the mean. From Table 3, the high variability of  deep learning models can be observed by
looking at the std and range values. Each run of  the same model (same code and hyperparameters value) provided
different results, this behavior can be attributed to the random nature of  these models as mentioned in section 2
and 4.5, resulting in an unfair comparison when using single-run method. 

Samples of  RMSE and MAE values for each method were obtained by running the model 30 times, each with a
different  random state.  D’Agostino  and Pearson’s  normality  test  with a  significance  level  of  0.05  was  used to
determine if  the samples are normally distributed. It was found that all p-values for RMSE samples were lower than
0.05 which means that the null hypothesis (sample is normally distributed) is rejected and the RMSE samples skewed
and deviated from a normal distribution. Wherefore, they were transformed using Box-Cox Transformation with a
Lambda equal to 0 (logarithmic transformation). All p-values for the MAE samples were higher than 0.05 indicating
that the null hypothesis failed to reject, and the MAE samples were normally distributed. The t-test was used to
compare the performance of  the forecasting methods considered. Table 3 shows the mean, standard deviation, and
range of  RMSE and MAE samples for each model. Tables 4 and 5 illustrate the resulting p-values of  the t-test.

Model

RMSE MAE

Mean Std Dev Range Mean Std Dev Range

GBDT 1370.39 72.84 183.16 1025.52 37.45 127.80

RF 1330.67 17.74 74.97 970.85 11.76 53.57

FFNN 1327.19 147.18 521.71 968.69 113.14 431.32

RNN 1395.44 137.16 580.28 1001.55 126.20 629.14

LSTM 1311.45 209.04 821.89 980.56 192.41 755.10

GRU 1477.61 208.53 852.34 1061.73 157.96 728.13

BO-LSTM 1234.78 227.50 778.70 905.59 184.85 702.21

BO-GRU 1259.79 129.32 539.91 909.88 130.52 580.76

Blended-LSTM-GRU 1200.04 191.03 739.75 877.15 133.20 517.85

Table 3. Mean, standard deviation, and range of  RMSE and MAE samples

Forecasting
technique GBRT RF FFNN RNN GRU LSTM BO-GRU BO-LSTM

Blended-
LSTM-GRU

GBDT

RF 0.0040

FFNN 0.0585 0.3388

RNN 0.7697 0.9909 0.9685

GRU 0.9878 0.9995 0.9981 0.9424

LSTM 0.0409 0.1823 0.3082 0.0229 0.0018

BO- GRU 0.0000 0.0012 0.0377 0.0000 0.0000 0.1772

BO- LSTM 0.0007 0.0047 0.0215 0.0004 0.0000 0.0792 0.2088

Blended-LSTM-GRU 0.0000 0.0001 0.0024 0.0000 0.0000 0.0194 0.0582 0.2944

Table 4. Probability that the two samples (RMSE) come from the same distribution
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Forecasting
technique GBDT RF FFNN RNN GRU LSTM BO-GRU BO-LSTM

Blended-
LSTM-GRU

GBDT

RF 0.0000

FFNN 0.0064 0.4594

RNN 0.1654 0.9014 0.8496

GRU 0.8827 0.9985 0.9938 0.9428

LSTM 0.1109 0.6064 0.6122 0.3125 0.0422

BO-GRU 0.0000 0.0075 0.0359 0.0043 0.0000 0.0535

BO-LSTM 0.0006 0.0314 0.0612 0.0123 0.0005 0.0678 0.4595

Blended-LSTM-GRU 0.0000 0.0002 0.0033 0.0003 0.0000 0.0103 0.1743 0.2521

Table 5. Probability that the two samples (MAE) come from the same distribution

There is no unified answer to how many layers are the most appropriate or how many neurons are the best for all
datasets. Additionally, depending on the complexity, fewer number of  layers may produce an underfitting results,
while too many layers may overfit the learning dataset reducing the model ability to generalize to new unseen data.
It was noticed that running the same algorithm with different hyperparameters value led to different results, since
hyperparameters affect the model behavior and its ability to detect patterns. Moreover, as mentioned in section 1,
model hyperparameters may depend on each other, which also makes the process of  selecting them manually more
challenging.  From  the  results  it  can  be  seen  that  BO  can  be  used  to  determine  the  right  combination  of
hyperparameters that maximizes the performance of  the model on the considered dataset in an efficient way.

Results of  the experiment showed that the proposed Blended-LSTM-GRU was the most successful by providing
the lowest mean RMSE and MAE. The Blended-LSTM-GRU overcame its components, where compared to the
BO-LSTM, the mean RMSE and MAE were reduced by 2.80 % and 3.14 % respectively, while compared to the
BO-GRU, the reduction in mean RMSE and MAE were 4.74 % and 3.60 % respectively.

BO-LSTM and BO-GRU were the second and third most accurate forecasting methods respectively. However,
there was no statistically significant difference between them in terms of  both RMSE and MAE. From Tables 3, it
can be observed that the BO-LSTM provided lower mean error compared to the manually configured LSTM.
However,  there was no significant difference between them in terms of  both RMSE and MAE. In contrast,
BO-GRU  gave  significantly  lower  mean  error  than  its  hand-tuned  version.  Moreover,  both  BO-LSTM  and
BO-GRU achieved significantly better performance than traditional machine learning models, indicating the ability
of  BO  to  configure  the  models  and  find  hyperparameters  values  that  give  similar  and  sometimes  better
performance compared to the manually tuned models.

Both  BO-LSTM  and  BO-GRU  contributed  to  the  final  output  of  the  proposed  model,  but  in  a  different
proportion. In the training phase, BO-LSTM and BO-GRU were used to generate predictions on the training
dataset. Afterward, these predictions were reshaped into a suitable format and used to train the blender, which aims
to find the appropriate values of  w1 and w2. The values of  w1 and w2 for the 30 runs of  the Blended-LSTM-GRU
were examined. Findings demonstrated that the values of  w1 and w2 were ranging from 0.69 to 0.91 and from 0.09
to 0.31 respectively, which indicated that the BO-LSTM model had a higher impact on the results of  the Blended-
LSTM-GRU model.

Forecasting accuracy of  the proposed model was visually assessed on an unseen testing data set. Actual demand
and forecasting results of  BO-LSTM, BO-GRU, and Blended-LSTM-GRU were displayed in Figures 8, 9 and 10
respectively. By analyzing the graphs, it can be observed that these models could provide accurate forecasts and very
close predictions to actual observations.

For the hand tuned models, LSTM was the most accurate in terms of  RMSE, while FFNN had the lowest error
with regards to the MAE, followed by the RF model. RNN and GRU were the worst in terms of  both RMSE and
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MAE, where it can be observed from Table 3 that shallow and less complicated models such as the RF provided
more accurate forecasts. This behavior can be explained by the problem of  overfitting, where RNN and GRU have
failed to generalize to new unseen dataset. 

Figure 8. Actual and predicted demand of  drinking water bottle packs for 14 days using BO-LSTM model

Figure 9. Actual and predicted demand of  drinking water bottle packs for 14 days using BO-GRU model

Figure 10. Actual and predicted demand of  drinking water bottle packs for 14 days using Blended-LSTM-GRU model

-208-



Journal of  Industrial Engineering and Management – https://doi.org/10.3926/jiem.6571

The LSTM model significantly outperforms the GRU model. Further, BO-LSTM resulted in lower error when
compared to BO-GRU. Superiority of  the LSTM models can be attributed to the complex gating system and its
different way of  managing the flow of  information through it, enabling the LSTM to capture complex time series
dynamics. 

Generally, finding revealed that the proposed Blended-LSTM-GRU achieved better results than both BO-LSTM
and BO-GRU separated, demonstrating the advantage of  combining several predictors in an ensemble, where
contributors try to account for the relationships left  by  other members,  improving the overall  results  of  the
ensemble model.  Furthermore,  BO-LSTM and BO-GRU models resulted in lower forecasting error than the
hand-tuned models, indicating the ability of  BO algorithm to effectively configure deep learning models.

With the end of  the lockdown period, the market will begin to recover from the effects of  the pandemic, and
consumers will gradually return to their daily habits as before the pandemic. To confirm the effectiveness of  the
proposed method and its usability in the normal situation, the Blended-LSTM-GRU model was tested on data
collected before the pandemic covers 229 days from July 1, 2019 to February 12, 2020. The data were prepared
using the four-step process proposed in section 4.2 where the first 215 data points were used for training and the
next 14 points were used for testing. Results showed the effectiveness of  the proposed forecasting model where it
achieved a mean RMSE and MAE of  972.95 and 804.10 respectively, which is significantly lower than the same
model errors when applied to volatile dataset when tested using the t-test. The results show high accuracy when the
model is implemented to COVID-19 as a case study. Consequently, it can be concluded that the same model can be
utilized in case of  disasters such as earthquakes.

6. Conclusion

This study proposed a deep ensemble forecasting method that combines state-of-the-art LSTM and GRU models.
Both  models  were  optimized  using  Bayesian  optimization,  then  aggregated  by  training  a  simple  model  that
performs a weighted sum over their predictions. The resulting model which called Blended-LSTM-GRU, was used
to forecast drinking water bottle packs demand during the volatile situation of  Covid-19 pandemic. The suggested
model was statistically compared to its contributors (BO-LSTM and BO-GRU) and other forecasting techniques
using the t-test. Results revealed that the Blended-LSTM-GRU model was the most successful with the lowest
mean RMSE and MAE, where it was reduced by 2.80 % and 4.74 % compared to BO-LSTM and 3.14 % and
3.60 % compared to BO-GRU respectively. Models optimized using the BO method were able to provide more
accurate results than the manually tuned models, indicating the ability of  BO to find successful configuration that
competes with models constructed by trial and error. Furthermore, graphical examination of  BO-LSTM, BO-GRU,
and Blended-LSTM-GRU demonstrated the ability of  these models to provide forecasts close to the actual data
and kept up with the sharp increases and decreases. 

As  future  work,  other  deep  learning  architecture  such  as  many-to-many  recurrent  networks  and  attention
mechanisms will be investigated. Moreover, different aggregation methods of  deep learning models for times series
forecasting will be tested, and different optimization algorithms will be investigated and compared in time series
forecasting applications. Additionally, the relationship between prediction error normality and the prediction model
performance will be investigated.
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